1
|
Murata H, Kapil K, Kaupbayeva B, Russell AJ, Dordick JS, Matyjaszewski K. Artificial Zymogen Based on Protein-Polymer Hybrids. Biomacromolecules 2024. [PMID: 39422524 DOI: 10.1021/acs.biomac.4c01079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
This study explores the synthesis and application of artificial zymogens using protein-polymer hybrids to mimic the controlled enzyme activation observed in natural zymogens. Pro-trypsin (pro-TR) and pro-chymotrypsin (pro-CT) hybrids were engineered by modifying the surfaces of trypsin (TR) and chymotrypsin (CT) with cleavable peptide inhibitors utilizing surface-initiated atom transfer radical polymerization. These hybrids exhibited 70 and 90% reductions in catalytic efficiency for pro-TR and pro-CT, respectively, due to the inhibitory effect of the grafted peptide inhibitors. The activation of pro-TR by CT and pro-CT by TR resulted in 1.5- and 2.5-fold increases in enzymatic activity, respectively. Furthermore, the activated hybrids triggered an enzyme activation cascade, enabling amplification of activity through a dual pro-protease hybrid system. This study highlights the potential of artificial zymogens for therapeutic interventions and biodetection platforms by harnessing enzyme activation cascades for precise control of catalytic activity.
Collapse
Affiliation(s)
- Hironobu Murata
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Kriti Kapil
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Bibifatima Kaupbayeva
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
- National Laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan
| | - Alan J Russell
- Amgen Research, 1 Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Jonathan S Dordick
- Department of Chemical and Biological Engineering, Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Krzysztof Matyjaszewski
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
2
|
Feldhof MI, Sperzel S, Bonda L, Boye S, Braunschweig AB, Gerling-Driessen UIM, Hartmann L. Thiol-selective native grafting from polymerization for the generation of protein-polymer conjugates. Chem Sci 2024; 15:d4sc04818k. [PMID: 39323521 PMCID: PMC11418805 DOI: 10.1039/d4sc04818k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 09/17/2024] [Indexed: 09/27/2024] Open
Abstract
Protein-polymer conjugates combine properties of biopolymers and synthetic polymers, such as specific bioactivity and increased stability, with great benefits for various applications from catalysis to biomedicine. Furthermore, polymer conjugation can mimic important posttranslational modifications of proteins such as glycosylation. There are typically two approaches to create protein-polymer conjugates: the protein is functionalized in advance with an initiator for a grafting-from method or a previously produced polymer is conjugated to the protein via a grafting-to method. In this study, we present a new approach that uses native proteins and allows for direct grafting-from using a thiol-induced, light-activated controlled radical polymerization (TIRP) that is initiated at thiols from specific cysteine residues of the protein. This straightforward method is employed to introduce polymers onto proteins and enzymes without any prior protein modifications, it works in aqueous buffer and maintains the protein's native structure and activity. The resulting protein-polymer conjugates exhibit high molar masses and low dispersities. We demonstrate the versatility of this approach by introducing different types of polymers such as hydrophilic poly(2-hydroxyethyl acrylate) (pHEAA), temperature-responsive poly(N-isopropylacrylamide) (pNIPAM) as well as glycopolymers mimicking the natural protein glycosylation and enabling selective interactions. We present successful combinations of the protein and polymer functions e.g., temperature-induced aggregation leading to an increase in enzyme activity and the introduction of artificial glycosylation inducing specific protein-protein cluster formation and giving straightforward access to glycosurfaces. Based on this straightforward, potentially scalable yet highly controlled synthesis of protein-polymer conjugates, various areas of applications are envisioned ranging from biomedicine to material sciences.
Collapse
Affiliation(s)
- Melina I Feldhof
- Department of Organic and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf Universitätsstraße 1 40225 Düsseldorf Germany
| | - Sandro Sperzel
- Department of Organic and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf Universitätsstraße 1 40225 Düsseldorf Germany
| | - Lorand Bonda
- Department of Organic and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf Universitätsstraße 1 40225 Düsseldorf Germany
| | - Susanne Boye
- Center Macromolecular Structure Analysis, Leibniz-Institut für Polymerforschung Dresden Hohe Str. 6 01069 Dresden Germany
| | - Adam B Braunschweig
- Advanced Science Research Center, Graduate Center, City University of New York 85 St. Nicholas Terrace New York NY 10031 USA
- PhD Programs in Chemistry and Biochemistry, Graduate Center, City University of New York 65 5th Avenue New York NY 10016 USA
- Department of Chemistry, Hunter College 695 Park Avenue New York NY 10065 USA
| | - Ulla I M Gerling-Driessen
- Institute for Macromolecular Chemistry, University of Freiburg Stefan-Meier-Str. 31 D-79104 Freiburg i.Br. Germany
| | - Laura Hartmann
- Institute for Macromolecular Chemistry, University of Freiburg Stefan-Meier-Str. 31 D-79104 Freiburg i.Br. Germany
| |
Collapse
|
3
|
Jazani AM, Murata H, Cvek M, Lewandowska-Andralojc A, Bernat R, Kapil K, Hu X, De Luca Bossa F, Szczepaniak G, Matyjaszewski K. Aqueous photo-RAFT polymerization under ambient conditions: synthesis of protein-polymer hybrids in open air. Chem Sci 2024; 15:9742-9755. [PMID: 38939137 PMCID: PMC11206215 DOI: 10.1039/d4sc01409j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/01/2024] [Indexed: 06/29/2024] Open
Abstract
A photoinduced reversible addition-fragmentation chain-transfer (photo-RAFT) polymerization technique in the presence of sodium pyruvate (SP) and pyruvic acid derivatives was developed. Depending on the wavelength of light used, SP acted as a biocompatible photoinitiator or promoter for polymerization, allowing rapid open-to-air polymerization in aqueous media. Under UV irradiation (370 nm), SP decomposes to generate CO2 and radicals, initiating polymerization. Under blue (450 nm) or green (525 nm) irradiation, SP enhances the polymerization rate via interaction with the excited state RAFT agent. This method enabled the polymerization of a range of hydrophilic monomers in reaction volumes up to 250 mL, eliminating the need to remove radical inhibitors from the monomers. In addition, photo-RAFT polymerization using SP allowed for the facile synthesis of protein-polymer hybrids in short reaction times (<1 h), low organic content (≤16%), and without rigorous deoxygenation and the use of transition metal photocatalysts. Enzymatic studies of a model protein (chymotrypsin) showed that despite a significant loss of protein activity after conjugation with RAFT chain transfer agents, the grafting polymers from proteins resulted in a 3-4-fold recovery of protein activity.
Collapse
Affiliation(s)
- Arman Moini Jazani
- Department of Chemistry, Carnegie Mellon University 4400 Fifth Avenue Pittsburgh PA 15213 USA
| | - Hironobu Murata
- Department of Chemistry, Carnegie Mellon University 4400 Fifth Avenue Pittsburgh PA 15213 USA
| | - Martin Cvek
- Department of Chemistry, Carnegie Mellon University 4400 Fifth Avenue Pittsburgh PA 15213 USA
- Centre of Polymer Systems, Tomas Bata University in Zlin Trida T. Bati 5678 76001 Zlin Czech Republic
| | - Anna Lewandowska-Andralojc
- Faculty of Chemistry, Adam Mickiewicz University Uniwersytetu Poznanskiego 8 61-614 Poznan Poland
- Center for Advanced Technology, Adam Mickiewicz University Uniwersytetu Poznanskiego 10 61-614 Poznan Poland
| | - Roksana Bernat
- Department of Chemistry, Carnegie Mellon University 4400 Fifth Avenue Pittsburgh PA 15213 USA
- Institute of Materials Engineering, University of Silesia 75 Pulku Piechoty 1A 41-500 Chorzow Poland
| | - Kriti Kapil
- Department of Chemistry, Carnegie Mellon University 4400 Fifth Avenue Pittsburgh PA 15213 USA
| | - Xiaolei Hu
- Department of Chemistry, Carnegie Mellon University 4400 Fifth Avenue Pittsburgh PA 15213 USA
| | | | - Grzegorz Szczepaniak
- Department of Chemistry, Carnegie Mellon University 4400 Fifth Avenue Pittsburgh PA 15213 USA
- Faculty of Chemistry, University of Warsaw Pasteura 1 02-093 Warsaw Poland
| | - Krzysztof Matyjaszewski
- Department of Chemistry, Carnegie Mellon University 4400 Fifth Avenue Pittsburgh PA 15213 USA
| |
Collapse
|
4
|
Cao C, Tian L, Li J, Raveendran R, Stenzel MH. Mix and Shake: A Mild Way to Drug-Loaded Lysozyme Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2024; 16:27177-27186. [PMID: 38753304 DOI: 10.1021/acsami.4c05497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Biocompatible nanoparticles as drug carriers can improve the therapeutic efficiency of hydrophobic drugs. However, the synthesis of biocompatible and biodegradable polymeric nanoparticles can be time-consuming and often involves toxic solvents. Here, a simple method for protein-based stable drug-loaded particles with a narrow polydispersity is introduced. In this process, lysozyme is mixed with hydrophobic drugs (curcumin, ellipticine, and dasatinib) and fructose to prepare lysozyme-based drug particles of around 150 nm in size. Fructose is mixed with the drug to generate nanoparticles that serve as templates for the lysozyme coating. The effect of lysozyme on the physicochemical properties of these nanoparticles is studied by transmission electron microscopy (TEM) and scattering techniques (e.g., dynamic light scattering (DLS) and small-angle X-ray scattering (SAXS)). We observed that lysozyme significantly stabilized the curcumin fructose particles for 7 days. Moreover, additional drugs, such as ellipticine and dasatinib, can be loaded to form dual-drug particles with narrow polydispersity and spherical morphology. The results also reveal that lysozyme dual ellipticine/dasatinib curcumin particles enhance the cytotoxicity and uptake on MCF-7 cells, RAW 264.7 cells, and U-87 MG cells due to the larger and rigid hydrophobic core. In summary, lysozyme in combination with fructose and curcumin can serve as a powerful combination to form protein-based stable particles for the delivery of hydrophobic drugs.
