1
|
Yu X, Zhong G, Zhao G, Zhou T, Yu J, Zhang X, Gai Z, Xu Z, Lei H, Shen X. Enantioselectivity regulation of antibody against chiral herbicide metolachlor based on interaction at chiral center. Int J Biol Macromol 2024; 270:132471. [PMID: 38763235 DOI: 10.1016/j.ijbiomac.2024.132471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/29/2024] [Accepted: 05/15/2024] [Indexed: 05/21/2024]
Abstract
Enantioselective antibodies have emerged as great potential biomaterials in the fields of immunoassays and chiral separation. However, cross-reactivity of antibodies to the distomer may severely restrict the application. Comprehending the interaction mechanism between antibodies and enantiomers could be beneficial to produce superior enantioselective antibodies. In this study, a pair of recombinant antibodies (RAbs) against metolachlor enantiomers at chiral carbon (αSS-MET and αSR-MET) were generated and characterized. The αSS-MET-RAb and αSR-MET-RAb showed comparable sensitivity and specificity to the parental monoclonal antibodies by icELISA, with IC50 values of 3.45 and 223.77 ng/mL, respectively. Moreover, the complex structures of RAbs and corresponding eutomer were constructed and analyzed, and site-specific mutagenesis was utilized to verify the reliability of the enantioselective mechanism elucidated. It demonstrated that the strength of the interaction between the chiral center region of eutomer and the antibody was the key factor for the enantioselectivity of antibody. Increasing this interaction could limit the conformational adjustment of the distomer in a specific chiral recognition cavity, thus decreasing the affinity of the antibody to the distomer. This work provided the in-depth analysis of enantioselective mechanism for two RAbs and paved the way to regulate antibody enantioselective performance for immunoassays of chiral compounds.
Collapse
Affiliation(s)
- Xiaoting Yu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Guohua Zhong
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China
| | - Gang Zhao
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Tao Zhou
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Jiayi Yu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Xu Zhang
- College of Life Science and Engineering, Foshan University, Foshan 528225, China; Guangzhou Editgene Co., Ltd., Guangzhou 510642, China
| | - Zuoqi Gai
- College of Life Science and Engineering, Foshan University, Foshan 528225, China; Guangzhou Editgene Co., Ltd., Guangzhou 510642, China
| | - Zhenlin Xu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Hongtao Lei
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| | - Xing Shen
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
2
|
Lu X, Ma Y, Jiang S, Wang Z, Yu Q, Ji C, Guo J, Kong X. Quantitative monitoring ofloxacin in beef by TLC-SERS combined with machine learning analysis. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 308:123790. [PMID: 38142496 DOI: 10.1016/j.saa.2023.123790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/03/2023] [Accepted: 12/16/2023] [Indexed: 12/26/2023]
Abstract
Ofloxacin is one kind of quinolone antibiotic drugs, the abuse of ofloxacin in livestock and aquaculture may bring bacterial resistance and healthy problem of people. The illegally feeding cattle with ofloxacin will help it keep health, but the sedimentation of ofloxacin could bring problem in food safety. The accurate, simple and instant monitoring ofloxacin from beef by portable sensor was of vital issue in food quality. A simple and reliable method was proposed for instant and quantitative detecting ofloxacin in beef, in which the thin-layer chromatography (TLC) -surface-enhanced Raman scattering (SERS) spectroscopy was in tandem with machine learning analysis base one principal component analysis-back propagation neural network (PCA-BPNN). The TLC plate was composed with diatomite, that was function as the stationary phase to separate ofloxacin from beef. The real beef juice was directly casted onto the diatomite plate for separating and detecting. The directly monitor ofloxacin from beef was achieved and the sensitivity down to 0.01 ppm. The PCA-BPNN was used as reliable model for quantitative predict the concentration of ofloxacin, that shown superior accuracy compared with the traditional model. The results verify that the diatomite plate TLC-SERS combined with machine-learning analysis is an effective, simple and accurate technique for detecting and quantifying antibiotic drug in meat stuff to improve the food safety.
