1
|
Tam DY, Zhuang X, Wong SW, Lo PK. Photoresponsive Self-Assembled DNA Nanomaterials: Design, Working Principles, and Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1805481. [PMID: 30861628 DOI: 10.1002/smll.201805481] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 01/30/2019] [Indexed: 05/23/2023]
Abstract
Photoresponsive DNA nanomaterials represent a new class of remarkable functional materials. By adjusting the irradiation wavelength, light intensity, and exposure time, various photocontrolled DNA-based systems can be reversibly or irreversibly regulated in respect of their size, shape, conformation, movement, and dissociation/association. This Review introduces the most updated progress in the development of photoresponsive DNA-based system and emphasizes their advantages over other stimuli-responsive systems. Their design and mechanisms to trigger the photoresponses are shown and discussed. The potential application of these photon-responsive DNA nanomaterials in biology, biomedicine, materials science, nanophotonic and nanoelectronic are also covered and described. The challenges faced and further directions of the development of photocontrolled DNA-based systems are also highlighted.
Collapse
Affiliation(s)
- Dick Yan Tam
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Xinyu Zhuang
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Sze Wing Wong
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Pik Kwan Lo
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
- Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057, China
| |
Collapse
|
2
|
Abstract
DNA has played an early and powerful role in the development of bottom-up nanotechnologies, not least because of DNA's precise, predictable, and controllable properties of assembly on the nanometer scale. Watson-Crick complementarity has been used to build complex 2D and 3D architectures and design a number of nanometer-scale systems for molecular computing, transport, motors, and biosensing applications. Most of such devices are built with classical B-DNA helices and involve classical A-T/U and G-C base pairs. However, in addition to the above components underlying the iconic double helix, a number of alternative pairing schemes of nucleobases are known. This review focuses on two of these noncanonical classes of DNA helices: G-quadruplexes and the i-motif. The unique properties of these two classes of DNA helix have been utilized toward some remarkable constructions and applications: G-wires; nanostructures such as DNA origami; reconfigurable structures and nanodevices; the formation and utilization of hemin-utilizing DNAzymes, capable of generating varied outputs from biosensing nanostructures; composite nanostructures made up of DNA as well as inorganic materials; and the construction of nanocarriers that show promise for the therapeutics of diseases.
Collapse
Affiliation(s)
- Jean-Louis Mergny
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering , Nanjing University , Nanjing 210023 , China.,ARNA Laboratory , Université de Bordeaux, Inserm U 1212, CNRS UMR5320, IECB , Pessac 33600 , France.,Institute of Biophysics of the CAS , v.v.i., Královopolská 135 , 612 65 Brno , Czech Republic
| | - Dipankar Sen
- Department of Molecular Biology & Biochemistry , Simon Fraser University , Burnaby , British Columbia V5A 1S6 , Canada.,Department of Chemistry , Simon Fraser University , Burnaby , British Columbia V5A 1S6 , Canada
| |
Collapse
|
3
|
Lubbe AS, Szymanski W, Feringa BL. Recent developments in reversible photoregulation of oligonucleotide structure and function. Chem Soc Rev 2018; 46:1052-1079. [PMID: 28128377 DOI: 10.1039/c6cs00461j] [Citation(s) in RCA: 216] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
There is a growing interest in the photoregulation of biological functions, due to the high level of spatiotemporal precision achievable with light. Additionally, light is non-invasive and waste-free. In particular, the photoregulation of oligonucleotide structure and function is a rapidly developing study field with relevance to biological, physical and material sciences. Molecular photoswitches have been incorporated in oligonucleotides for 20 years, and the field has currently grown beyond fundamental studies on photochemistry of the switches and DNA duplex stability, and is moving towards applications in chemical biology, nanotechnology and material science. Moreover, the currently emerging field of photopharmacology indicates the relevance of photocontrol in future medicine. In recent years, a large number of publications has appeared on photoregulation of DNA and RNA structure and function. New strategies are evaluated and novel, exciting applications are shown. In this comprehensive review, the key strategies for photoswitch inclusion in oligonucleotides are presented and illustrated with recent examples. Additionally the applications that have emerged in recent years are discussed, including gene regulation, drug delivery and materials design. Finally, we identify the challenges that the field currently faces and look forward to future applications.