Collapse
Affiliation(s)
- Cheng Cao
- School of Chemistry, The University of New South Wales, Sydney 2052, Australia
| | - Linqing Tian
- School of Chemistry, The University of New South Wales, Sydney 2052, Australia
| | - Joanna Li
- School of Chemistry, The University of New South Wales, Sydney 2052, Australia
| | - Radhika Raveendran
- School of Chemistry, The University of New South Wales, Sydney 2052, Australia
| | - Martina H Stenzel
- School of Chemistry, The University of New South Wales, Sydney 2052, Australia
| |
Collapse
|
5
|
Jahan S, Doyle C, Ghimire A, Combita D, Rainey JK, Wagner BD, Ahmed M. Elucidating the Role of Optical Activity of Polymers in Protein-Polymer Interactions. Polymers (Basel) 2023; 16:65. [PMID: 38201730 PMCID: PMC10781056 DOI: 10.3390/polym16010065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 12/22/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
Proteins are biomolecules with potential applications in agriculture, food sciences, pharmaceutics, biotechnology, and drug delivery. Interactions of hydrophilic and biocompatible polymers with proteins may impart proteolytic stability, improving the therapeutic effects of biomolecules and also acting as excipients for the prolonged storage of proteins under harsh conditions. The interactions of hydrophilic and stealth polymers such as poly(ethylene glycol), poly(trehalose), and zwitterionic polymers with various proteins are well studied. This study evaluates the molecular interactions of hydrophilic and optically active poly(vitamin B5 analogous methacrylamide) (poly(B5AMA)) with model proteins by fluorescence spectroscopy, nuclear magnetic resonance (NMR) spectroscopy, and circular dichroism (CD) spectroscopy analysis. The optically active hydrophilic polymers prepared using chiral monomers of R-(+)- and S-(-)-B5AMA by the photo-iniferter reversible addition fragmentation chain transfer (RAFT) polymerization showed concentration-dependent weak interactions of the polymers with bovine serum albumin and lysozyme proteins. Poly(B5AMA) also exhibited a concentration-dependent protein stabilizing effect at elevated temperatures, and no effect of the stereoisomers of polymers on protein thermal stability was observed. NMR analysis, however, showed poly(B5AMA) stereoisomer-dependent changes in the secondary structure of proteins.
Collapse
Affiliation(s)
- Samin Jahan
- Department of Chemistry, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada; (S.J.); (C.D.); (D.C.); (B.D.W.)
| | - Catherine Doyle
- Department of Chemistry, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada; (S.J.); (C.D.); (D.C.); (B.D.W.)
| | - Anupama Ghimire
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada; (A.G.); (J.K.R.)
| | - Diego Combita
- Department of Chemistry, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada; (S.J.); (C.D.); (D.C.); (B.D.W.)
| | - Jan K. Rainey
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada; (A.G.); (J.K.R.)
- Department of Chemistry, Dalhousie University, Halifax, NS B3H 4R2, Canada
- School of Biomedical Engineering, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Brian D. Wagner
- Department of Chemistry, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada; (S.J.); (C.D.); (D.C.); (B.D.W.)
| | - Marya Ahmed
- Department of Chemistry, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada; (S.J.); (C.D.); (D.C.); (B.D.W.)
- Faculty of Sustainable Design Engineering, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada
| |
Collapse
|
6
|
Yao Y, Shi X, Zhao Z, Zhang A, Li W. Dendronization of chitosan to afford unprecedent thermoresponsiveness and tunable microconfinement. J Mater Chem B 2023; 11:11024-11034. [PMID: 37975703 DOI: 10.1039/d3tb01803b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Convenient chemical modification of biomacromolecules to create novel biocompatible functional materials satisfies the current requirements of sustainable chemistry. Dendronization of chitosan with dendritic oligoethylene glycols (OEGs) paves a strategy for the preparation of functional dendronized chitosans (DCSs) with unprecedent thermoresponsive behavior, which inherit biological features from polysaccharides and the topological features from dendritic OEGs. In addition, densely packed dendritic OEG chains around the backbone provide efficient cooperative interactions and form an intriguing confined microenvironment based on the degradable biopolymers. In this perspective, we describe the principle for the preparation of the thermoresponsive DCSs, and focus on the molecular envelop effect from the hydrophobic microconfinement to the encapsulated guest molecules or moieties. Particular attention is put on their capacity to regulate behavior and the functions of the encapsulated guests through thermally-mediated dehydration and collapse of the densely packed dendritic OEGs. We believe that the methodology described here may provide prospects for the fabrication of functional materials from biomacromolecules, especially when used as environmentally friendly nanomaterials or in accurate diagnosis and therapy.
Collapse
Affiliation(s)
- Yi Yao
- International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science and Engineering, Shanghai University, Nanchen Street 333, Shanghai 200444, China.
| | - Xiaoxin Shi
- International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science and Engineering, Shanghai University, Nanchen Street 333, Shanghai 200444, China.
| | - Zihong Zhao
- International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science and Engineering, Shanghai University, Nanchen Street 333, Shanghai 200444, China.
| | - Afang Zhang
- International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science and Engineering, Shanghai University, Nanchen Street 333, Shanghai 200444, China.
| | - Wen Li
- International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science and Engineering, Shanghai University, Nanchen Street 333, Shanghai 200444, China.
| |
Collapse
|
7
|
Bisirri EA, Wright TA, Schwartz DK, Kaar JL. Tuning Polymer Composition Leads to Activity-Stability Tradeoff in Enzyme-Polymer Conjugates. Biomacromolecules 2023; 24:4033-4041. [PMID: 37610792 DOI: 10.1021/acs.biomac.3c00396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Protein-polymer conjugation provides an opportune means to adjust the local environment of proteins and enhance protein stability, performance, and solubility. Although much attention has been focused on tuning protein-polymer interactions, the properties of polymer-modified proteins may also be altered by polymer-polymer interactions. Herein, we sought to better understand the influence of polymer-polymer interactions on Candida rugosa lipase, which was modified with random co-polymers composed of sulfobetaine methacrylate (SBMA) and poly(ethylene glycol) methacrylate (PEGMA). Our findings suggest that there is an apparent activity-stability tradeoff as a function of polymer composition. Specifically, as the ratio of SBMA to PEGMA increased, lipase stability was enhanced, whereas activity decreased. By tuning the monomer ratio, we showed that lipase productivity could be optimized. These findings are discussed in the context of complex enzyme-polymer and polymer-polymer interactions and ultimately may enable more informed conjugate designs and improved enzyme productivity in industrial biotransformations under harsh or extreme conditions.
Collapse
Affiliation(s)
- Evan A Bisirri
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80309, United States
| | - Thaiesha A Wright
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80309, United States
| | - Daniel K Schwartz
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80309, United States
| | - Joel L Kaar
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80309, United States
| |
Collapse
|
8
|
Thambi T, Jung JM, Lee DS. Recent strategies to develop pH-sensitive injectable hydrogels. Biomater Sci 2023; 11:1948-1961. [PMID: 36723174 DOI: 10.1039/d2bm01519f] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
"Smart" biomaterials that are responsive to pathological abnormalities are an appealing class of therapeutic platforms for the development of personalized medications. The development of such therapeutic platforms requires novel techniques that could precisely deliver therapeutic agents to the diseased tissues, resulting in enhanced therapeutic effects without harming normal tissues. Among various therapeutic platforms, injectable pH-responsive biomaterials are promising biomaterials that respond to the change in environmental pH. Aqueous solutions of injectable pH-responsive biomaterials exhibit a phase transition from sol-to-gel in response to environmental pH changes. The injectable pH-responsive hydrogel depot can provide spatially and temporally controlled release of various bioactive agents including chemotherapeutic drugs, peptides, and proteins. Therapeutic agents are imbibed into hydrogels by simple mixing without the use of toxic solvents and used for long-term storage or in situ injection using a syringe or catheter that could form a stable gel and acts as a controlled release depot in a minimally invasive manner. Tunable physicochemical properties of the hydrogels, such as biodegradability, ability to interact with drugs and mechanical properties, can control the release of the therapeutic agent. This review highlights the advances in the design and development of biodegradable and in situ forming injectable pH-responsive biomaterials that respond to the physiological conditions. Special attention has been paid to the development of amphoteric pH-responsive biomaterials and their utilization in biomedical applications. We also highlight key challenges and future directions of pH-responsive biomaterials in clinical translation.
Collapse
Affiliation(s)
- Thavasyappan Thambi
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - Jae Min Jung
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - Doo Sung Lee
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
9
|
Tian Y, Lai J, Li C, Sun J, Liu K, Zhao C, Zhang M. Poly( N-acryloyl glycinamide- co- N-acryloxysuccinimide) Nanoparticles: Tunable Thermo-Responsiveness and Improved Bio-Interfacial Adhesion for Cell Function Regulation. ACS APPLIED MATERIALS & INTERFACES 2023; 15:7867-7877. [PMID: 36740782 DOI: 10.1021/acsami.2c22267] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Poly(N-acryloyl glycinamide) (PNAGA) can form high-strength hydrogen bonds (H-bonds) through the dual amide motifs in the side chain, allowing the polymer to exhibit gelation behavior and an upper critical solution temperature (UCST) property. These features make PNAGA a candidate platform for biomedical devices. However, most applications focused on PNAGA hydrogels, while few focused on PNAGA nanoparticles. Improving the UCST tunability and bio-interfacial adhesion of the PNAGA nanoparticles may expand their applications in biomedical fields. To address the issues, we established a reactive H-bond-type P(NAGA-co-NAS) copolymer via reversible addition-fragmentation chain transfer polymerization of NAGA and N-acryloxysuccinimide (NAS) monomers. The UCST behaviors and the bio-interfacial adhesion toward the proteins and cells along with the potential application of the copolymer nanoparticles were investigated in detail. Taking advantage of the enhanced H-bonding and reactivity, the copolymer exhibited a tunable UCST in a broad temperature range, showing thermo-reversible transition between nanoparticles (PNPs) and soluble chains; the PNPs efficiently bonded proteins into nano-biohybrids while keeping the secondary structure of the protein, and more importantly, they also exhibited good adhesion ability to the cell membrane and significantly inhibited cell-specific propagation. These features suggest broad prospects for the P(NAGA-co-NAS) nanoparticles in the fields of biosensors, protein delivery, cell surface decoration, and cell-specific function regulation.
