1
|
Xie R, Li J, Zhao M, Wu F. Recent advances in the development of poly(ester amide)s-based carriers for drug delivery. Saudi Pharm J 2024; 32:102123. [PMID: 38911279 PMCID: PMC11190562 DOI: 10.1016/j.jsps.2024.102123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/31/2024] [Indexed: 06/25/2024] Open
Abstract
Biodegradable and biocompatible biomaterials have several important applications in drug delivery. The biomaterial family known as poly(ester amide)s (PEAs) has garnered considerable interest because it exhibits the benefits of both polyester and polyamide, as well as production from readily available raw ingredients and sophisticated synthesis techniques. Specifically, α-amino acid-based PEAs (AA-PEAs) are promising carriers because of their structural flexibility, biocompatibility, and biodegradability. Herein, we summarize the latest applications of PEAs in drug delivery systems, including antitumor, gene therapy, and protein drugs, and discuss the prospects of drug delivery based on PEAs, which provides a reference for designing safe and efficient drug delivery carriers.
Collapse
Affiliation(s)
- Rui Xie
- Department of Pharmacy, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310006, China
| | - Jiang Li
- Department of Pharmacy, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310006, China
| | - Min Zhao
- Department of Pharmacy, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310006, China
| | - Fan Wu
- Department of Pharmacy, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310006, China
| |
Collapse
|
2
|
Cao D, Chen L, Zhang Z, Luo Y, Zhao L, Yuan C, Lu J, Liu X, Li J. Biodegradable nanomaterials for diagnosis and therapy of tumors. J Mater Chem B 2023; 11:1829-1848. [PMID: 36786439 DOI: 10.1039/d2tb02591d] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Although degradable nanomaterials have been widely designed and applied for cancer bioimaging and various cancer treatments, few reviews of biodegradable nanomaterials have been reported. Herein, we have summarized the representative research advances of biodegradable nanomaterials with respect to the mechanism of degradation and their application in tumor imaging and therapy. First, four kinds of tumor microenvironment (TME) responsive degradation are presented, including pH, glutathione (GSH), hypoxia and matrix metalloproteinase (MMP) responsive degradation. Second, external stimulation degradation is summarized briefly. Next, we have outlined the applications of nanomaterials in bioimaging. Finally, we have focused on some typical examples of biodegradable nanomaterials in radiotherapy (RT), photothermal therapy (PTT), starvation therapy, photodynamic therapy (PDT), chemotherapy, chemodynamic therapy (CDT), sonodynamic therapy (SDT), gene therapy, immunotherapy and combination therapy.
Collapse
Affiliation(s)
- Dongmiao Cao
- School of Chemistry and Chemical Engineering, Shanghai Engineering Technology Research Center for Pharmaceutical Intelligent Equipment, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular noncoding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai 201620, China.
| | - Liang Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Ziwen Zhang
- School of Chemistry and Chemical Engineering, Shanghai Engineering Technology Research Center for Pharmaceutical Intelligent Equipment, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular noncoding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai 201620, China.
| | - Yu Luo
- School of Chemistry and Chemical Engineering, Shanghai Engineering Technology Research Center for Pharmaceutical Intelligent Equipment, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular noncoding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai 201620, China.
| | - Linjing Zhao
- School of Chemistry and Chemical Engineering, Shanghai Engineering Technology Research Center for Pharmaceutical Intelligent Equipment, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular noncoding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai 201620, China.
| | - Chunping Yuan
- School of Chemistry and Chemical Engineering, Shanghai Engineering Technology Research Center for Pharmaceutical Intelligent Equipment, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular noncoding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai 201620, China.
| | - Jie Lu
- School of Chemistry and Chemical Engineering, Shanghai Engineering Technology Research Center for Pharmaceutical Intelligent Equipment, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular noncoding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai 201620, China.
| | - Xijian Liu
- School of Chemistry and Chemical Engineering, Shanghai Engineering Technology Research Center for Pharmaceutical Intelligent Equipment, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular noncoding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai 201620, China.
| | - Jingchao Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China.