Collapse
Affiliation(s)
- Xiaoqi Lu
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun, Liaoning 113001, PR China
| | - Yidan Ma
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun, Liaoning 113001, PR China; International Education College, Liaoning Petrochemical University, Fushun, Liaoning 113001, PR China
| | - Shangkun Jiang
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun, Liaoning 113001, PR China
| | - Zice Wang
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun, Liaoning 113001, PR China; International Education College, Liaoning Petrochemical University, Fushun, Liaoning 113001, PR China
| | - Qian Yu
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun, Liaoning 113001, PR China
| | - Chengcheng Ji
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun, Liaoning 113001, PR China; Engineering Training Centre, Liaoning Petrochemical University, Fushun, Liaoning 113001, PR China.
| | - Jiaqi Guo
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and Joint International Research Lab of Lignocellulosic Functional Materials, Nanjing Forestry University, Nanjing 210037, PR China
| | - Xianming Kong
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun, Liaoning 113001, PR China; International Education College, Liaoning Petrochemical University, Fushun, Liaoning 113001, PR China.
| |
Collapse
|
3
|
Yu X, Zhang X, Xu J, Guo P, Li X, Wang H, Xu Z, Lei H, Shen X. Generation of recombinant antibodies by mammalian expression system for detecting S-metolachlor in environmental waters. JOURNAL OF HAZARDOUS MATERIALS 2021; 418:126305. [PMID: 34118539 DOI: 10.1016/j.jhazmat.2021.126305] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/01/2021] [Accepted: 06/01/2021] [Indexed: 05/24/2023]
Abstract
Current immunoassays for herbicide detection are usually based on polyclonal or monoclonal antibodies (MAbs) raised in animals. The mammalian expression system allows the procurement of specific and highly sensitive antibodies, avoiding animal immunization. In this study, S-metolachlor-specific IgG vectors bearing either Thosea asigna virus 2A or internal ribosome entry site (S-T2A or S-IRES) and single-chain variable fragment (scFv) vectors were designed and expressed. The recombinant antibodies (RAbs) were characterized by indirect competitive enzyme-linked immunosorbent assays (icELISA). The results showed that full-length RAbs exhibited significantly better performance than scFv, and both bicistronic vectors expressed antibodies of correct size, while RAb S-T2A elicited a higher yield than RAb S-IRES. Further analyses showed that RAb S-T2A and RAb S-IRES exhibited comparable reactivities and specificities to the parental MAb, with IC50 values of 3.44, 3.89 and 3.37 ng/mL, respectively. Finally, MAb- and RAb-based icELISAs were established for the determination of S-metolachlor in environmental waters. The recoveries were in the range of 73.0-128.1%, and the coefficients of variation were mostly below 10%. This article describes the production of RAbs for S-metolachlor from mammalian cells for the first time and paves the way to develop RAb-based immunoassays for monitoring herbicide residues in the environment.
Collapse
Affiliation(s)
- Xiaoting Yu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Xu Zhang
- Guangzhou Editgene Co., Ltd., Guangzhou 510642, China; College of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Jingjing Xu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Pengyan Guo
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Xiangmei Li
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Hong Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Zhenlin Xu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Hongtao Lei
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| | - Xing Shen
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
4
|
Buglak AA, Zherdev AV, Lei HT, Dzantiev BB. QSAR analysis of immune recognition for triazine herbicides based on immunoassay data for polyclonal and monoclonal antibodies. PLoS One 2019; 14:e0214879. [PMID: 30943259 PMCID: PMC6447172 DOI: 10.1371/journal.pone.0214879] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 03/21/2019] [Indexed: 12/03/2022] Open
Abstract
A common task in the immunodetection of structurally close compounds is to analyze the selectivity of immune recognition; it is required to understand the regularities of immune recognition and to elucidate the basic structural elements which provide it. Triazines are compounds of particular interest for such research due to their high variability and the necessity of their monitoring to provide safety for agricultural products and foodstuffs. We evaluated the binding of 20 triazines with polyclonal (pAb) and monoclonal (mAb) antibodies obtained using atrazine as the immunogenic hapten. A total of over 3000 descriptors were used in the quantitative structure-activity relationship (QSAR) analysis of binding activities (pIC50). A comparison of the two enzyme immunoassay systems showed that the system with pAb is much easier to describe using 2D QSAR methodology, while the system with mAb can be described using the 3D QSAR CoMFA. Thus, for the 3D QSAR model of the polyclonal antibodies, the main statistical parameter q2 (‘leave-many-out’) is equal to 0.498, and for monoclonal antibodies, q2 is equal to 0.566. Obviously, in the case of pAb, we deal with several targets, while in the case of mAb the target is one, and therefore it is easier to describe it using specific fields of molecular interactions distributed in space.