Collapse
Affiliation(s)
- Yueyi Tian
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin300192, China
| | - Jiahui Lai
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin300192, China
| | - Chen Li
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin300192, China
| | - Jialin Sun
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin300192, China
| | - Kang Liu
- Faculty of Material Science and Chemical Engineering, Ningbo University, Ningbo315211, China
| | - Chuanzhuang Zhao
- Faculty of Material Science and Chemical Engineering, Ningbo University, Ningbo315211, China
| | - Mingming Zhang
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin300192, China
| |
Collapse
|
10
|
Sharfin Rahman M, De Alwis Watuthanthrige N, Chandrarathne BM, Page RC, Konkolewicz D. Polymer modification of SARS-CoV-2 spike protein impacts its ability to bind key receptor. Eur Polym J 2023; 184:111767. [PMID: 36531158 PMCID: PMC9749382 DOI: 10.1016/j.eurpolymj.2022.111767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/09/2022] [Accepted: 12/10/2022] [Indexed: 12/15/2022]
Abstract
The global spread of SARS-CoV-2 (severe acute respiratory syndrome coronavirus-2) has caused the loss of many human lives and severe economic losses. SARS-CoV-2 mediates its infection in humans via the spike glycoprotein. The receptor binding domain of the SARS-CoV-2 spike protein binds to its cognate receptor, angiotensin converting enzyme-2 (ACE2) to initiate viral entry. In this study, we examine how polymer modification of the spike protein receptor binding domain impacts binding to ACE2. The horseradish peroxidase conjugated receptor binding domain was modified with a range of polymers including hydrophilic N,N-dimethylacrylamide, hydrophobic N-isopropylacrylamide, cationic 3-(N,N-dimethylamino)propylacrylamide, and anionic 2-acrylamido-2-methylpropane sulfonic acid polymers. The effect of polymer chain length was observed using N,N-dimethylacrylamide polymers with degrees of polymerization of 5, 10 and 25. Polymer conjugation of the receptor binding domain significantly reduced the interaction with ACE2 protein, as determined by an enzyme-linked immunosorbent assay. Stability analysis showed that these conjugates remained highly stable even after seven days incubation at physiological temperature. Hence, this study provides a detailed view of the effect specific type of modification using a library of polymers with different functionalities in interrupting RBD-ACE2 interaction.
Collapse
Affiliation(s)
- Monica Sharfin Rahman
- Department of Chemistry and Biochemistry, Miami University, 651 E High St, Oxford, OH 45011, USA
| | | | - Bhagya M Chandrarathne
- Department of Chemistry and Biochemistry, Miami University, 651 E High St, Oxford, OH 45011, USA
| | - Richard C Page
- Department of Chemistry and Biochemistry, Miami University, 651 E High St, Oxford, OH 45011, USA
| | - Dominik Konkolewicz
- Department of Chemistry and Biochemistry, Miami University, 651 E High St, Oxford, OH 45011, USA
| |
Collapse
|
11
|
Zhang D, Tang Q, Chen J, Wei Y, Chen J. Novel Development of Nanoparticles-A Promising Direction for Precise Tumor Management. Pharmaceutics 2022; 15:pharmaceutics15010024. [PMID: 36678653 PMCID: PMC9862928 DOI: 10.3390/pharmaceutics15010024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/04/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022] Open
Abstract
Although the clinical application of nanoparticles is still limited by biological barriers and distribution, with the deepening of our understanding of nanoparticles over the past decades, people are gradually breaking through the previous limitations in the diagnosis and treatment of tumors, providing novel strategies for clinical decision makers. The transition of nanoparticles from passive targeting to active tumor-targeting by abundant surface-modified nanoparticles is also a development process of precision cancer treatment. Different particles can be used as targeted delivery tools of antitumor drugs. The mechanism of gold nanoparticles inducing apoptosis and cycle arrest of tumor cells has been discovered. Moreover, the unique photothermal effect of gold nanoparticles may be widely used in tumor therapy in the future, with less side effects on surrounding tissues. Lipid-based nanoparticles are expected to overcome the blood-brain barrier due to their special characteristics, while polymer-based nanoparticles show better biocompatibility and lower toxicity. In this paper, we discuss the development of nanoparticles in tumor therapy and the challenges that need to be addressed.
Collapse
Affiliation(s)
- Dengke Zhang
- Department of Surgery, The Eighth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510275, China
| | - Qingqing Tang
- Department of Surgery, The Eighth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510275, China
| | - Juan Chen
- Department of Medicine & Rehabilitation, Tung Wah Eastern Hospital, Hong Kong, China
| | - Yanghui Wei
- Department of Surgery, The Eighth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510275, China
- Correspondence: (Y.W.); (J.C.)
| | - Jiawei Chen
- Department of Surgery, The Eighth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510275, China
- Correspondence: (Y.W.); (J.C.)
| |
Collapse
|
12
|
Chen J, Lv M, Su X, Wang S, Wang Y, Fan Z, Zhang L, Tang G. ICAM1-Targeting Theranostic Nanoparticles for Magnetic Resonance Imaging and Therapy of Triple-Negative Breast Cancer. Int J Nanomedicine 2022; 17:5605-5619. [PMID: 36444196 PMCID: PMC9700474 DOI: 10.2147/ijn.s374293] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 11/08/2022] [Indexed: 09/07/2023] Open
Abstract
Purpose Owing to the lack of effective biomarkers, triple-negative breast cancer (TNBC) has the worst prognosis among all subtypes of breast cancer. Meanwhile, tremendous progress has been made to identify biomarkers for TNBC. However, limited number of biomarkers still restrain the specifically targeting outcomes against TNBC. Here, to solve the obstacle, we designed and synthesized a new type of biocompatible nanoparticles to amplify the targeting effects for TNBC theranostics. Methods To identify the biomarker of TNBC, the expression of intercellular adhesion molecule-1 (ICAM1) was assessed by real-time polymerase chain reaction and western blot among all subtypes of breast cancer and normal breast epithelium. Then, vesicular nanoparticles based on poly(ethylene glycol)-poly(ε-caprolactone) copolymers were prepared by the double emulsion method and modified with anti-ICAM1 antibodies through click chemistry to conjugate with related antigens on TNBC cell membranes and then loaded with magnetic resonance imaging (MRI) contrast agent gadolinium and chemotherapeutic drug doxorubicin. The targeting capability, diagnostic and therapeutic efficacy of this nanoparticle were validated through cell-based and tumor model-based experiments. Results ICAM1 was expressed significantly higher on TNBC than on other subtypes of breast cancer and normal breast epithelium in both mRNA and protein level. Theranostic nanoparticle modified with anti-ICAM1 was proved to be able to specifically target to TNBC in vitro experiments. Such theranostic nanoparticle also displayed enhanced diagnostic and therapeutic efficacy by specifically targeting capability and extending circulation time in tumor models. The biocompatibility and biosafety of this nanoparticle was also confirmed in vitro and in vivo. Conclusion Overall, this new nanoparticle has been demonstrated with effective therapeutic outcomes against TNBC, providing a promising theranostic approach for MRI-guided therapy of TNBC.
Collapse
Affiliation(s)
- Jieying Chen
- Department of Radiology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Mingchen Lv
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai, People’s Republic of China
| | - Xiaolian Su
- Department of Radiology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Sizhu Wang
- Department of Radiology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Yitong Wang
- Department of Radiology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Zhen Fan
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai, People’s Republic of China
- Institute for Advanced Study, Tongji University, Shanghai, China; Department of Orthopedics, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Lin Zhang
- Department of Radiology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Guangyu Tang
- Department of Radiology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
| |
Collapse
|
13
|
Yao Y, Cao S, Yang Q, Zhang A, Li W. Thermo-Gelling Dendronized Chitosans for Modulating Protein Activity. ACS APPLIED BIO MATERIALS 2022; 5:5377-5385. [PMID: 36343279 DOI: 10.1021/acsabm.2c00755] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Regulation of protein activity is important in their applications for biomedicine and therapeutics. Here, an approach for the regulation of protein bioactivity through molecular confinement provided by oligoethylene glycol (OEG)-based dendronized chitosan (DCS) hydrogels is reported. Structural effects on their thermoresponsiveness are investigated. The highly transparent hydrogels are formed from thermoresponsive DCSs through their thermal dehydration and exhibit an intriguing reversible sol-gel transition property when triggered at physiological temperatures. The thermo-gelling behavior and mechanical strength of these hydrogels are investigated, and possible effects from hydrophobicity of the OEG dendrons, grafting rates of the dendrons on the chitosan main chain, and solid content of polymers are examined. These DCS hydrogels are found to have lamellar morphologies and can provide characteristic hydrophobicity microenvironments formed through the crowded OEG dendrons, which show a higher level of confinement to guest proteins. This allows the DCS hydrogels remarkable activity protection capability to proteins. Furthermore, these DCS hydrogels inherit the degradability from chitosan, allowing protein release from these hydrogels through the controllable ways without impairing their activities.
Collapse
Affiliation(s)
- Yi Yao
- International Joint Laboratory of Biomimetic & Smart Polymers, School of Materials Science and Engineering, Shanghai University, Shanghai200444, China
| | - Shijie Cao
- International Joint Laboratory of Biomimetic & Smart Polymers, School of Materials Science and Engineering, Shanghai University, Shanghai200444, China
| | - Qingcen Yang
- International Joint Laboratory of Biomimetic & Smart Polymers, School of Materials Science and Engineering, Shanghai University, Shanghai200444, China
| | - Afang Zhang
- International Joint Laboratory of Biomimetic & Smart Polymers, School of Materials Science and Engineering, Shanghai University, Shanghai200444, China
| | - Wen Li
- International Joint Laboratory of Biomimetic & Smart Polymers, School of Materials Science and Engineering, Shanghai University, Shanghai200444, China
| |
Collapse
|
14
|
Rodriguez J, Dhanjee HH, Pentelute BL, Buchwald SL. Palladium Mediated Synthesis of Protein-Polyarene Conjugates. J Am Chem Soc 2022; 144:11706-11712. [PMID: 35749644 DOI: 10.1021/jacs.2c03492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Catalyst transfer polymerization (CTP) is widely applied to the synthesis of well-defined π-conjugated polymers. Unlike other polymerization reactions that can be performed in water (e.g., controlled radical polymerizations and ring-opening polymerizations), CTP has yet to be adapted for the modification of biopolymers. Here, we report the use of protein-palladium oxidative addition complexes (OACs) that enable catalyst transfer polymerization to furnish protein-polyarene conjugates. These polymerizations occur with electron-deficient monomers in aqueous buffers open to air at mild (≤37 °C) temperatures with full conversion of the protein OAC and an average polymer length of nine repeating units. Proteins with polyarene chains terminated with palladium OACs can be readily isolated. Direct evidence of protein-polyarene OAC formation was obtained using mass spectrometry, and all protein-polyarene chain ends were uniformly functionalized via C-S arylation to terminate the polymerization with a small molecule thiol or a cysteine-containing protein.