| |
Collapse
|
3
|
Huang F, Cai X, Hou X, Zhang Y, Liu J, Yang L, Liu Y, Liu J. A dynamic covalent polymeric antimicrobial for conquering drug-resistant bacterial infection. EXPLORATION (BEIJING, CHINA) 2022; 2:20210145. [PMID: 37325499 PMCID: PMC10191036 DOI: 10.1002/exp.20210145] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 04/27/2022] [Indexed: 06/15/2023]
Abstract
Increasing bacterial drug resistance to antibiotics has posed a major threat to contemporary public health, which resulted in a large number of people suffering from serious infections and ending up dying without any effective therapies every year. Here, a dynamic covalent polymeric antimicrobial, based on phenylboronic acid (PBA)-installed micellar nanocarriers incorporating clinical vancomycin and curcumin, is developed to overcome drug-resistant bacterial infections. The formation of this antimicrobial is facilitated by reversible dynamic covalent interactions between PBA moieties in polymeric micelles and diols in vancomycin, which impart favorable stability in blood circulation and excellent acid-responsiveness in the infection microenvironment. Moreover, the structurally similar aromatic vancomycin and curcumin molecules can afford π-π stacking interaction to realize simultaneous delivery and release of payloads. In comparison with monotherapy, this dynamic covalent polymeric antimicrobial demonstrated more significant eradication of drug-resistant bacteria in vitro and in vivo due to the synergism of the two drugs. Furthermore, the achieved combination therapy shows satisfied biocompatibility without unwanted toxicity. Considering various antibiotics contain diol and aromatic structures, this simple and robust strategy can become a universal platform to combat the ever-threatening drug-resistant infectious diseases.
Collapse
Affiliation(s)
- Fan Huang
- Key Laboratory of Radiopharmacokinetics for Innovative DrugsChinese Academy of Medical Sciences, and Institute of Radiation MedicineChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinP. R. China
| | - Xiaoyao Cai
- Key Laboratory of Radiopharmacokinetics for Innovative DrugsChinese Academy of Medical Sciences, and Institute of Radiation MedicineChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinP. R. China
| | - Xiaoxue Hou
- Key Laboratory of Radiopharmacokinetics for Innovative DrugsChinese Academy of Medical Sciences, and Institute of Radiation MedicineChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinP. R. China
| | - Yumin Zhang
- Key Laboratory of Radiopharmacokinetics for Innovative DrugsChinese Academy of Medical Sciences, and Institute of Radiation MedicineChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinP. R. China
| | - Jinjian Liu
- Key Laboratory of Radiopharmacokinetics for Innovative DrugsChinese Academy of Medical Sciences, and Institute of Radiation MedicineChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinP. R. China
| | - Lijun Yang
- Key Laboratory of Radiopharmacokinetics for Innovative DrugsChinese Academy of Medical Sciences, and Institute of Radiation MedicineChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinP. R. China
| | - Yong Liu
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang ProvinceWenzhou InstituteUniversity of Chinese Academy of Sciences, Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)WenzhouZhejiangP. R. China
| | - Jianfeng Liu
- Key Laboratory of Radiopharmacokinetics for Innovative DrugsChinese Academy of Medical Sciences, and Institute of Radiation MedicineChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinP. R. China
| |
Collapse
|
4
|
Seidi F, Zhong Y, Xiao H, Jin Y, Crespy D. Degradable polyprodrugs: design and therapeutic efficiency. Chem Soc Rev 2022; 51:6652-6703. [PMID: 35796314 DOI: 10.1039/d2cs00099g] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Prodrugs are developed to increase the therapeutic properties of drugs and reduce their side effects. Polyprodrugs emerged as highly efficient prodrugs produced by the polymerization of one or several drug monomers. Polyprodrugs can be gradually degraded to release therapeutic agents. The complete degradation of polyprodrugs is an important factor to guarantee the successful disposal of the drug delivery system from the body. The degradation of polyprodrugs and release rate of the drugs can be controlled by the type of covalent bonds linking the monomer drug units in the polymer structure. Therefore, various types of polyprodrugs have been developed based on polyesters, polyanhydrides, polycarbonates, polyurethanes, polyamides, polyketals, polymetallodrugs, polyphosphazenes, and polyimines. Furthermore, the presence of stimuli-responsive groups, such as redox-responsive linkages (disulfide, boronate ester, metal-complex, and oxalate), pH-responsive linkages (ester, imine, hydrazone, acetal, orthoester, P-O and P-N), light-responsive (metal-complex, o-nitrophenyl groups) and enzyme-responsive linkages (ester, peptides) allow for a selective degradation of the polymer backbone in targeted tumors. We envision that new strategies providing a more efficient synergistic therapy will be developed by combining polyprodrugs with gene delivery segments and targeting moieties.