Collapse
Affiliation(s)
- Anouk S Lubbe
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands.
| | - Wiktor Szymanski
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands. and Department of Radiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands.
| | - Ben L Feringa
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands.
| |
Collapse
|
4
|
Takeuchi Y, Endo M, Suzuki Y, Hidaka K, Durand G, Dausse E, Toulmé JJ, Sugiyama H. Single-molecule observations of RNA-RNA kissing interactions in a DNA nanostructure. Biomater Sci 2017; 4:130-5. [PMID: 26438892 DOI: 10.1039/c5bm00274e] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
RNA molecules uniquely form a complex through specific hairpin loops, called a kissing complex. The kissing complex is widely investigated and used for the construction of RNA nanostructures. Molecular switches have also been created by combining a kissing loop and a ligand-binding aptamer to control the interactions of RNA molecules. In this study, we incorporated two kinds of RNA molecules into a DNA origami structure and used atomic force microscopy to observe their ligand-responsive interactions at the single-molecule level. We used a designed RNA aptamer called GTPswitch, which has a guanosine triphosphate (GTP) responsive domain and can bind to the target RNA hairpin named Aptakiss in the presence of GTP. We observed shape changes of the DNA/RNA strands in the DNA origami, which are induced by the GTPswitch, into two different shapes in the absence and presence of GTP, respectively. We also found that the switching function in the nanospace could be improved by using a cover strand over the kissing loop of the GTPswitch or by deleting one base from this kissing loop. These newly designed ligand-responsive aptamers can be used for the controlled assembly of the various DNA and RNA nanostructures.
Collapse
Affiliation(s)
- Yosuke Takeuchi
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Masayuki Endo
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-ushinomiyacho, Sakyo-ku, Kyoto, 606-8501, Japan.
| | - Yuki Suzuki
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Kumi Hidaka
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Guillaume Durand
- ARNA laboratory, University of Bordeaux, 146 rue Léo Saignat, 33076 Bordeaux, France. and Inserm U869, 146 rue Léo Saignat, 33076 Bordeaux, France
| | - Eric Dausse
- ARNA laboratory, University of Bordeaux, 146 rue Léo Saignat, 33076 Bordeaux, France. and Inserm U869, 146 rue Léo Saignat, 33076 Bordeaux, France
| | - Jean-Jacques Toulmé
- ARNA laboratory, University of Bordeaux, 146 rue Léo Saignat, 33076 Bordeaux, France. and Inserm U869, 146 rue Léo Saignat, 33076 Bordeaux, France
| | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan and Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-ushinomiyacho, Sakyo-ku, Kyoto, 606-8501, Japan.
| |
Collapse
|
5
|
Pandian GN, Sugiyama H. Nature-Inspired Design of Smart Biomaterials Using the Chemical Biology of Nucleic Acids. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2016. [DOI: 10.1246/bcsj.20160062] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
6
|
Endo M, Xing X, Zhou X, Emura T, Hidaka K, Tuesuwan B, Sugiyama H. Single-Molecule Manipulation of the Duplex Formation and Dissociation at the G-Quadruplex/i-Motif Site in the DNA Nanostructure. ACS NANO 2015; 9:9922-9929. [PMID: 26371377 DOI: 10.1021/acsnano.5b03413] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We demonstrate the single-molecule operation and observation of the formation and resolution of double-stranded DNA (dsDNA) containing a G-quadruplex (GQ) forming and counterpart i-motif forming sequence in the DNA nanostructure. Sequential manipulation of DNA strands in the DNA frame was performed to prepare a topologically controlled GQ/i-motif dsDNA. Using strand displacement and the addition and removal of K(+), the topologically controlled GQ/i-motif dsDNA in the DNA frame was obtained in high yield. The dsDNA was resolved into the single-stranded DNA, GQ, and i-motif by the addition of K(+) and operation in acidic conditions. The dissociation of the dsDNA under the GQ and i-motif formation condition was monitored by high-speed atomic force microscopy. The results indicate that the dsDNA containing the GQ- and i-motif sequence is effectively dissolved when the duplex is helically loosened in the DNA nanoscaffold.
Collapse
Affiliation(s)
- Masayuki Endo
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University , Yoshida-ushinomiyacho, Sakyo-ku, Kyoto 606-8501, Japan
- CREST , Japan Science and Technology Corporation (JST), Sanbancho, Chiyoda-ku, Tokyo 102-0075, Japan
| | - Xiwen Xing
- Department of Chemistry, Graduate School of Science, Kyoto University , Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University , Wuhan, Hubei 430072, People's Republic of China
| | - Xiang Zhou
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University , Wuhan, Hubei 430072, People's Republic of China
| | - Tomoko Emura
- Department of Chemistry, Graduate School of Science, Kyoto University , Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Kumi Hidaka
- Department of Chemistry, Graduate School of Science, Kyoto University , Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Bodin Tuesuwan
- Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University , Bangkok 10330, Thailand
| | - Hiroshi Sugiyama
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University , Yoshida-ushinomiyacho, Sakyo-ku, Kyoto 606-8501, Japan
- Department of Chemistry, Graduate School of Science, Kyoto University , Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
- CREST , Japan Science and Technology Corporation (JST), Sanbancho, Chiyoda-ku, Tokyo 102-0075, Japan
| |
Collapse
|
7
|
Yang Y, Goetzfried MA, Hidaka K, You M, Tan W, Sugiyama H, Endo M. Direct Visualization of Walking Motions of Photocontrolled Nanomachine on the DNA Nanostructure. NANO LETTERS 2015; 15:6672-6. [PMID: 26302358 PMCID: PMC5507700 DOI: 10.1021/acs.nanolett.5b02502] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
A light-driven artificial molecular nanomachine was constructed based on DNA scaffolding. Pyrene-modified walking strands and disulfide bond-connected stator strands, employed as anchorage sites to support walker movement, were assembled into a 2D DNA tile. Pyrene molecules excited by photoirradiation at 350 nm induced cleavage of disulfide bond-connected stator strands, enabling the DNA walker to migrate from one cleaved stator to the next on the DNA tile. The time-dependent movement of the walker was observed and the entire walking process of the walker was characterized by distribution of the walker-stator duplex at four anchorage sites on the tile under different irradiation times. Importantly, the light-fuelled mechanical movements on DNA tile were first visualized in real time during UV irradiation using high-speed atomic force microscopy (HS-AFM).