Collapse
Affiliation(s)
- Jacob Rodriguez
- Massachusetts Institute of Technology, Department of Chemistry, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Heemal H Dhanjee
- Massachusetts Institute of Technology, Department of Chemistry, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Bradley L Pentelute
- Massachusetts Institute of Technology, Department of Chemistry, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States.,The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, Massachusetts 02142, United States.,Center for Environmental Health Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States.,Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, Massachusetts 02142, United States
| | - Stephen L Buchwald
- Massachusetts Institute of Technology, Department of Chemistry, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
15
|
Javia A, Vanza J, Bardoliwala D, Ghosh S, Misra A, Patel M, Thakkar H. Polymer-drug conjugates: Design principles, emerging synthetic strategies and clinical overview. Int J Pharm 2022; 623:121863. [PMID: 35643347 DOI: 10.1016/j.ijpharm.2022.121863] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 05/06/2022] [Accepted: 05/23/2022] [Indexed: 10/18/2022]
Abstract
Adagen, an enzyme replacement treatment for adenosine deaminase deficiency, was the first protein-polymer conjugate to be approved in early 1990s. Post this regulatory approval, numerous polymeric drugs and polymeric nanoparticles have entered the market as advanced or next-generation polymer-based therapeutics, while many others have currently been tested clinically. The polymer conjugation to therapeutic moiety offers several advantages, like enhanced solubilization of drug, controlled release, reduced immunogenicity, and prolonged circulation. The present review intends to highlight considerations in the design of therapeutically effective polymer-drug conjugates (PDCs), including the choice of linker chemistry. The potential synthetic strategies to formulate PDCs have been discussed along with recent advancements in the different types of PDCs, i.e., polymer-small molecular weight drug conjugates, polymer-protein conjugates, and stimuli-responsive PDCs, which are under clinical/preclinical investigation. Current impediments and regulatory hurdles hindering the clinical translation of PDC into effective therapeutic regimens for the amelioration of disease conditions have been addressed.
Collapse
Affiliation(s)
- Ankit Javia
- Department of Pharmaceutics, Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat-390001, India
| | - Jigar Vanza
- Department of Pharmaceutics, Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, Changa, Gujarat-388421, India
| | - Denish Bardoliwala
- Department of Pharmaceutics, Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat-390001, India
| | - Saikat Ghosh
- Department of Pharmaceutics, Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat-390001, India
| | - Ambikanandan Misra
- Department of Pharmaceutics, Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat-390001, India; Department of Pharmaceutics, School of Pharmacy and Technology Management, SVKM's NMIMS, Shirpur, Maharashtra-425405, Indi
| | - Mrunali Patel
- Department of Pharmaceutics, Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, Changa, Gujarat-388421, India
| | - Hetal Thakkar
- Department of Pharmaceutics, Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat-390001, India.
| |
Collapse
|
16
|
Baker MB, Bosman T, Cox MAJ, Dankers P, Dias A, Jonkheijm P, Kieltyka R. Supramolecular Biomaterials in the Netherlands. Tissue Eng Part A 2022; 28:511-524. [PMID: 35316128 DOI: 10.1089/ten.tea.2022.0010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Synthetically designed biomaterials strive to recapitulate and mimic the complex environment of natural systems. Using natural materials as a guide, the ability to create high performance biomaterials that control cell fate, and support the next generation of cell and tissue-based therapeutics, is starting to emerge. Supramolecular chemistry takes inspiration from the wealth of non-covalent interactions found in natural materials that are inherently complex, and using the skills of synthetic and polymer chemistry, recreates simple systems to imitate their features. Within the past decade, supramolecular biomaterials have shown utility in tissue engineering and the progress predicts a bright future. On this 30th anniversary of the Netherlands Biomaterials and Tissue Engineering society, we will briefly recount the state of supramolecular biomaterials in the Dutch academic and industrial research and development context. This review will provide the background, recent advances, industrial successes and challenges, as well as future directions of the field, as we see it. Throughout this work, we notice the intricate interplay between simplicity and complexity in creating more advanced solutions. We hope that the interplay and juxtaposition between these two forces can propel the field forward.
Collapse
Affiliation(s)
- Matthew B Baker
- Maastricht University, 5211, Complex Tissue Regeneration Department, MERLN Institute for Technology Inspired Regenerative Medicine, 6211LK, Limburg, Netherlands.,Maastricht University, 5211, MERLN/CTR, Maastricht, Limburg, Netherlands;
| | | | - Martijn A J Cox
- Xeltis BV, Lismortel 31, PO Box 80, Eindhoven, Netherlands, 5600AB;
| | - Patricia Dankers
- Eindhoven University of Technology, 3169, Department of Pathology, Eindhoven, Noord-Brabant, Netherlands;
| | | | - Pascal Jonkheijm
- MESA+ Institute for Nanotechnology, Faculty of Science and Technology, University of Twente , Molecular Nanofabrication group, Enschede, Netherlands;
| | | |
Collapse
|
17
|
Machtakova M, Thérien-Aubin H, Landfester K. Polymer nano-systems for the encapsulation and delivery of active biomacromolecular therapeutic agents. Chem Soc Rev 2021; 51:128-152. [PMID: 34762084 DOI: 10.1039/d1cs00686j] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Biomacromolecular therapeutic agents, particularly proteins, antigens, enzymes, and nucleic acids are emerging as powerful candidates for the treatment of various diseases and the development of the recent vaccine based on mRNA highlights the enormous potential of this class of drugs for future medical applications. However, biomacromolecular therapeutic agents present an enormous delivery challenge compared to traditional small molecules due to both a high molecular weight and a sensitive structure. Hence, the translation of their inherent pharmaceutical capacity into functional therapies is often hindered by the limited performance of conventional delivery vehicles. Polymer drug delivery systems are a modular solution able to address those issues. In this review, we discuss recent developments in the design of polymer delivery systems specifically tailored to the delivery challenges of biomacromolecular therapeutic agents. In the future, only in combination with a multifaceted and highly tunable delivery system, biomacromolecular therapeutic agents will realize their promising potential for the treatment of diseases and for the future of human health.
Collapse
Affiliation(s)
- Marina Machtakova
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
| | - Héloïse Thérien-Aubin
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany. .,Department of Chemistry, Memorial University of Newfoundland, St. John's, NL, Canada.
| | - Katharina Landfester
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
| |
Collapse
|
18
|
Kaupbayeva B, Murata H, Matyjaszewski K, Russell AJ, Boye S, Lederer A. A comprehensive analysis in one run - in-depth conformation studies of protein-polymer chimeras by asymmetrical flow field-flow fractionation. Chem Sci 2021; 12:13848-13856. [PMID: 34760170 PMCID: PMC8549772 DOI: 10.1039/d1sc03033g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 09/24/2021] [Indexed: 01/04/2023] Open
Abstract
Polymer-based protein engineering has enabled the synthesis of a variety of protein-polymer conjugates that are widely applicable in therapeutic, diagnostic and biotechnological industries. Accurate characterizations of physical-chemical properties, in particular, molar masses, sizes, composition and their dispersities are critical parameters that determine the functionality and conformation of protein-polymer conjugates and are important for creating reproducible manufacturing processes. Most of the current characterization techniques suffer from fundamental limitations and do not provide an accurate understanding of a sample's true nature. In this paper, we demonstrate the advantage of asymmetrical flow field-flow fractionation (AF4) coupled with multiple detectors for the characterization of a library of complex, zwitterionic and neutral protein-polymer conjugates. This method allows for determination of intrinsic physical properties of protein-polymer chimeras from a single, rapid measurement.