Collapse
Affiliation(s)
- Farzad Seidi
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China. .,Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand.
| | - Yajie Zhong
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, New Brunswick, E3B 5A3, Canada
| | - Yongcan Jin
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.
| | - Daniel Crespy
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand.
| |
Collapse
|
5
|
Abstract
Biodegradable and biocompatible biomaterials have offered much more opportunities from an engineering standpoint for treating diseases and maintaining health. Poly(ester amide)s (PEAs), as an outstanding family among such biomaterials, have risen overwhelmingly in the past decades. These synthetic polymers have easily and widely available raw materials and a diversity of synthetic approaches, which have attracted considerable attention. More importantly, combining the superiorities of polyamides and polyesters, PEAs have emerged with better functions. They could have improved biodegradability, biocompatibility, and cell-material interactions. The PEAs derived from α-amino acids even allow the introduction of pendant sites for further modification or functionalization. Meanwhile, it is gradually recognized that the chemical structures are closely related to the physiochemical and biological properties of PEAs so that their properties can be precisely controlled. PEAs therefore become significant materials in the biomedical fields. This review will attempt to summarize the recent progress in the development of PEAs with respect to the preparation materials and methods, structure-property relationships along with their latest biomedical accomplishments, especially for drug delivery and tissue engineering.
Collapse
Affiliation(s)
- Shuyan Han
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518057, People's Republic of China
| | - Jun Wu
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518057, People's Republic of China
| |
Collapse
|
6
|
Yuan Q, Wang L, Huang J, Zhao W, Wu J. In vivo metabolizable branched poly(ester amide) based on inositol and amino acids as a drug nanocarrier for cancer therapy. Biomater Sci 2021; 9:6555-6567. [PMID: 34582536 DOI: 10.1039/d1bm00852h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Amino acid-based poly(ester amide) (PEA) has been utilized for various biomedical applications due to its tunable mechanical properties, good biocompatibility, and biodegradability. However, bioactive components have rarely been incorporated into the PEA structure, and there has been no systematic investigation of amino acid-based PEAs with branched structures. Herein, an in vivo metabolizable branched poly(ester amide) (BPEA) was synthesized from inositol (a natural growth factor) and amino acids for drug delivery in cancer therapy. The bioactive components, inositol, arginine, and phenylalanine, could improve the biocompatibility of the BPEA nanocarrier, and convert into other valuable biomolecules (phosphatidylinositol for cell signaling, functional protein, or other amino acids including ornithine, citrulline, and tyrosine) after accomplishing drug delivery and biodegradation. Paclitaxel (PTX) was encapsulated into BPEA nanocarriers to formulate drug-loaded BPEA nanoparticles (BPEA@PTX NPs). In vitro results indicated that BPEA@PTX NPs had a sub 100 nm size and could effectively inhibit the growth and migration of cancer cells. In vivo experiments further demonstrated significant suppression of tumor size compared with that with free PTX. Both in vitro and in vivo results confirmed the superior biosafety of BPEA, indicating that BPEA exhibits excellent biocompatibility and considerable potential as a drug carrier.
Collapse
Affiliation(s)
- Qijuan Yuan
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510006, PR. China.
| | - Li Wang
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, PR. China
| | - Jun Huang
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510006, PR. China.
| | - Wei Zhao
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, PR. China
| | - Jun Wu
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510006, PR. China.
| |
Collapse
|
7
|
Fawzi Kabil M, Nasr M, El-Sherbiny IM. Conventional and hybrid nanoparticulate systems for the treatment of hepatocellular carcinoma: An updated review. Eur J Pharm Biopharm 2021; 167:9-37. [PMID: 34271117 DOI: 10.1016/j.ejpb.2021.07.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 06/28/2021] [Accepted: 07/07/2021] [Indexed: 12/12/2022]
Abstract
Hepatocellular carcinoma (HCC) is considered a serious malignancy which affects a large number of people worldwide. Despite the presence of some diagnostic techniques for HCC, the fact that its symptoms somehow overlap with other diseases causes it to be diagnosed at a late stage, hence negatively affecting the prognosis of the disease. The currently available treatment strategies have many shortcomings such as high cost, induction of serious side effects as well as multiple drug resistance, hence resulting in therapeutic failure. Accordingly, nanoformulations have been developed in order to overcome the clinical challenges, enhance the therapeutic efficacy, and elicit chemotherapy tailor-ability. Hybrid nanoparticulate carriers in particular, which are composed of two or more drug vehicles with different physicochemical characteristics combined together in one system, have been recently reported to advance nanotechnology-based therapies. Therefore, this review sheds the light on HCC, and the role of nanotechnology and hybrid nanoparticulate carriers as well as the latest developments in the use of conventional nanoparticles in combating this disease.