Collapse
Affiliation(s)
- Andrey A. Buglak
- A. N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
- St. Petersburg State University, St. Petersburg, Russia
- * E-mail:
| | - Anatoly V. Zherdev
- A. N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Hong-Tao Lei
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou, China
| | - Boris B. Dzantiev
- A. N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
5
|
Wang J, Peng T, Zhang X, Xie S, Zheng P, Yao K, Ke Y, Wang Z, Jiang H. Application of quantitative structure-activity relationship analysis on an antibody and alternariol-like compounds interaction study. J Mol Recognit 2019; 32:e2776. [PMID: 30663161 DOI: 10.1002/jmr.2776] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 12/23/2018] [Accepted: 12/24/2018] [Indexed: 11/06/2022]
Abstract
The antigen-antibody interaction determines the sensitivity and specificity of competitive immunoassay for hapten detection. In this paper, the specificity of a monoclonal antibody against alternariol-like compounds was evaluated through indirect competitive ELISA. The results showed that the antibody had cross-reactivity with 33 compounds with the binding affinity (expressed by IC50 ) ranging from 9.4 ng/mL to 12.0 μg/mL. All the 33 compounds contained a common moiety and similar substituents. To understand how this common moiety and substituents affected the recognition ability of the antibody, a three-dimensional quantitative structure-activity relationship (3D-QSAR) between the antibody and the 33 alternariol-like compounds was constructed using comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) methods. The q2 values of the CoMFA and CoMSIA models were 0.785 and 0.782, respectively, and the r2 values were 0.911 and 0.988, respectively, indicating that the models had good predictive ability. The results of 3D-QSAR showed that the most important factor affecting antibody recognition was the hydrogen bond mainly formed by the hydroxyl group of alternariol, followed by the hydrophobic force mainly formed by the methyl group. This study provides a reference for the design of new hapten and the mechanisms for antibody recognition.
Collapse
Affiliation(s)
- Jianyi Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing, People's Republic of China
| | - Tao Peng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing, People's Republic of China
| | - Xiya Zhang
- College of Food Science and Technology, Henan Agricultural University, Henan, People's Republic of China
| | - Sanlei Xie
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing, People's Republic of China
| | - Pimiao Zheng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing, People's Republic of China
| | - Kai Yao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing, People's Republic of China
| | - Yuebin Ke
- Key Laboratory of Molecular Biology, Shenzhen Center for Disease Control and Prevention, Shenzhen, People's Republic of China
| | - Zhanhui Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing, People's Republic of China
| | - Haiyang Jiang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing, People's Republic of China
| |
Collapse
|
6
|
Buglak AA, Shanin IA, Eremin SA, Lei HT, Li X, Zherdev AV, Dzantiev BB. Ciprofloxacin and Clinafloxacin Antibodies for an Immunoassay of Quinolones: Quantitative Structure⁻Activity Analysis of Cross-Reactivities. Int J Mol Sci 2019; 20:ijms20020265. [PMID: 30641870 PMCID: PMC6359390 DOI: 10.3390/ijms20020265] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 12/11/2018] [Accepted: 01/07/2019] [Indexed: 11/16/2022] Open
Abstract
A common problem in the immunodetection of structurally close compounds is understanding the regularities of immune recognition, and elucidating the basic structural elements that provide it. Correct identification of these elements would allow for select immunogens to obtain antibodies with either wide specificity to different representatives of a given chemical class (for class-specific immunoassays), or narrow specificity to a unique compound (mono-specific immunoassays). Fluoroquinolones (FQs; antibiotic contaminants of animal-derived foods) are of particular interest for such research. We studied the structural basis of immune recognition of FQs by antibodies against ciprofloxacin (CIP) and clinafloxacin (CLI) as the immunizing hapten. CIP and CLI possess the same cyclopropyl substituents at the N1 position, while their substituents at C7 and C8 are different. Anti-CIP antibodies were specific to 22 of 24 FQs, while anti-CLI antibodies were specific to 11 of 26 FQs. The molecular size was critical for the binding between the FQs and the anti-CIP antibody. The presence of the cyclopropyl ring at the N1 position was important for the recognition between fluoroquinolones and the anti-CLI antibody. The anti-CIP quantitative structure–activity relationship (QSAR) model was well-equipped to predict the test set (pred_R2 = 0.944). The statistical parameters of the anti-CLI model were also high (R2 = 0.885, q2 = 0.864). Thus, the obtained QSAR models yielded sufficient correlation coefficients, internal stability, and predictive ability. This work broadens our knowledge of the molecular mechanisms of FQs’ interaction with antibodies, and it will contribute to the further development of antibiotic immunoassays.
Collapse
Affiliation(s)
- Andrey A Buglak
- A. N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 33 Leninsky Prospect, 119071 Moscow, Russia.
- Faculty of Physics, St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia.
| | - Ilya A Shanin
- Chemical Department, M. V. Lomonosov Moscow State University, Leninskie Gory, 119991 Moscow, Russia.