Collapse
Affiliation(s)
- Bibifatima Kaupbayeva
- Department of Biological Sciences, Carnegie Mellon University 4400 Fifth Avenue Pittsburgh PA 15213 USA
- Center for Polymer-Based Protein Engineering, Carnegie Mellon University 5000 Forbes Avenue Pittsburgh PA 15213 USA
| | - Hironobu Murata
- Center for Polymer-Based Protein Engineering, Carnegie Mellon University 5000 Forbes Avenue Pittsburgh PA 15213 USA
| | - Krzysztof Matyjaszewski
- Center for Polymer-Based Protein Engineering, Carnegie Mellon University 5000 Forbes Avenue Pittsburgh PA 15213 USA
- Department of Chemistry, Carnegie Mellon University 4400 Fifth Avenue Pittsburgh PA 15213 USA
| | - Alan J Russell
- Department of Biological Sciences, Carnegie Mellon University 4400 Fifth Avenue Pittsburgh PA 15213 USA
- Center for Polymer-Based Protein Engineering, Carnegie Mellon University 5000 Forbes Avenue Pittsburgh PA 15213 USA
- Department of Chemistry, Carnegie Mellon University 4400 Fifth Avenue Pittsburgh PA 15213 USA
- Department of Chemical Engineering, Carnegie Mellon University 5000 Forbes Avenue Pittsburgh PA 15213 USA
| | - Susanne Boye
- Center Macromolecular Structure Analysis, Leibniz-Institut für Polymerforschung Dresden e.V. Hohe Straße 6 Dresden 01069 Germany
| | - Albena Lederer
- Center Macromolecular Structure Analysis, Leibniz-Institut für Polymerforschung Dresden e.V. Hohe Straße 6 Dresden 01069 Germany
- Stellenbosch University, Department of Chemistry and Polymer Science Private Bag X1 Matieland 7602 South Africa
| |
Collapse
|
19
|
Perera BLA, Colina CM. Cluster formation of initiators as a tool to impose conformational stability to unstructured regions of a protein. Mol Phys 2021. [DOI: 10.1080/00268976.2021.1963000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- B. Lakshitha A. Perera
- Department of Chemistry, University of Florida, Gainesville, FL, USA
- George and Josephine Butler Polymer Research Laboratory, University of Florida, Gainesville, FL, USA
- Center for Macromolecular Science and Engineering, University of Florida, Gainesville, FL, USA
| | - Coray M. Colina
- Department of Chemistry, University of Florida, Gainesville, FL, USA
- George and Josephine Butler Polymer Research Laboratory, University of Florida, Gainesville, FL, USA
- Center for Macromolecular Science and Engineering, University of Florida, Gainesville, FL, USA
- Department of Material Science and Engineering, University of Florida, Gainesville, FL, USA
| |
Collapse
|
20
|
Cencha LG, Allasia M, Ronco LI, Luque GC, Picchio ML, Minari RJ, Gugliotta LM. Proteins as Promising Biobased Building Blocks for Preparing Functional Hybrid Protein/Synthetic Polymer Nanoparticles. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.0c05958] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Luisa G. Cencha
- Polymer Reaction Engineering Group, INTEC, Universidad Nacional del Litoral, CONICET, Santa
Fe, Santa Fe, S3000, Argentina
- Facultad de Ingeniería y Ciencias Hídricas, Universidad Nacional del Litoral, Santa Fe, Santa Fe, S3000, Argentina
| | - Mariana Allasia
- Polymer Reaction Engineering Group, INTEC, Universidad Nacional del Litoral, CONICET, Santa
Fe, Santa Fe, S3000, Argentina
| | - Ludmila I. Ronco
- Polymer Reaction Engineering Group, INTEC, Universidad Nacional del Litoral, CONICET, Santa
Fe, Santa Fe, S3000, Argentina
- Facultad de Ingeniería Química, Universidad Nacional del Litoral, Santa Fe, Santa Fe, S3000, Argentina
| | - Gisela C. Luque
- Polymer Reaction Engineering Group, INTEC, Universidad Nacional del Litoral, CONICET, Santa
Fe, Santa Fe, S3000, Argentina
- Facultad de Ingeniería Química, Universidad Nacional del Litoral, Santa Fe, Santa Fe, S3000, Argentina
| | - Matías L. Picchio
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, IPQA—CONICET, Córdoba, Córdoba, X5000, Argentina
| | - Roque J. Minari
- Polymer Reaction Engineering Group, INTEC, Universidad Nacional del Litoral, CONICET, Santa
Fe, Santa Fe, S3000, Argentina
- Facultad de Ingeniería Química, Universidad Nacional del Litoral, Santa Fe, Santa Fe, S3000, Argentina
| | - Luis M. Gugliotta
- Polymer Reaction Engineering Group, INTEC, Universidad Nacional del Litoral, CONICET, Santa
Fe, Santa Fe, S3000, Argentina
- Facultad de Ingeniería Química, Universidad Nacional del Litoral, Santa Fe, Santa Fe, S3000, Argentina
| |
Collapse
|
21
|
Zhao Y, Li Q, Chai J, Liu Y. Cargo‐Templated Crosslinked Polymer Nanocapsules and Their Biomedical Applications. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202000078] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Yu Zhao
- Key Laboratory of Functional Polymer Materials of Ministry of Education State Key Laboratory of Medicinal Chemical Biology College of Chemistry Nankai University Tianjin 300071 China
| | - Qiushi Li
- Key Laboratory of Functional Polymer Materials of Ministry of Education State Key Laboratory of Medicinal Chemical Biology College of Chemistry Nankai University Tianjin 300071 China
| | - Jingshan Chai
- Key Laboratory of Functional Polymer Materials of Ministry of Education State Key Laboratory of Medicinal Chemical Biology College of Chemistry Nankai University Tianjin 300071 China
| | - Yang Liu
- Key Laboratory of Functional Polymer Materials of Ministry of Education State Key Laboratory of Medicinal Chemical Biology College of Chemistry Nankai University Tianjin 300071 China
| |
Collapse
|
22
|
Sun J, Liu X, Guo J, Zhao W, Gao W. Pyridine-2,6-dicarboxaldehyde-Enabled N-Terminal In Situ Growth of Polymer-Interferon α Conjugates with Significantly Improved Pharmacokinetics and In Vivo Bioactivity. ACS APPLIED MATERIALS & INTERFACES 2021; 13:88-96. [PMID: 33382581 DOI: 10.1021/acsami.0c15786] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Polymer-protein conjugates are a class of biohybrids with unique properties that are highly useful in biomedicine ranging from protein therapeutics to biomedical imaging; however, it remains a considerable challenge to conjugate polymers to proteins in a site-specific, mild, and efficient way to form polymer-protein conjugates with uniform structures and properties and optimal functions. Herein we report pyridine-2,6-dicarboxaldehyde (PDA)-enabled N-terminal modification of proteins with polymerization initiators for in situ growth of poly(oligo(ethylene glycol)methyl ether methacrylate) (POEGMA) conjugates uniquely at the N-termini of a range of natural and recombinant proteins in a mild and efficient fashion. The formed POEGMA-protein conjugates showed highly retained in vitro bioactivity as compared with free proteins. Notably, the in vitro bioactivity of a POEGMA-interferon α (IFN) conjugate synthesized by this new chemistry is 8.1-fold higher than that of PEGASYS that is a commercially available and Food and Drug Administration (FDA) approved PEGylated IFN. The circulation half-life of the conjugate is similar to that of PEGASYS but is 46.2 times longer than that of free IFN. Consequently, the conjugate exhibits considerably improved antiviral bioactivity over free IFN and even PEGASYS in a mouse model. These results indicate that the PDA-enabled N-terminal grafting-from method is applicable to a number of proteins whose active sites are far away from the N-terminus for the synthesis of N-terminal polymer-protein conjugates with high yield, well-retained activity, and considerably improved pharmacology for biomedical applications.
Collapse
Affiliation(s)
- Jiawei Sun
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Xinyu Liu
- Department of Geriatric Dentistry, Beijing Laboratory of Biomedical Materials, Peking University School and Hospital of Stomatology, Beijing 100081, China
- Biomedical Engineering Department, Peking University, Beijing 100191, China
| | - Jianwen Guo
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Wenguo Zhao
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Weiping Gao
- Department of Geriatric Dentistry, Beijing Laboratory of Biomedical Materials, Peking University School and Hospital of Stomatology, Beijing 100081, China
- Biomedical Engineering Department, Peking University, Beijing 100191, China
| |
Collapse
|
23
|
Kuan SL, Raabe M. Solid-Phase Protein Modifications: Towards Precision Protein Hybrids for Biological Applications. ChemMedChem 2021; 16:94-104. [PMID: 32667697 PMCID: PMC7818443 DOI: 10.1002/cmdc.202000412] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Indexed: 12/13/2022]
Abstract
Proteins have attracted increasing attention as biopharmaceutics and diagnostics due to their high specificity, biocompatibility, and biodegradability. The biopharmaceutical sector in particular is experiencing rapid growth, which has led to an increase in the production and sale of protein drugs and diagnostics over the last two decades. Since the first-generation biopharmaceutics dominated by native proteins, both recombinant and chemical technologies have evolved and transformed the outlook of this rapidly developing field. This review article presents updates on the fabrication of covalent and supramolecular fusion hybrids, as well as protein-polymer hybrids using solid-phase approaches that hold great promise for preparing protein hybrids with precise control at the macromolecular level to incorporate additional features. In addition, the applications of the resultant protein hybrids in medicine and diagnostics are highlighted where possible.
Collapse
Affiliation(s)
- Seah Ling Kuan
- Max Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
- Institute of Inorganic Chemistry IUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
| | - Marco Raabe
- Max Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
- Institute of Inorganic Chemistry IUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
| |
Collapse
|
24
|
Rahman MS, Brown J, Murphy R, Carnes S, Carey B, Averick S, Konkolewicz D, Page RC. Polymer Modification of Lipases, Substrate Interactions, and Potential Inhibition. Biomacromolecules 2021; 22:309-318. [PMID: 33416313 DOI: 10.1021/acs.biomac.0c01159] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
An industrially important enzyme, Candida antarctica lipase B (CalB), was modified with a range of functional polymers including hydrophilic, hydrophobic, anionic, and cationic character using a "grafting to" approach. We determined the impact of polymer chain length on CalB activity by synthesizing biohybrids of CalB with each polymer at three different chain lengths, using reversible addition-fragmentation chain transfer (RAFT) polymerization. The activity of CalB in both aqueous and aqueous-organic media mixtures was significantly enhanced for acrylamide (Am) and N,N-dimethyl acrylamide (DMAm) conjugates, with activity remaining approximately constant in 25 and 50% ethanol solvent systems. Interestingly, the activity of N,N-dimethylaminopropyl-acrylamide (DMAPA) conjugates increased gradually with increasing organic solvent content in the system. Contrary to other literature reports, our study showed significantly diminished activity for hydrophobic polymer-protein conjugates. Functional thermal stability assays also displayed a considerable enhancement of retained activity of Am, DMAm, and DMAPA conjugates compared to the native CalB enzyme. Thus, this study provides an insight into possible advances in lipase production, which can lead to new improved lipase bioconjugates with increased activity and stability.