Collapse
Affiliation(s)
- Mohamed Fawzi Kabil
- Center for Materials Science, University of Science and Technology, Zewail City of Science and Technology, 6th October City, Giza 12578, Egypt
| | - Maha Nasr
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Ibrahim M El-Sherbiny
- Center for Materials Science, University of Science and Technology, Zewail City of Science and Technology, 6th October City, Giza 12578, Egypt.
| |
Collapse
|
8
|
Mi P, Cabral H, Kataoka K. Ligand-Installed Nanocarriers toward Precision Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1902604. [PMID: 31353770 DOI: 10.1002/adma.201902604] [Citation(s) in RCA: 178] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 06/04/2019] [Indexed: 05/20/2023]
Abstract
Development of drug-delivery systems that selectively target neoplastic cells has been a major goal of nanomedicine. One major strategy for achieving this milestone is to install ligands on the surface of nanocarriers to enhance delivery to target tissues, as well as to enhance internalization of nanocarriers by target cells, which improves accuracy, efficacy, and ultimately enhances patient outcomes. Herein, recent advances regarding the development of ligand-installed nanocarriers are introduced and the effect of their design on biological performance is discussed. Besides academic achievements, progress on ligand-installed nanocarriers in clinical trials is presented, along with the challenges faced by these formulations. Lastly, the future perspectives of ligand-installed nanocarriers are discussed, with particular emphasis on their potential for emerging precision therapies.
Collapse
Affiliation(s)
- Peng Mi
- Department of Radiology, Center for Medical Imaging, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, No.17 People's South Road, Chengdu, 610041, China
| | - Horacio Cabral
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Kazunori Kataoka
- Innovation Center of Nanomedicine (iCONM), Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki, 210-0821, Japan
- Institute for Future Initiatives, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| |
Collapse
|
9
|
Wei Y, Gu X, Cheng L, Meng F, Storm G, Zhong Z. Low-toxicity transferrin-guided polymersomal doxorubicin for potent chemotherapy of orthotopic hepatocellular carcinoma in vivo. Acta Biomater 2019; 92:196-204. [PMID: 31102765 DOI: 10.1016/j.actbio.2019.05.034] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 05/06/2019] [Accepted: 05/13/2019] [Indexed: 12/25/2022]
Abstract
Hepatocellular carcinoma (HCC) remains one of the most lethal malignancies. The current chemotherapy with typically low tumor uptake and high toxicity reveals a poor anti-HCC efficacy. Here, we report transferrin-guided polycarbonate-based polymersomal doxorubicin (Tf-Ps-Dox) as a low-toxic and potent nanotherapeutic agent for effective treatment of liver tumor using a transferrin receptor (TfR)-positive human liver tumor SMMC-7721 model. Tf-Ps-Dox was facilely fabricated with small size of ca. 75 nm and varying Tf densities from 2.2% to 7.0%, by postmodification of maleimide-functionalized Ps-Dox (Dox loading content of 10.6 wt%) with thiolated transferrin. MTT assays showed that Tf-Ps-Dox had an optimal Tf surface density of 3.9%. The cellular uptake, intracellular Dox level, and anticancer efficacy of Tf-Ps-Dox to SMMC-7721 cells were inhibited by supplementing free transferrin, which supports that Tf-Ps-Dox is endocytosed through TfR. Interestingly, Tf-Ps-Dox exhibited a high accumulation of 8.5%ID/g (percent injected dose per gram of tissue) in subcutaneous SMMC-7721 tumors, which was 2- and 3-fold higher than that of nontargeted Ps-Dox and clinically used liposomal Dox formulation (Lipo-Dox), respectively. The median survival times of mice bearing orthotopic SMMC-7721 tumors increased from 82, 88 to 96 days when treated with Tf-Ps-Dox at Dox doses from 8, 12 to 16 mg/kg, which was significantly longer than that of Ps-Dox at 8 mg/kg (58 days) and Lipo-Dox at 4 mg/kg (48 days) or PBS (36 days). Notably, unlike Lipo-Dox, no body weight loss and damage to major organs could be discerned for all Tf-Ps-Dox groups, indicating that Tf-Ps-Dox caused low systemic toxicity. This transferrin-dressed polymersomal doxorubicin provides a potent and low-toxic treatment modality for human hepatocellular carcinoma. STATEMENT OF SIGNIFICANCE: Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related death worldwide. Vast work has focused on developing HCC-targeted nanotherapeutics. However, none of the nanotherapeutics has advanced to clinics, partly because the ligands used have not been validated in patients. Transferrin (Tf) is a natural ligand for transferrin receptor (TfR) that is overexpressed on cancerous cells, and it is currently under clinical trials (MBP-426 and CALAA-01) for the treatment of solid tumors. We designed Tf-functionalized polymersomal doxorubicin (Tf-Ps-Dox) for targeted therapy of orthotopic SMMC-7721 tumor in nude mice. Tf-Ps-Dox showed potent anti-HCC efficacy and significantly improved survival time with low toxicity as compared with nontargeted Ps-Dox and clinical liposomal Dox (Lipo-Dox). Hence, Tf-Ps-Dox is very appealing for targeted treatment of HCC.