Collapse
Affiliation(s)
- Yangyang Yang
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-ushinomiyacho, Sakyo-ku, Kyoto 606-8501, Japan
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Marisa A. Goetzfried
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Kumi Hidaka
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Mingxu You
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Collaborative Innovation Center for Molecular Engineering and Theranostics, Hunan University, Changsha, Hunan 410082, China
- Department of Chemistry and Physiology and Functional Genomics, Center for Research at the Bio/Nano Interface, Shands Cancer Center, UF Genetics Institute, University of Florida, Gainesville, Florida 32611-7200, United States
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Collaborative Innovation Center for Molecular Engineering and Theranostics, Hunan University, Changsha, Hunan 410082, China
- Department of Chemistry and Physiology and Functional Genomics, Center for Research at the Bio/Nano Interface, Shands Cancer Center, UF Genetics Institute, University of Florida, Gainesville, Florida 32611-7200, United States
| | - Hiroshi Sugiyama
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-ushinomiyacho, Sakyo-ku, Kyoto 606-8501, Japan
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Masayuki Endo
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-ushinomiyacho, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
8
|
Jabbari H, Aminpour M, Montemagno C. Computational Approaches to Nucleic Acid Origami. ACS COMBINATORIAL SCIENCE 2015; 17:535-47. [PMID: 26348196 DOI: 10.1021/acscombsci.5b00079] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Recent advances in experimental DNA origami have dramatically expanded the horizon of DNA nanotechnology. Complex 3D suprastructures have been designed and developed using DNA origami with applications in biomaterial science, nanomedicine, nanorobotics, and molecular computation. Ribonucleic acid (RNA) origami has recently been realized as a new approach. Similar to DNA, RNA molecules can be designed to form complex 3D structures through complementary base pairings. RNA origami structures are, however, more compact and more thermodynamically stable due to RNA's non-canonical base pairing and tertiary interactions. With all these advantages, the development of RNA origami lags behind DNA origami by a large gap. Furthermore, although computational methods have proven to be effective in designing DNA and RNA origami structures and in their evaluation, advances in computational nucleic acid origami is even more limited. In this paper, we review major milestones in experimental and computational DNA and RNA origami and present current challenges in these fields. We believe collaboration between experimental nanotechnologists and computer scientists are critical for advancing these new research paradigms.
Collapse
Affiliation(s)
- Hosna Jabbari
- Ingenuity Lab, 11421 Saskatchewan
Drive, Edmonton, Alberta T6G 2M9, Canada
- Department
of Chemical and Materials Engineering, University of Alberta, Edmonton T6G 2V4, Canada
| | - Maral Aminpour
- Ingenuity Lab, 11421 Saskatchewan
Drive, Edmonton, Alberta T6G 2M9, Canada
- Department
of Chemical and Materials Engineering, University of Alberta, Edmonton T6G 2V4, Canada
| | - Carlo Montemagno
- Ingenuity Lab, 11421 Saskatchewan
Drive, Edmonton, Alberta T6G 2M9, Canada
- Department
of Chemical and Materials Engineering, University of Alberta, Edmonton T6G 2V4, Canada
| |
Collapse
|
9
|
Wu Y, Zhu W, Wan W, Xie Y, Tian H, Li ADQ. Reversible photoswitching specifically responds to mercury(II) ions: the gated photochromism of bis(dithiazole)ethene. Chem Commun (Camb) 2015; 50:14205-8. [PMID: 25283709 DOI: 10.1039/c4cc06372d] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Photoswitching of bis(dithiazole)ethene can be regulated by Hg(II) ions and EDTA in a "lock-and-unlock" manner. The molecular photoswitch provides an enzyme-like binding pocket that selectively binds specifically to mercury ions, thus modulating the degree of photoswitching in its presence.