Collapse
Affiliation(s)
- Monica Sharfin Rahman
- Department of Chemistry and Biochemistry, Miami University, 651 E High St., Oxford, Ohio 45056, United States
| | - Julian Brown
- Department of Chemistry and Biochemistry, Miami University, 651 E High St., Oxford, Ohio 45056, United States
| | - Reena Murphy
- Department of Chemistry and Biochemistry, Miami University, 651 E High St., Oxford, Ohio 45056, United States
| | - Sydney Carnes
- Department of Chemistry and Biochemistry, Miami University, 651 E High St., Oxford, Ohio 45056, United States
| | - Ben Carey
- Department of Chemistry and Biochemistry, Miami University, 651 E High St., Oxford, Ohio 45056, United States
| | - Saadyah Averick
- Neuroscience Institute, Allegheny Health Network, Allegheny General Hospital, Pittsburgh, Pennsylvania 15212, United States
| | - Dominik Konkolewicz
- Department of Chemistry and Biochemistry, Miami University, 651 E High St., Oxford, Ohio 45056, United States
| | - Richard C Page
- Department of Chemistry and Biochemistry, Miami University, 651 E High St., Oxford, Ohio 45056, United States
| |
Collapse
|
25
|
Chakraborty S, Khamrui R, Ghosh S. Redox responsive activity regulation in exceptionally stable supramolecular assembly and co-assembly of a protein. Chem Sci 2020; 12:1101-1108. [PMID: 34163877 PMCID: PMC8179030 DOI: 10.1039/d0sc05312k] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 11/14/2020] [Indexed: 11/23/2022] Open
Abstract
Supramolecular assembly of biomolecules/macromolecules stems from the desire to mimic complex biological structures and functions of living organisms. While DNA nanotechnology is already in an advanced stage, protein assembly is still in its infancy as it is a significantly difficult task due to their large molecular weight, conformational complexity and structural instability towards variation in temperature, pH or ionic strength. This article reports highly stable redox-responsive supramolecular assembly of a protein Bovine serum albumin (BSA) which is functionalized with a supramolecular structure directing unit (SSDU). The SSDU consists of a benzamide functionalized naphthalene-diimide (NDI) chromophore which is attached with the protein by a bio-reducible disulfide linker. The SSDU attached protein (NDI-BSA) exhibits spontaneous supramolecular assembly in water by off-set π-stacking among the NDI chromophores, leading to the formation of spherical nanoparticles (diameter: 150-200 nm). The same SSDU when connected with a small hydrophilic wedge (NDI-1) instead of the large globular protein, exhibits a different π-stacking mode with relatively less longitudinal displacement which results in a fibrillar network and hydrogelation. Supramolecular co-assembly of NDI-BSA and NDI-1 (3 : 7) produces similar π-stacking and an entangled 1D morphology. Both the spherical assembly of NDI-BSA or the fibrillar co-assembly of NDI-BSA + NDI-1 (3 : 7) provide sufficient thermal stability to the protein as its thermal denaturation could be completely surpassed while the secondary structure remained intact. However, the esterase like activity of the protein reduced significantly as a result of such supramolecular assembly indicating limited access by the substrate to the active site of the enzyme located in the confined environment. In the presence of glutathione (GSH), a biologically important tri-peptide, due to the cleavage of the disulfide bond, the protein became free and was released, resulting in fully regaining its enzymatic activity. Such supramolecular assembly provided excellent protection to the protein against enzymatic hydrolysis as the relative hydrolysis was estimated to be <30% for the co-assembled protein with respect to the free protein under identical conditions. Similar to bioactivity, the enzymatic hydrolysis also became prominent after GSH-treatment, confirming that the lack of hydrolysis in the supramolecularly assembled state is indeed related to the confinement of the protein in the nanostructure assembly.
Collapse
Affiliation(s)
- Saptarshi Chakraborty
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science 2A and 2B Raja S. C. Mullick Road Kolkata India-700032
| | - Rajesh Khamrui
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science 2A and 2B Raja S. C. Mullick Road Kolkata India-700032
| | - Suhrit Ghosh
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science 2A and 2B Raja S. C. Mullick Road Kolkata India-700032
| |
Collapse
|
26
|
Kumar S, Binder WH. Peptide-induced RAFT polymerization via an amyloid-β 17-20-based chain transfer agent. SOFT MATTER 2020; 16:6964-6968. [PMID: 32717010 DOI: 10.1039/d0sm01169j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We here describe the synthesis of a novel peptide/polymer-conjugate, embedding the amyloid-β (Aβ) protein core sequence Leu-Val-Phe-Phe (LVFF, Aβ17-20) via RAFT polymerization. Based on a novel chain transfer-agent, the "grafting-from" approach effectively generates the well-defined peptide-polymer conjugates with appreciably high monomer conversion rate, resulting in mechanically stiffer peptide-functional cross-linked polymeric hydrogels.
Collapse
Affiliation(s)
- Sonu Kumar
- Macromolecular Chemistry, Institute of Chemistry, Faculty of Natural Science II (Chemistry, Physics and Mathematics), Martin Luther University Halle-Wittenberg, Von-Danckelmann-Platz 4, Halle (Saale) D-06120, Germany. and Department of Applied Sciences (Chemistry), Punjab Engineering College (Deemed to be University), Sector 12, Chandigarh, 160012, India
| | - Wolfgang H Binder
- Macromolecular Chemistry, Institute of Chemistry, Faculty of Natural Science II (Chemistry, Physics and Mathematics), Martin Luther University Halle-Wittenberg, Von-Danckelmann-Platz 4, Halle (Saale) D-06120, Germany.
| |
Collapse
|
27
|
Yao Y, Wu JH, Cao SJ, Xu BY, Yan JT, Wu D, Li W, Zhang A. Thermoresponsive Nanogels from Dendronized Copolymers for Complexation, Protection and Release of Nucleic Acids. CHINESE JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1007/s10118-020-2452-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
28
|
Beloqui A, Cortajarena AL. Protein-based functional hybrid bionanomaterials by bottom-up approaches. Curr Opin Struct Biol 2020; 63:74-81. [PMID: 32485564 DOI: 10.1016/j.sbi.2020.04.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 04/15/2020] [Indexed: 12/11/2022]
Abstract
This review aims to summarize the last advances on the field of protein engineering towards functional bionanomaterials. Albeit being this an emerging research field, multidisciplinary perspectives in the design of synthetic protein-based hybrid bionanomaterials have resulted in significant progresses. The review covers the definition of bionanomaterials as such and the description of the main methodological approaches currently employed for their assembly. In this context, special emphasis is placed on the fundamental role of protein design. Then, a general overview of the most recent advances related to the fabrication and application of protein-based bionanomaterials in several applications is provided, with special focus on catalysis. Finally, key aspects to be considered by the research community to establish the path for significant future developments in this promising field are discussed.
Collapse
Affiliation(s)
- Ana Beloqui
- POLYMAT and Department of Applied Chemistry, University of the Basque Country UPV/EHU, Avda. Manuel de Lardizabal 3, E-20018 Donostia - San Sebastian, Spain; IKERBASQUE, Basque Foundation for Science, Maria Diaz de Haro 3, E-48013 Bilbao, Spain.
| | - Aitziber L Cortajarena
- IKERBASQUE, Basque Foundation for Science, Maria Diaz de Haro 3, E-48013 Bilbao, Spain; Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo Miramón, 194, E-20014 Donostia - San Sebastian, Spain.
| |
Collapse
|
29
|
|
30
|
Jose L, Hwang A, Lee C, Shim K, Song JK, An SSA, Paik HJ. Nitrilotriacetic acid-end-functionalized polycaprolactone as a template for polymer–protein nanocarriers. Polym Chem 2020. [DOI: 10.1039/c9py01663e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Doxorubicin loaded Nickel-complexed nitrilotriacetic acid-end-functionalized polycaprolactone based biocompatible polymer–protein hybrid nanocarriers were developed in a one-pot process.
Collapse
Affiliation(s)
- Leeja Jose
- Department of Polymer Science and Engineering
- Pusan National University
- Busan
- Republic of Korea 46241
| | - Aran Hwang
- Department of Polymer Science and Engineering
- Pusan National University
- Busan
- Republic of Korea 46241
| | - Chaeyeon Lee
- Department of Polymer Science and Engineering
- Pusan National University
- Busan
- Republic of Korea 46241
| | - KyuHwan Shim
- Research Center for Bio-Based Chemistry
- Korea Research Institute of Chemical Technology (KRICT)
- Daejeon
- Korea 34114
| | - Jae Kwang Song
- Research Center for Bio-Based Chemistry
- Korea Research Institute of Chemical Technology (KRICT)
- Daejeon
- Korea 34114
| | - Seong Soo A. An
- Department of Bionano Technology
- Gachon University
- Sungnam 13120
- Republic of Korea
| | - Hyun-jong Paik
- Department of Polymer Science and Engineering
- Pusan National University
- Busan
- Republic of Korea 46241
| |
Collapse
|
31
|
Heck AJ, Ostertag T, Schnell L, Fischer S, Agrawalla BK, Winterwerber P, Wirsching E, Fauler M, Frick M, Kuan SL, Weil T, Barth H. Supramolecular Toxin Complexes for Targeted Pharmacological Modulation of Polymorphonuclear Leukocyte Functions. Adv Healthc Mater 2019; 8:e1900665. [PMID: 31318180 DOI: 10.1002/adhm.201900665] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/04/2019] [Indexed: 12/19/2022]
Abstract
The targeted pharmacological modulation of polymorphonuclear leukocytes (PMNs) is of major medical interest. These innate immune cells play a central role in the defense against pathogenic microorganisms. However, their excessive chemotactic recruitment into tissues after traumatic injury is detrimental due to local and systemic inflammation. Rho-GTPases, being the master regulators of the actin cytoskeleton, regulate migration and chemotaxis of PMNs, are attractive pharmacological targets. Herein, supramolecular protein complexes are assembled in a "mix-and-match" approach containing the specific Rho-inhibiting clostridial C3 enzyme and three PMN-binding peptides using an avidin platform. Selective delivery of the C3 Rho-inhibitor with these complexes into the cytosol of human neutrophil-like NB-4 cells and primary human PMNs ex vivo is demonstrated, where they catalyze the adenosine diphosphate (ADP) ribosylation of Rho and induce a characteristic change in cell morphology. Notably, the complexes do not deliver C3 enzyme into human lung epithelial cells, A549 lung cancer cells, and immortalized human alveolar epithelial cells (hAELVi), demonstrating their cell type-selectivity. The supramolecular complexes represent attractive molecular tools to decipher the role of PMNs in infection and inflammation or for the development of novel therapeutic approaches for diseases that are associated with hyperactivity and reactivity of PMNs such as post-traumatic injury.