Collapse
|
10
|
Li Y, Si J, Fan H, Ye X. Effect of pH and content of reduction‐sensitive copolymer on the guest exchange kinetics of micelles. JOURNAL OF POLYMER SCIENCE PART B: POLYMER PHYSICS 2018; 56:1636-1644. [DOI: 10.1002/polb.24754] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 10/07/2018] [Indexed: 01/06/2025]
Abstract
ABSTRACTThe micelles formed by reduction‐sensitive amphiphilic copolymer have emerged as promising drug nanocarriers due to the controlled drug release and effective anticancer activity triggered by the reducing stimulation. However, the effect of pH on the stability and guest exchange of the micelles formed by reduction‐sensitive copolymer have not been systemically investigated. Herein, the micelles formed by a reduction‐sensitive copolymer poly(ε‐caprolactone)‐b‐poly[oligo(ethylene glycol) methyl ether methacrylate] (PCL–SS–POEGA) with a single disulfide group at different pH values loaded with dyes 3,3′‐dioctadecyloxacarbocyanine perchlorate/1,1′‐dioctadecyl‐3,3,3′,3′‐tetramethylindocarbocyanine perchlorate (DiO/DiI) were prepared through the precipitation‐dialysis method. In addition, mixed micelles formed by different contents of reduction‐sensitive and reduction‐insensitive copolymers encapsulated with DiO/DiI at pH 7.5 were also prepared by the similar approach. The effects of pH and the content of reduction‐sensitive copolymer on guest exchange of these micelles were studied by the fluorescence resonance energy transfer method. Results show that the pH value in the environment has great influence on the guest exchange rate of reduction‐sensitive micelles in the presence of 10 mM dithiothreitol (DTT) and slight effect on that in the absence of DTT. Under a reducing environment, the guest exchange rate of the micelles containing various contents of disulfide‐linked copolymer increases with the increasing content of PCL–SS–POEGA. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018, 56, 1636–1644
Collapse
Affiliation(s)
- Yixia Li
- Department of Chemical Physics, Hefei National Laboratory for Physical Sciences at the Microscale University of Science and Technology of China Hefei Anhui 230026 China
| | - Jianhao Si
- Department of Chemical Physics, Hefei National Laboratory for Physical Sciences at the Microscale University of Science and Technology of China Hefei Anhui 230026 China
| | - Haiyan Fan
- Department of Chemical Physics, Hefei National Laboratory for Physical Sciences at the Microscale University of Science and Technology of China Hefei Anhui 230026 China
| | - Xiaodong Ye
- Department of Chemical Physics, Hefei National Laboratory for Physical Sciences at the Microscale University of Science and Technology of China Hefei Anhui 230026 China
- CAS Key Laboratory of Soft Matter Chemistry University of Science and Technology of China Hefei Anhui 230026 China
| |
Collapse
|
11
|
Gu X, Qiu M, Sun H, Zhang J, Cheng L, Deng C, Zhong Z. Polytyrosine nanoparticles enable ultra-high loading of doxorubicin and rapid enzyme-responsive drug release. Biomater Sci 2018; 6:1526-1534. [PMID: 29666858 DOI: 10.1039/c8bm00243f] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Despite the great significance of clinically viable nanovehicles, very few of them exhibit stability and high anticancer drug loading with fast intracellular drug release. Herein, we report that polytyrosine nanoparticles (PTNs) self-assembled from poly(ethylene glycol)-b-poly(l-tyrosine) block copolymer enable the ultra-high loading and rapid enzyme-responsive release of doxorubicin (DOX). Notably, PTNs achieve a remarkably high DOX loading of 63.1 wt% likely due to the existence of strong π-π stacking between polytyrosine and DOX, as shown by UV-vis analysis. Additionally, PTNs present a high docetaxel loading of 17.5 wt%. Furthermore, PTNs exhibit good colloidal stability in 10% FBS, but are quickly de-stabilized by proteinase K. Interestingly, ca. 90% of DOX is released under 6 U mL-1 proteinase K in 24 h or in RAW 264.7 cells in 8 h. The DOX-loaded PTNs display efficient delivery and release of DOX in both RAW 264.7 cells and HCT-116 human colorectal cancer cells, achieving a better in vitro antiproliferative effect than the clinically used liposomal DOX formulation. Thus, these polytyrosine nanoparticles appear to be a potentially viable platform for the controlled delivery of anthraquinone anticancer agents.