- XEMA Company Limited, Ninth Parkovaya street 48, 105264 Moscow, Russia.
| | - Sergei A Eremin
- Chemical Department, M. V. Lomonosov Moscow State University, Leninskie Gory, 119991 Moscow, Russia.
| | - Hong-Tao Lei
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, China.
| | - Xiangmei Li
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, China.
| | - Anatoly V Zherdev
- A. N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 33 Leninsky Prospect, 119071 Moscow, Russia.
| | - Boris B Dzantiev
- A. N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 33 Leninsky Prospect, 119071 Moscow, Russia.
| |
Collapse
|
7
|
Lv J, Chen X, Salah M. Intelligent re-recognition algorithm for specific ship target in busy waters under the actual scene. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS 2018. [DOI: 10.3233/jifs-169762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Jinwen Lv
- School of Computer Science and Technology, Wuhan University of Technology, Wuhan, China
- School of Computer Science, Hubei University of Technology, Wuhan, China
| | - Xianqiao Chen
- School of Computer Science and Technology, Wuhan University of Technology, Wuhan, China
| | - M. Salah
- Department of Economics, Ohio State University, Columbus, OH, USA
| |
Collapse
|
8
|
Mu H, Xu Z, Liu Y, Sun Y, Wang B, Sun X, Wang Z, Eremin S, Zherdev AV, Dzantiev BB, Lei H. Probing the stereoselective interaction of ofloxacin enantiomers with corresponding monoclonal antibodies by multiple spectrometry. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 194:83-91. [PMID: 29328954 DOI: 10.1016/j.saa.2018.01.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 12/19/2017] [Accepted: 01/03/2018] [Indexed: 06/07/2023]
Abstract
Although stereoselective antibody has immense potential in chiral compounds detection and separation, the interaction traits between stereoselective antibody and the corresponding antigenic enantiomers are not yet fully exploited. In this study, the stereospecific interactions between ofloxacin isomers and corresponding monoclonal antibodies (McAb-WR1 and McAb-MS1) were investigated using time-resolved fluorescence, steady-state fluorescence, and circular dichroism (CD) spectroscopic methods. The chiral recognition discrepancies of antibodies with ofloxacin isomers were reflected through binding constant, number of binding sites, driving forces and conformational changes. The major interacting forces of McAb-WR1 and McAb-MS1 chiral interaction systems were hydrophobic force and van der Waals forces joined up with hydrogen bonds, respectively. Synchronous fluorescence spectra and CD spectra results showed that the disturbing of tyrosine and tryptophan micro-environments were so slightly that no obvious secondary structure changes were found during the chiral hapten binding. Clarification of stereospecific interaction of antibody will facilitate the application of immunoassay to analyze chiral contaminants in food and other areas.
Collapse
Affiliation(s)
- Hongtao Mu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University / Guangdong Provincial Engineering & Technique Research Centre of Food Safety Detection and Risk Assessment, Guangzhou 510642, China; College of Biology and Food Engineering, Guangdong University of Education, Guangzhou 510303, China
| | - Zhenlin Xu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University / Guangdong Provincial Engineering & Technique Research Centre of Food Safety Detection and Risk Assessment, Guangzhou 510642, China
| | - Yingju Liu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University / Guangdong Provincial Engineering & Technique Research Centre of Food Safety Detection and Risk Assessment, Guangzhou 510642, China
| | - Yuanming Sun
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University / Guangdong Provincial Engineering & Technique Research Centre of Food Safety Detection and Risk Assessment, Guangzhou 510642, China
| | - Baoling Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University / Guangdong Provincial Engineering & Technique Research Centre of Food Safety Detection and Risk Assessment, Guangzhou 510642, China
| | - Xiulan Sun
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zhanhui Wang
- College of Veterinary, China Agricultural University, Beijing 100083, China
| | - Sergei Eremin
- A.N. Bach Institute of Biochemistry, Research Centre of Biotechnology, Russian Academy of Sciences, Moscow 119071, Russia
| | - Anatoly V Zherdev
- A.N. Bach Institute of Biochemistry, Research Centre of Biotechnology, Russian Academy of Sciences, Moscow 119071, Russia
| | - Boris B Dzantiev
- A.N. Bach Institute of Biochemistry, Research Centre of Biotechnology, Russian Academy of Sciences, Moscow 119071, Russia
| | - Hongtao Lei
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University / Guangdong Provincial Engineering & Technique Research Centre of Food Safety Detection and Risk Assessment, Guangzhou 510642, China.