Collapse
Affiliation(s)
- Astrid Johanna Heck
- Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
| | - Theresa Ostertag
- Institute of Pharmacology and Toxicology – Ulm University Medical Center Albert‐Einstein‐Allee 11 89081 Ulm Germany
| | - Leonie Schnell
- Institute of Pharmacology and Toxicology – Ulm University Medical Center Albert‐Einstein‐Allee 11 89081 Ulm Germany
| | - Stephan Fischer
- Institute of Pharmacology and Toxicology – Ulm University Medical Center Albert‐Einstein‐Allee 11 89081 Ulm Germany
| | | | - Pia Winterwerber
- Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
| | - Eva Wirsching
- Institute of General Physiology – Ulm University Albert‐Einstein‐Allee 11 89081 Ulm Germany
| | - Michael Fauler
- Institute of General Physiology – Ulm University Albert‐Einstein‐Allee 11 89081 Ulm Germany
| | - Manfred Frick
- Institute of General Physiology – Ulm University Albert‐Einstein‐Allee 11 89081 Ulm Germany
| | - Seah Ling Kuan
- Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
- Institute of Inorganic Chemistry IUlm University Albert‐Einstein‐Allee 11 89081 Ulm Germany
| | - Tanja Weil
- Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
- Institute of Inorganic Chemistry IUlm University Albert‐Einstein‐Allee 11 89081 Ulm Germany
| | - Holger Barth
- Institute of Pharmacology and Toxicology – Ulm University Medical Center Albert‐Einstein‐Allee 11 89081 Ulm Germany
| |
Collapse
|
32
|
Wang H, Hou Y, Hu Y, Dou J, Shen Y, Wang Y, Lu H. Enzyme-Activatable Interferon–Poly(α-amino acid) Conjugates for Tumor Microenvironment Potentiation. Biomacromolecules 2019; 20:3000-3008. [DOI: 10.1021/acs.biomac.9b00560] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
| | | | | | - Jiaxiang Dou
- CAS Center for Excellence in Nanoscience, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Youqing Shen
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yucai Wang
- CAS Center for Excellence in Nanoscience, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China
| | | |
Collapse
|
33
|
|
34
|
Kaupbayeva B, Murata H, Lucas A, Matyjaszewski K, Minden JS, Russell AJ. Molecular Sieving on the Surface of a Nano-Armored Protein. Biomacromolecules 2019; 20:1235-1245. [DOI: 10.1021/acs.biomac.8b01651] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Bibifatima Kaupbayeva
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
- Center for Polymer-Based Protein Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Hironobu Murata
- Center for Polymer-Based Protein Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Amber Lucas
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
- Center for Polymer-Based Protein Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Krzysztof Matyjaszewski
- Center for Polymer-Based Protein Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Jonathan S. Minden
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
- Center for Polymer-Based Protein Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
- Department of Biomedical Engineering, Scott Hall 4N201, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Alan J. Russell
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
- Center for Polymer-Based Protein Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
- Department of Biomedical Engineering, Scott Hall 4N201, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
- Department of Chemical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
35
|
Li B, Wu Y, Zhang W, Zhang S, Shao N, Zhang W, Zhang L, Fei J, Dai Y, Liu R. Efficient synthesis of amino acid polymers for protein stabilization. Biomater Sci 2019; 7:3675-3682. [DOI: 10.1039/c9bm00484j] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Poly-l-glutamate exerts substantial protein stabilization during lyophilization by preventing protein aggregation.
Collapse
|
36
|
Kuan SL, Bergamini FRG, Weil T. Functional protein nanostructures: a chemical toolbox. Chem Soc Rev 2018; 47:9069-9105. [PMID: 30452046 PMCID: PMC6289173 DOI: 10.1039/c8cs00590g] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Indexed: 01/08/2023]
Abstract
Nature has evolved an optimal synthetic factory in the form of translational and posttranslational processes by which millions of proteins with defined primary sequences and 3D structures can be built. Nature's toolkit gives rise to protein building blocks, which dictates their spatial arrangement to form functional protein nanostructures that serve a myriad of functions in cells, ranging from biocatalysis, formation of structural networks, and regulation of biochemical processes, to sensing. With the advent of chemical tools for site-selective protein modifications and recombinant engineering, there is a rapid development to develop and apply synthetic methods for creating structurally defined, functional protein nanostructures for a broad range of applications in the fields of catalysis, materials and biomedical sciences. In this review, design principles and structural features for achieving and characterizing functional protein nanostructures by synthetic approaches are summarized. The synthetic customization of protein building blocks, the design and introduction of recognition units and linkers and subsequent assembly into structurally defined protein architectures are discussed herein. Key examples of these supramolecular protein nanostructures, their unique functions and resultant impact for biomedical applications are highlighted.
Collapse
Affiliation(s)
- Seah Ling Kuan
- Max-Planck Institute for Polymer Research
,
Ackermannweg 10
, 55128 Mainz
, Germany
.
;
- Institute of Inorganic Chemistry I – Ulm University
,
Albert-Einstein-Allee 11
, 89081 Ulm
, Germany
| | - Fernando R. G. Bergamini
- Institute of Chemistry
, Federal University of Uberlândia – UFU
,
38400-902 Uberlândia
, MG
, Brazil
| | - Tanja Weil
- Max-Planck Institute for Polymer Research
,
Ackermannweg 10
, 55128 Mainz
, Germany
.
;
- Institute of Inorganic Chemistry I – Ulm University
,
Albert-Einstein-Allee 11
, 89081 Ulm
, Germany
| |
Collapse
|
37
|
Rangel-Argote M, Claudio-Rizo JA, Mata-Mata JL, Mendoza-Novelo B. Characteristics of Collagen-Rich Extracellular Matrix Hydrogels and Their Functionalization with Poly(ethylene glycol) Derivatives for Enhanced Biomedical Applications: A Review. ACS APPLIED BIO MATERIALS 2018; 1:1215-1228. [DOI: 10.1021/acsabm.8b00282] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Magdalena Rangel-Argote
- Departamento de Ingenierías Química, Electrónica y Biomédica, DCI, Universidad de Guanajuato, Loma del Bosque 103, 37150 León, Guanajuato, México
- Departamento de Química, DCNE, Universidad de Guanajuato, Noria alta s/n, 36050 Guanajuato, Guanajuato, México
| | - Jesús A. Claudio-Rizo
- Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila, Venustiano Carranza s/n, 25280 Saltillo, Coahuila, México
| | - José L. Mata-Mata
- Departamento de Química, DCNE, Universidad de Guanajuato, Noria alta s/n, 36050 Guanajuato, Guanajuato, México
| | - Birzabith Mendoza-Novelo
- Departamento de Ingenierías Química, Electrónica y Biomédica, DCI, Universidad de Guanajuato, Loma del Bosque 103, 37150 León, Guanajuato, México
| |
Collapse
|
38
|
Carmali S, Murata H, Matyjaszewski K, Russell AJ. Tailoring Site Specificity of Bioconjugation Using Step-Wise Atom-Transfer Radical Polymerization on Proteins. Biomacromolecules 2018; 19:4044-4051. [DOI: 10.1021/acs.biomac.8b01064] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
39
|
Baker SL, Munasinghe A, Murata H, Lin P, Matyjaszewski K, Colina CM, Russell AJ. Intramolecular Interactions of Conjugated Polymers Mimic Molecular Chaperones to Stabilize Protein–Polymer Conjugates. Biomacromolecules 2018; 19:3798-3813. [DOI: 10.1021/acs.biomac.8b00927] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Stefanie L. Baker
- Department of Biomedical Engineering, Scott Hall 4N201, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
- Center for Polymer-Based Protein Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Aravinda Munasinghe
- Department of Chemistry, 312 Leigh Hall, University of Florida, Gainesville, Florida 32611, United States
| | - Hironobu Murata
- Center for Polymer-Based Protein Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Ping Lin
- Department of Chemistry, 312 Leigh Hall, University of Florida, Gainesville, Florida 32611, United States
| | - Krzysztof Matyjaszewski
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Coray M. Colina
- Department of Chemistry, 312 Leigh Hall, University of Florida, Gainesville, Florida 32611, United States
- Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Alan J. Russell
- Department of Biomedical Engineering, Scott Hall 4N201, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
- Center for Polymer-Based Protein Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
- Disruptive Health Technology Institute, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
- Department of Chemical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
40
|
|
41
|
Song Z, Chen X, You X, Huang K, Dhinakar A, Gu Z, Wu J. Self-assembly of peptide amphiphiles for drug delivery: the role of peptide primary and secondary structures. Biomater Sci 2018; 5:2369-2380. [PMID: 29051950 DOI: 10.1039/c7bm00730b] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Peptide amphiphiles (PAs), functionalized with alkyl chains, are capable of self-assembling into various nanostructures. Recently, PAs have been considered as ideal drug carriers due to their good biocompatibility, specific biological functions, and hypotoxicity to normal cells and tissues. Meanwhile, the nanocarriers formed by PAs are able to achieve controlled drug release and enhanced cell uptake in response to the stimulus of the physiological environment or specific biological factors in the location of the lesion. However, the underlying detailed drug delivery mechanism, especially from the aspect of primary and secondary structures of PAs, has not been systematically summarized or discussed. Focusing on the relationship between the primary and secondary structures of PAs and stimuli-responsive drug delivery applications, this review highlights the recent advances, challenges, and opportunities of PA-based functional drug nanocarriers, and their potential pharmaceutical applications are discussed.
Collapse
Affiliation(s)
- Zhenhua Song
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Engineering, Sun Yat-sen University, Guangzhou, 510006, PR China.
| | | | | | | | | | | | | |
Collapse
|
42
|
Bi X, Yin J, Hemu X, Rao C, Tam JP, Liu CF. Immobilization and Intracellular Delivery of Circular Proteins by Modifying a Genetically Incorporated Unnatural Amino Acid. Bioconjug Chem 2018; 29:2170-2175. [DOI: 10.1021/acs.bioconjchem.8b00244] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Xiaobao Bi
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
| | | | - Xinya Hemu
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
| | - Chang Rao
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
| | - James P. Tam
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
| | - Chuan-Fa Liu
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
| |
Collapse
|
43
|
Affiliation(s)
- Yanjing Wang
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Chi Wu
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
44
|
|
45
|
Wang L, Liu L, Dong B, Zhao H, Zhang M, Chen W, Hong Y. Multi-stimuli-responsive biohybrid nanoparticles with cross-linked albumin coronae self-assembled by a polymer-protein biodynamer. Acta Biomater 2017; 54:259-270. [PMID: 28286038 DOI: 10.1016/j.actbio.2017.03.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 02/23/2017] [Accepted: 03/07/2017] [Indexed: 12/16/2022]
Abstract
A thermoresponsive polymer-protein biodynamer was prepared via the bioconjugation of an aliphatic aldehyde-functionalized copolymer to hydrazine-modified bovine serum albumin (BSA) through reversible pyridylhydrazone linkages. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and size exclusion chromatography (SEC) results indicated that the pyridylhydrazone linkages cleaved in an intracellular-mimicking acidic milieu, thus leading to the release of BSA. The dynamic character of the protein biodynamer was demonstrated by exchange reactions with aldehyde-containing molecules. The biodynamer self-assembled into spherical micelles at a temperature above its lower critical solution temperature (LCST). Subsequently, BSA molecules within the hydrophilic coronae of the micelles were readily cross-linked via reaction with cystamine at 45°C, and multi-stimuli-responsive nanoparticles were generated. The biohybrid nanoparticles reversibly swelled and shrank as the cores of the nanoparticles were solvated below the LCST and desolvated above the LCST. The accessible reversibility of the pyridylhydrazone bonds imparts pH-responsive and dynamic characteristics to the nanoparticles. The nanoparticles displayed glutathione (GSH) responsiveness, and the synergistic effects of pH and GSH resulted in complete disintegration of the nanoparticles under the intracellular-mimicking acidic and reductive conditions. The nanoparticles were also enzyme-responsive and disintegrated rapidly in the presence of protease. In vitro cytotoxicity and cell uptake assays demonstrated that the nanoparticles were highly biocompatible and effectively internalized by HepG2 cells, which make them interesting candidates as vehicles for drug delivery application and biomimetic platforms to investigate the biological process in nature. SIGNIFICANCE STATEMENT In this research, we report the synthesis of a temperature and pH dual-responsive polymer-protein biodynamer through reversible pyridylhydrazone formation. The prepared biodynamer can offer a potential platform for intracellular protein delivery. The multi-stimuli-responsive biohybrid nanoparticles containing disulfide functionalities are constructed by cross-linking albumin coronae of the biodynamer micelles. With the combination of a thermoresponsive polymer, protein and reversible covalent bonds, the biohybrid nanoparticles are endowed with highly biocompatible, environmentally responsive and adaptive features. These nanoparticles present the ability to undergo changes in their constitution, hydrodynamic size and nanostructure in response to physical, chemical and biological stimuli, which make them interesting candidates as vehicles for drug delivery application and a biomimetic platform to investigate the biological process in nature.