Collapse
Affiliation(s)
- Xiaolei Gu
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | | | | | | | | | | | | |
Collapse
|
12
|
Magnetic Nanocarrier Containing 68Ga–DTPA Complex for Targeted Delivery of Doxorubicin. J Inorg Organomet Polym Mater 2018. [DOI: 10.1007/s10904-018-0826-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
13
|
Fan H, Li Y, Yang J, Ye X. Effect of Hydrophobic Chain Length on the Stability and Guest Exchange Behavior of Shell-Sheddable Micelles Formed by Disulfide-Linked Diblock Copolymers. J Phys Chem B 2017; 121:9708-9717. [PMID: 28925709 DOI: 10.1021/acs.jpcb.7b06165] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Reduction-responsive micelles hold enormous promise for application as drug carriers due to the fast drug release triggered by reducing conditions and high anticancer activity. However, the effect of hydrophobic chain length on the stability and guest exchange of reduction-responsive micelles, especially for the micelles formed by diblock copolymers containing single disulfide group, is not fully understood. Here, shell-sheddable micelles formed by a series of disulfide-linked copolymer poly(ethylene glycol)-b-poly(ε-caprolactone) (PEG-SS-PCL) containing the same chain length of PEG but different chain lengths of hydrophobic block PCL were prepared and well characterized. The influence of the chain length of hydrophobic PCL block on the stability and guest exchange of PEG-SS-PCL micelles was studied by the use of both dynamic laser light scattering (DLS) and fluorescence resonance energy transfer (FRET). The results show that longer PCL chains lead to a slower aggregation rate and guest exchange of micelles in the aqueous solutions containing 10 mM dithiothreitol (DTT). The cell uptake of the shell-sheddable PEG-SS-PCL micelles in vitro shows that the amount of internalization of dyes loaded in PEG-SS-PCL micelles increases with the chain length of hydrophobic PCL block investigated by flow cytometric analysis and confocal fluorescence microscopy.
Collapse
Affiliation(s)
- Haiyan Fan
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics and ‡CAS Key Laboratory of Soft Matter Chemistry, University of Science and Technology of China , Hefei, Anhui 230026, China
| | - Yixia Li
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics and ‡CAS Key Laboratory of Soft Matter Chemistry, University of Science and Technology of China , Hefei, Anhui 230026, China
| | - Jinxian Yang
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics and ‡CAS Key Laboratory of Soft Matter Chemistry, University of Science and Technology of China , Hefei, Anhui 230026, China
| | - Xiaodong Ye
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics and ‡CAS Key Laboratory of Soft Matter Chemistry, University of Science and Technology of China , Hefei, Anhui 230026, China
| |
Collapse
|
14
|
Fu S, Yang G, Wang J, Wang X, Cheng X, Zha Q, Tang R. pH-sensitive poly(ortho ester urethanes) copolymers with controlled degradation kinetic: Synthesis, characterization, and in vitro evaluation as drug carriers. Eur Polym J 2017. [DOI: 10.1016/j.eurpolymj.2017.08.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
15
|
Li X, Gao M, Xin K, Zhang L, Ding D, Kong D, Wang Z, Shi Y, Kiessling F, Lammers T, Cheng J, Zhao Y. Singlet oxygen-responsive micelles for enhanced photodynamic therapy. J Control Release 2017; 260:12-21. [DOI: 10.1016/j.jconrel.2017.05.025] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 05/15/2017] [Accepted: 05/17/2017] [Indexed: 11/15/2022]
|
16
|
Evaluation of polyesteramide (PEA) and polyester (PLGA) microspheres as intravitreal drug delivery systems in albino rats. Biomaterials 2017; 124:157-168. [DOI: 10.1016/j.biomaterials.2017.02.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 01/20/2017] [Accepted: 02/06/2017] [Indexed: 12/17/2022]
|
17
|
Sun Y, Zhang J, Han J, Tian B, Shi Y, Ding Y, Wang L, Han J. Galactose-Containing Polymer-DOX Conjugates for Targeting Drug Delivery. AAPS PharmSciTech 2017; 18:749-758. [PMID: 27287244 DOI: 10.1208/s12249-016-0557-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 05/18/2016] [Indexed: 11/30/2022] Open
Abstract
A novel multifunctional drug delivery system was fabricated by conjugating galactose-based polymer, methoxy-poly(ethylene glycol)-block-poly(6-O-methacryloyl-D-galactopyranose) (mPEG-b-PMAGP) with doxorubicin (DOX) via an acid-labile carbamate linkage. The mPEG-b-PMAGP-co-DOX nanoparticles were spherical in shape, and the diameter determined by dynamic light scattering (DLS) was 54.84 ± 0.58 nm, larger than that characterized by transmission electron microscopy (TEM). The in vitro drug release profiles were studied, and the release of DOX from the nanoparticles was pH-responsive. The cellular uptake behavior of free-DOX and mPEG-b-PMAGP-co-DOX nanoparticles by asialoglycoprotein (ASGP) receptor-positive cancer cell line (HepG2) and ASGP receptor-negative cancer cell lines (MCF-7 and A549 cells) was evaluated by confocal laser scanning microscopy (CLSM) and flow cytometry (FCM), respectively. The mPEG-b-PMAGP-co-DOX nanoparticles which contain galactose functional groups exhibited higher cellular uptake behavior via ASGP receptor-mediated endocytosis in HepG2 cells than in other two cancer cells. The in vitro cytotoxicity assay manifested that the mPEG-b-PMAGP-co-DOX nanoparticles exhibited higher anticancer efficacy against HepG2 cells than MCF-7 cells. These results indicated that the multifunctional mPEG-b-PMAGP-co-DOX nanoparticles possessing pH-responsible and hepatoma-targeting function have great potential to be used as a targeting drug delivery system for hepatoma therapy.