| |
Collapse
|
9
|
Substructure-activity relationship studies on antibody recognition for phenylurea compounds using competitive immunoassay and computational chemistry. Sci Rep 2018; 8:3131. [PMID: 29449597 PMCID: PMC5814414 DOI: 10.1038/s41598-018-21394-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 01/29/2018] [Indexed: 12/17/2022] Open
Abstract
Based on the structural features of fluometuron, an immunizing hapten was synthesized and conjugated to bovine serum albumin as an immunogen to prepare a polyclonal antibody. However, the resultant antibody indicated cross-reactivity with 6 structurally similar phenylurea herbicides, with binding activities (expressed by IC50 values) ranging from 1.67 µg/L to 42.71 µg/L. All 6 phenylurea herbicides contain a common moiety and three different substitutes. To understand how these three different chemical groups affect the antibody-phenylurea recognition activity, quantum chemistry, using density function theory (DFT) at the B3LYP/6-311++ G(d,p) level of theory, was employed to optimize all phenylurea structures, followed by determination of the 3D conformations of these molecules, pharmacophore analysis, and molecular electrostatic potential (ESP) analysis. The molecular modeling results confirmed that the geometry configuration, pharmacophore features and electron distribution in the substituents were related to the antibody binding activity. Spearman correlation analysis further elucidated that the geometrical and electrostatic properties on the van der Waals (vdW) surface of the substituents played a critical role in the antibody-phenylurea recognition process.
Collapse
|
10
|
Liu F, Chen Z, Shen Y, Sun Y, Yang J, Wang H, Lei H, Xu Z. Hapten synthesis and production of specific antibody against 3-amino-5-morpholinomethyl-2-oxazolidone for immunoassay without derivatisation. FOOD AGR IMMUNOL 2017. [DOI: 10.1080/09540105.2017.1376038] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
- Fengyin Liu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South People’s Republic of China Agricultural University, Guangzhou, People’s Republic of China
- College of Biology and Food Engineering, Guangdong University of Education, Guangzhou, People’s Republic of China
| | - Zijian Chen
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South People’s Republic of China Agricultural University, Guangzhou, People’s Republic of China
| | - Yudong Shen
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South People’s Republic of China Agricultural University, Guangzhou, People’s Republic of China
| | - Yuanming Sun
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South People’s Republic of China Agricultural University, Guangzhou, People’s Republic of China
| | - Jinyi Yang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South People’s Republic of China Agricultural University, Guangzhou, People’s Republic of China
| | - Hong Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South People’s Republic of China Agricultural University, Guangzhou, People’s Republic of China
| | - Hongtao Lei
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South People’s Republic of China Agricultural University, Guangzhou, People’s Republic of China
| | - Zhenlin Xu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South People’s Republic of China Agricultural University, Guangzhou, People’s Republic of China
| |
Collapse
|
11
|
Li YF, Sun YM, Beier RC, Lei HT, Gee S, Hammock BD, Wang H, Wang Z, Sun X, Shen YD, Yang JY, Xu ZL. Immunochemical techniques for multianalyte analysis of chemical residues in food and the environment: A review. Trends Analyt Chem 2017. [DOI: 10.1016/j.trac.2016.12.010] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
12
|
Shen Z, Lv C, Zeng S. Significance and challenges of stereoselectivity assessing methods in drug metabolism. J Pharm Anal 2016; 6:1-10. [PMID: 29403956 PMCID: PMC5762452 DOI: 10.1016/j.jpha.2015.12.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Revised: 12/21/2015] [Accepted: 12/21/2015] [Indexed: 12/14/2022] Open
Abstract
Stereoselectivity in drug metabolism can not only influence the pharmacological activities, tolerability, safety, and bioavailability of drugs directly, but also cause different kinds of drug-drug interactions. Thus, assessing stereoselectivity in drug metabolism is of great significance for pharmaceutical research and development (R&D) and rational use in clinic. Although there are various methods available for assessing stereoselectivity in drug metabolism, many of them have shortcomings. The indirect method of chromatographic methods can only be applicable to specific samples with functional groups to be derivatized or form complex with a chiral selector, while the direct method achieved by chiral stationary phases (CSPs) is expensive. As a detector of chromatographic methods, mass spectrometry (MS) is highly sensitive and specific, whereas the matrix interference is still a challenge to overcome. In addition, the use of nuclear magnetic resonance (NMR) and immunoassay in chiral analysis are worth noting. This review presents several typical examples of drug stereoselective metabolism and provides a literature-based evaluation on current chiral analytical techniques to show the significance and challenges of stereoselectivity assessing methods in drug metabolism.
Collapse
Affiliation(s)
- Zhuowei Shen
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chuang Lv
- Biogen Idec, Cambridge, MA 02142, USA
| | - Su Zeng
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|