Collapse
Affiliation(s)
- Yue Wu
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, P. R. China.
| | | | | | | | | | | |
Collapse
|
10
|
Takenaka T, Endo M, Suzuki Y, Yang Y, Emura T, Hidaka K, Kato T, Miyata T, Namba K, Sugiyama H. Photoresponsive DNA nanocapsule having an open/close system for capture and release of nanomaterials. Chemistry 2014; 20:14951-4. [PMID: 25223393 DOI: 10.1002/chem.201404757] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Indexed: 11/10/2022]
Abstract
A photofunctionalized square bipyramidal DNA nanocapsule (NC) was designed and prepared for the creation of a nanomaterial carrier. Photocontrollable open/close system and toehold system were introduced into the NC for the inclusion and release of a gold nanoparticle (AuNP) by photoirradiation and strand displacement. The reversible open and closed states were examined by gel electrophoresis and atomic force microscopy (AFM), and the open behavior was directly observed by high-speed AFM. The encapsulation of the DNA-modified AuNP within the NC was carried out by hybridization of a specific DNA strand (capture strand), and the release of the AuNP was examined by addition of toehold-containing complementary DNA strand (release strand). The release of the AuNP from the NC was achieved by the opening of the NC and subsequent strand displacement.
Collapse
Affiliation(s)
- Tomohiro Takenaka
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto 606-8502 (Japan)
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Yatsunyk LA, Mendoza O, Mergny JL. "Nano-oddities": unusual nucleic acid assemblies for DNA-based nanostructures and nanodevices. Acc Chem Res 2014; 47:1836-44. [PMID: 24871086 DOI: 10.1021/ar500063x] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
CONSPECTUS: DNA is an attractive polymer building material for nanodevices and nanostructures due to its ability for self-recognition and self-assembly. Assembly relies on the formation of base-specific interactions that allow strands to adopt structures in a controllable fashion. Most DNA-based higher order structures such as DNA cages, 2D and 3D DNA crystals, or origamis are based on DNA double helices stabilized by Watson-Crick complementarity. A number of nonclassical pairing patterns are possible between or among DNA strands; these interactions result in formation of unusual structures that include, but are not limited to, G-quadruplexes, i-motifs, triplexes, and parallel-stranded duplexes. These structures create greater diversity of DNA-based building blocks for nanomaterials and have certain advantages over conventional duplex DNA, such as enhanced thermal stability and sensitivity to chemical stimuli. In this Account, we briefly introduce these alternative DNA structures and describe in detail their utilization in a variety of nanomaterials and nanomachines. The field of DNA "nano-oddities" emerged in the late 1990s when for the first time a DNA nanomachine was designed based on equilibrium between B-DNA and noncanonical, left-handed Z-DNA. Soon after, "proof-of-principle" DNA nanomachines based on several DNA "oddities" were reported. These machines were set in motion by the addition of complementary strands (a principle used by many B-DNA-based nanodevices), by the addition of selected cations, small molecules, or proteins, or by a change in pH or temperature. Today, we have fair understanding of the mechanism of action of these devices, excellent control over their performance, and knowledge of basic principles of their design. pH sensors and pH-controlled devices occupy a central niche in the field. They are usually based on i-motifs or triplex DNA, are amazingly simple, robust, and reversible, and create no waste apart from salt and water. G-quadruplex based nanostructures have unusually high stability, resist DNase and temperature, and display high selectivity toward certain cations. The true power of using these "nano-oddities" comes from combining them with existing nanomaterials (e.g., DNA origami, gold nanoparticles, graphene oxide, or mesoporous silica) and integrating them into existing mechanical and optoelectronic devices. Creating well-structured junctions for these interfaces, finding appropriate applications for the vast numbers of reported "nano-oddities", and proving their biological innocence comprise major challenges in the field. Our Account is not meant to be an all-inclusive review of the field but should give a reader a firm grasp of the current state of DNA nanotechnology based on noncanonical DNA structures.
Collapse
Affiliation(s)
- Liliya A. Yatsunyk
- Department
of Chemistry and Biochemistry, Swarthmore College, 500 College
Avenue, Swarthmore, Pennsylvania 19081 United States
| | - Oscar Mendoza
- ARNA
Laboratory, University of Bordeaux, F-33000 Bordeaux, France
- INSERM U869, Institut Européen de Chimie et de Biologie, F-33600 Pessac, France
| | - Jean-Louis Mergny
- ARNA
Laboratory, University of Bordeaux, F-33000 Bordeaux, France
- INSERM U869, Institut Européen de Chimie et de Biologie, F-33600 Pessac, France
| |
Collapse
|