Collapse
|
18
|
Gulfam M, Matini T, Monteiro PF, Riva R, Collins H, Spriggs K, Howdle SM, Jérôme C, Alexander C. Bioreducible cross-linked core polymer micelles enhance in vitro activity of methotrexate in breast cancer cells. Biomater Sci 2017; 5:532-550. [DOI: 10.1039/c6bm00888g] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PEG-poly(caprolactone) co-polymers with disulfide-linked cores are highly efficient for delivery of the anti-cancer drug methotrexate in vitro.
Collapse
Affiliation(s)
- Muhammad Gulfam
- School of Pharmacy
- University of Nottingham
- UK
- Center for Education and Research on Macromolecules (CERM)
- University of Liège
| | | | | | - Raphaël Riva
- Center for Education and Research on Macromolecules (CERM)
- University of Liège
- 4000 Liège
- Belgium
| | | | | | | | - Christine Jérôme
- Center for Education and Research on Macromolecules (CERM)
- University of Liège
- 4000 Liège
- Belgium
| | | |
Collapse
|
19
|
Basu A, Kunduru KR, Katzhendler J, Domb AJ. Poly(α-hydroxy acid)s and poly(α-hydroxy acid-co-α-amino acid)s derived from amino acid. Adv Drug Deliv Rev 2016; 107:82-96. [PMID: 27527666 DOI: 10.1016/j.addr.2016.08.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Revised: 07/17/2016] [Accepted: 08/04/2016] [Indexed: 12/16/2022]
Abstract
Polyesters derived from the α-hydroxy acids, lactic acid, and glycolic acid, are the most common biodegradable polymers in clinical use. These polymers have been tailored for a range of applications that require a physical material possessing. The physical and mechanical properties of these polymers fit the specific application and also safely biodegrade. These polymers are hydrophobic and do not possess functional side groups. This does not allow hydrophilic or hydrophobic manipulation, conjugation of active agents along the polymer chain, etc. These manipulations have partly been achieved by block copolymerization with, for example, poly(ethylene glycol), to obtain an amphiphilic copolymer. The objective of this review is to survey PLA functional copolymers in which functional α-hydroxy acids derived from amino acids are introduced along the polymer chain, allowing endless manipulation of PLA. Biodegradable functional polyesters are one of the most versatile biomaterials available to biomedical scientists. Amino acids with their variable side chains are ideal candidates for synthesizing such structural as well as stereochemically diverse polymers. They render control over functionalization, conjugation, crosslinking, stimulus responsiveness, and tunable mechanical/thermal properties. Functionalized amino acid derived polyesters are widely used, mainly due to advancement in ring opening polymerization (primarily O-carboxyanhydride mediated). The reaction proceeds under milder conditions and yields high molecular weight polymers. We reviewed on advances in the synthetic methodologies for poly-α-hydroxy esters derived from amino acids with appropriate recent examples.