Collapse
|
46
|
Carmali S, Murata H, Cummings C, Matyjaszewski K, Russell AJ. Polymer-Based Protein Engineering: Synthesis and Characterization of Armored, High Graft Density Polymer-Protein Conjugates. Methods Enzymol 2017; 590:347-380. [PMID: 28411645 DOI: 10.1016/bs.mie.2016.12.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Atom transfer radical polymerization (ATRP) from the surface of a protein can generate remarkably dense polymer shells that serve as armor and rationally tune protein function. Using straightforward chemistry, it is possible to covalently couple or display multiple small molecule initiators onto a protein surface. The chemistry is fine-tuned to be sequence specific (if one desires a single targeted site) at controlled density. Once the initiator is anchored on the protein surface, ATRP is used to grow polymers on protein surface, in situ. The technique is so powerful that a single-protein polymer conjugate molecule can contain more than 90% polymer coating by weight. If desired, stimuli-responsive polymers can be "grown" from the initiated sites to prepare enzyme conjugates that respond to external triggers such as temperature or pH, while still maintaining enzyme activity and stability. Herein, we focus mainly on the synthesis of chymotrypsin-polymer conjugates. Control of the number of covalently coupled initiator sites by changing the stoichiometric ratio between enzyme and the initiator during the synthesis of protein-initiator complexes allowed fine-tuning of the grafting density. For example, very high grafting density chymotrypsin conjugates were prepared from protein-initiator complexes to grow the temperature-responsive polymers, poly(N-isopropylacrylamide), and poly[N,N'-dimethyl(methacryloyloxyethyl) ammonium propane sulfonate]. Controlled growth of polymers from protein surfaces enables one to predictably manipulate enzyme kinetics and stability without the need for molecular biology-dependent mutagenesis.
Collapse
Affiliation(s)
- Sheiliza Carmali
- Center for Polymer-Based Protein Engineering, ICES, Carnegie Mellon University, Pittsburgh, PA, United States; Carnegie Mellon University, Pittsburgh, PA, United States
| | - Hironobu Murata
- Center for Polymer-Based Protein Engineering, ICES, Carnegie Mellon University, Pittsburgh, PA, United States; Carnegie Mellon University, Pittsburgh, PA, United States
| | - Chad Cummings
- Center for Polymer-Based Protein Engineering, ICES, Carnegie Mellon University, Pittsburgh, PA, United States; Carnegie Mellon University, Pittsburgh, PA, United States
| | - Krzysztof Matyjaszewski
- Center for Polymer-Based Protein Engineering, ICES, Carnegie Mellon University, Pittsburgh, PA, United States; Carnegie Mellon University, Pittsburgh, PA, United States
| | - Alan J Russell
- Center for Polymer-Based Protein Engineering, ICES, Carnegie Mellon University, Pittsburgh, PA, United States; Carnegie Mellon University, Pittsburgh, PA, United States.
| |
Collapse
|
47
|
Aw MS, Paniwnyk L. Overcoming T. gondii infection and intracellular protein nanocapsules as biomaterials for ultrasonically controlled drug release. Biomater Sci 2017; 5:1944-1961. [DOI: 10.1039/c7bm00425g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
One of the pivotal matters of concern in intracellular drug delivery is the preparation of biomaterials containing drugs that are compatible with the host target.
Collapse
Affiliation(s)
- M. S. Aw
- School of Life Sciences
- Biomolecular and Sports Science
- Faculty of Health and Life Sciences
- Coventry University
- Coventry
| | - L. Paniwnyk
- School of Life Sciences
- Biomolecular and Sports Science
- Faculty of Health and Life Sciences
- Coventry University
- Coventry
| |
Collapse
|
48
|
Bhaskar S, Lim S. Engineering protein nanocages as carriers for biomedical applications. NPG ASIA MATERIALS 2017; 9:e371. [PMID: 32218880 PMCID: PMC7091667 DOI: 10.1038/am.2016.128] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 01/26/2016] [Accepted: 04/12/2016] [Indexed: 05/02/2023]
Abstract
Protein nanocages have been explored as potential carriers in biomedicine. Formed by the self-assembly of protein subunits, the caged structure has three surfaces that can be engineered: the interior, the exterior and the intersubunit. Therapeutic and diagnostic molecules have been loaded in the interior of nanocages, while their external surfaces have been engineered to enhance their biocompatibility and targeting abilities. Modifications of the intersubunit interactions have been shown to modulate the self-assembly profile with implications for tuning the molecular release. We review natural and synthetic protein nanocages that have been modified using chemical and genetic engineering techniques to impart non-natural functions that are responsive to the complex cellular microenvironment of malignant cells while delivering molecular cargos with improved efficiencies and minimal toxicity.
Collapse
Affiliation(s)
- Sathyamoorthy Bhaskar
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore
| | - Sierin Lim
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore
| |
Collapse
|
49
|
Kuan SL, Wang T, Weil T. Site-Selective Disulfide Modification of Proteins: Expanding Diversity beyond the Proteome. Chemistry 2016; 22:17112-17129. [PMID: 27778400 PMCID: PMC5600100 DOI: 10.1002/chem.201602298] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Indexed: 01/06/2023]
Abstract
The synthetic transformation of polypeptides with molecular accuracy holds great promise for providing functional and structural diversity beyond the proteome. Consequently, the last decade has seen an exponential growth of site-directed chemistry to install additional features into peptides and proteins even inside living cells. The disulfide rebridging strategy has emerged as a powerful tool for site-selective modifications since most proteins contain disulfide bonds. In this Review, we present the chemical design, advantages and limitations of the disulfide rebridging reagents, while summarizing their relevance for synthetic customization of functional protein bioconjugates, as well as the resultant impact and advancement for biomedical applications.
Collapse
Affiliation(s)
- Seah Ling Kuan
- Institute of Organic Chemistry IIIUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
- Max Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
| | - Tao Wang
- Institute of Organic Chemistry IIIUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
- School of Materials Science and EngineeringSouthwest Jiaotong UniversityChengdu610031P.R. China
| | - Tanja Weil
- Institute of Organic Chemistry IIIUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
- Max Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
| |
Collapse
|
50
|
Greiner AM, Sales A, Chen H, Biela SA, Kaufmann D, Kemkemer R. Nano- and microstructured materials for in vitro studies of the physiology of vascular cells. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2016; 7:1620-1641. [PMID: 28144512 PMCID: PMC5238670 DOI: 10.3762/bjnano.7.155] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Accepted: 10/04/2016] [Indexed: 05/21/2023]
Abstract
The extracellular environment of vascular cells in vivo is complex in its chemical composition, physical properties, and architecture. Consequently, it has been a great challenge to study vascular cell responses in vitro, either to understand their interaction with their native environment or to investigate their interaction with artificial structures such as implant surfaces. New procedures and techniques from materials science to fabricate bio-scaffolds and surfaces have enabled novel studies of vascular cell responses under well-defined, controllable culture conditions. These advancements are paving the way for a deeper understanding of vascular cell biology and materials-cell interaction. Here, we review previous work focusing on the interaction of vascular smooth muscle cells (SMCs) and endothelial cells (ECs) with materials having micro- and nanostructured surfaces. We summarize fabrication techniques for surface topographies, materials, geometries, biochemical functionalization, and mechanical properties of such materials. Furthermore, various studies on vascular cell behavior and their biological responses to micro- and nanostructured surfaces are reviewed. Emphasis is given to studies of cell morphology and motility, cell proliferation, the cytoskeleton and cell-matrix adhesions, and signal transduction pathways of vascular cells. We finalize with a short outlook on potential interesting future studies.
Collapse
Affiliation(s)
- Alexandra M Greiner
- Karlsruhe Institute of Technology (KIT), Institute of Zoology, Department of Cell and Neurobiology, Haid-und-Neu-Strasse 9, 76131 Karlsruhe, Germany
- now at: Pforzheim University, School of Engineering, Tiefenbronner Strasse 65, 75175 Pforzheim, Germany
| | - Adria Sales
- Max Planck Institute for Intelligent Systems, Department of New Materials and Biosystems, Heisenbergstrasse 3, 70569 Stuttgart, Germany
| | - Hao Chen
- Karlsruhe Institute of Technology (KIT), Institute of Zoology, Department of Cell and Neurobiology, Haid-und-Neu-Strasse 9, 76131 Karlsruhe, Germany
| | - Sarah A Biela
- Max Planck Institute for Intelligent Systems, Department of New Materials and Biosystems, Heisenbergstrasse 3, 70569 Stuttgart, Germany
| | - Dieter Kaufmann
- Universitätsklinikum Ulm, Institut für Humangenetik, Albert Einstein Allee 11, 89070 Ulm, Germany
| | - Ralf Kemkemer
- Max Planck Institute for Intelligent Systems, Department of New Materials and Biosystems, Heisenbergstrasse 3, 70569 Stuttgart, Germany
- Reutlingen University, Faculty of Applied Chemistry, Alteburgstrasse 150, 72762 Reutlingen, Germany
| |
Collapse
|