Collapse
|
20
|
Wang X, Zhang J, Cheng R, Meng F, Deng C, Zhong Z. Facile Synthesis of Reductively Degradable Biopolymers Using Cystamine Diisocyanate as a Coupling Agent. Biomacromolecules 2016; 17:882-90. [PMID: 26810050 DOI: 10.1021/acs.biomac.5b01578] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Reductively degradable biopolymers have emerged as a unique class of smart biomedical materials. Here, a functional coupling agent, cystamine diisocyanate (CDI), was designed to offer a facile access to reductively degradable biopolymers via polycondensation with various diols. CDI was readily obtained with a decent yield of 46% by reacting cystamine dihydrochloride with triphosgene. The polycondensation of oligo(ethylene glycol) diol (Mn = 0.4 or 1.5 kg/mol) or oligo(ε-caprolactone) diol (Mn = 0.53 kg/mol) with CDI in N,N-dimethylformamide at 60 °C using dibutyltin dilaurate as a catalyst afforded reductively degradable poly(ethylene glycol) (SSPEG, Mn = 6.2-76.8 kg/mol) or poly(ε-caprolactone) (SSPCL, Mn = 6.8-16.3 kg/mol), in which molecular weights were well controlled by diol/CDI molar ratios. Moreover, PEG-SSPCL-PEG triblock copolymers could be readily prepared by reacting dihydroxyl-terminated SSPCL with PEG-isocyanate derivative. PEG-SSPCL-PEG with an Mn of 5.0-16.3-5.0 kg/mol formed small-sized micelles with an average diameter of about 85 nm in PB buffer. The in vitro release studies using doxorubicin (DOX) as a model drug showed that, in sharp contrast to reduction-insensitive PEG-PCL(HDI)-PEG controls, drug release from PEG-SSPCL-PEG micelles was fast and nearly complete in 24 h under a reductive condition containing 10 mM glutathione. The confocal microscopy experiments in drug-resistant MCF-7 cells (MCF-7/ADR) displayed efficient cytoplasmic DOX release from PEG-SSPCL-PEG micelles. MTT assays revealed that DOX-loaded PEG-SSPCL-PEG micelles were much more potent against MCF-7/ADR cells than reduction-insensitive PEG-PCL(HDI)-PEG controls (IC50: 6.3 vs 55.4 μg/mL). It should further be noted that blank PEG-SSPCL-PEG micelles were noncytotoxic up to a tested concentration of 1 mg/mL. Hence, cystamine diisocyanate appears to be an innovative coupling agent that facilitates versatile synthesis of biocompatible and reductively degradable biopolymers.
Collapse
Affiliation(s)
- Xiuxiu Wang
- Biomedical Polymers Laboratory and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering, and Materials Science, Soochow University , Suzhou, 215123, People's Republic of China
| | - Jian Zhang
- Biomedical Polymers Laboratory and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering, and Materials Science, Soochow University , Suzhou, 215123, People's Republic of China
| | - Ru Cheng
- Biomedical Polymers Laboratory and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering, and Materials Science, Soochow University , Suzhou, 215123, People's Republic of China
| | - Fenghua Meng
- Biomedical Polymers Laboratory and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering, and Materials Science, Soochow University , Suzhou, 215123, People's Republic of China
| | - Chao Deng
- Biomedical Polymers Laboratory and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering, and Materials Science, Soochow University , Suzhou, 215123, People's Republic of China
| | - Zhiyuan Zhong
- Biomedical Polymers Laboratory and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering, and Materials Science, Soochow University , Suzhou, 215123, People's Republic of China
| |
Collapse
|
21
|
Zhao X, Liu P, Song Q, Gong N, Yang L, Wu WD. Surface charge-reversible polyelectrolyte complex nanoparticles for hepatoma-targeting delivery of doxorubicin. J Mater Chem B 2015; 3:6185-6193. [DOI: 10.1039/c5tb00600g] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Polymeric nanoparticles are greatly advancing the field of nanomedicine due to their ability for targeted and controlled drug release.
Collapse
Affiliation(s)
- Xubo Zhao
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- China
| | - Peng Liu
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- China
| | - Qilei Song
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- China
| | - Nan Gong
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- China
| | - Liangwei Yang
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- China
| | - Winston Duo Wu
- Department of Chemical Engineering
- Monash University
- Australia
| |
Collapse
|
22
|
Banerjee R, Parida S, Maiti C, Mandal M, Dhara D. pH-degradable and thermoresponsive water-soluble core cross-linked polymeric nanoparticles as potential drug delivery vehicle for doxorubicin. RSC Adv 2015. [DOI: 10.1039/c5ra17158j] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Doxorubicin release at preferred lysosomal pH of the cancer cells due to pH-induced de-crosslinking of polymer nanoparticle core.
Collapse
Affiliation(s)
- Rakesh Banerjee
- Department of Chemistry
- Indian Institute of Technology Kharagpur
- India
| | - Sheetal Parida
- School of Medical Science and Technology
- Indian Institute of Technology Kharagpur
- India
| | - Chiranjit Maiti
- Department of Chemistry
- Indian Institute of Technology Kharagpur
- India
| | - Mahitosh Mandal
- School of Medical Science and Technology
- Indian Institute of Technology Kharagpur
- India
| | - Dibakar Dhara
- Department of Chemistry
- Indian Institute of Technology Kharagpur
- India
| |
Collapse
|