1
|
Hrebonkin A, Afonin S, Nikitjuka A, Borysov OV, Leitis G, Babii O, Koniev S, Lorig T, Grage SL, Nick P, Ulrich AS, Jirgensons A, Komarov IV. Spiropyran-Based Photoisomerizable α-Amino Acid for Membrane-Active Peptide Modification. Chemistry 2024; 30:e202400066. [PMID: 38366887 DOI: 10.1002/chem.202400066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/11/2024] [Accepted: 02/12/2024] [Indexed: 02/18/2024]
Abstract
Photoisomerizable peptides are promising drug candidates in photopharmacology. While azobenzene- and diarylethene-containing photoisomerizable peptides have already demonstrated their potential in this regard, reports on the use of spiropyrans to photoregulate bioactive peptides are still scarce. This work focuses on the design and synthesis of a spiropyran-derived amino acid, (S)-2-amino-3-(6'-methoxy-1',3',3'-trimethylspiro-[2H-1-benzopyran-2,2'-indolin-6-yl])propanoic acid, which is suitable for the preparation of photoisomerizable peptides. The utility of this amino acid is demonstrated by incorporating it into the backbone of BP100, a known membrane-active peptide, and by examining the photoregulation of the membrane perturbation by the spiropyran-containing peptides. The toxicity of the peptides (against the plant cell line BY-2), their bacteriotoxicity (E. coli), and actin-auxin oscillator modulation ability were shown to be significantly dependent on the photoisomeric state of the spiropyran unit.
Collapse
Affiliation(s)
- Andrii Hrebonkin
- Karlsruhe Institute of Technology, POB 3640, 76021, Karlsruhe, Germany
- Enamine, Vul. Winstona Churchilla 78, 02094, Kyiv, Ukraine
| | - Sergii Afonin
- Karlsruhe Institute of Technology, POB 3640, 76021, Karlsruhe, Germany
| | - Anna Nikitjuka
- Enamine, Vul. Winstona Churchilla 78, 02094, Kyiv, Ukraine
- Latvian Institute of Organic Synthesis, Aizkraukles iela 21, 1006, Riga, Latvia
| | - Oleksandr V Borysov
- Enamine, Vul. Winstona Churchilla 78, 02094, Kyiv, Ukraine
- Latvian Institute of Organic Synthesis, Aizkraukles iela 21, 1006, Riga, Latvia
| | - Gundars Leitis
- Enamine, Vul. Winstona Churchilla 78, 02094, Kyiv, Ukraine
- Latvian Institute of Organic Synthesis, Aizkraukles iela 21, 1006, Riga, Latvia
| | - Oleg Babii
- Karlsruhe Institute of Technology, POB 3640, 76021, Karlsruhe, Germany
| | - Serhii Koniev
- Enamine, Vul. Winstona Churchilla 78, 02094, Kyiv, Ukraine
- Taras Shevchenko National University of Kyiv, Vul. Volodymyrska 60, 01601, Kyiv, Ukraine
| | - Theo Lorig
- Karlsruhe Institute of Technology, POB 3640, 76021, Karlsruhe, Germany
| | - Stephan L Grage
- Karlsruhe Institute of Technology, POB 3640, 76021, Karlsruhe, Germany
| | - Peter Nick
- Karlsruhe Institute of Technology, POB 3640, 76021, Karlsruhe, Germany
| | - Anne S Ulrich
- Karlsruhe Institute of Technology, POB 3640, 76021, Karlsruhe, Germany
| | - Aigars Jirgensons
- Latvian Institute of Organic Synthesis, Aizkraukles iela 21, 1006, Riga, Latvia
| | - Igor V Komarov
- Enamine, Vul. Winstona Churchilla 78, 02094, Kyiv, Ukraine
- Taras Shevchenko National University of Kyiv, Vul. Volodymyrska 60, 01601, Kyiv, Ukraine
- Lumobiotics, Auerstraße 2, 76227, Karlsruhe., Germany
| |
Collapse
|
2
|
Ozhogin IV, Pugachev AD, Makarova NI, Belanova AA, Kozlenko AS, Rostovtseva IA, Zolotukhin PV, Demidov OP, El-Sewify IM, Borodkin GS, Metelitsa AV, Lukyanov BS. Novel Indoline Spiropyrans Based on Human Hormones β-Estradiol and Estrone: Synthesis, Structure, Chromogenic and Cytotoxic Properties. Molecules 2023; 28:molecules28093866. [PMID: 37175276 PMCID: PMC10179760 DOI: 10.3390/molecules28093866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 04/27/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
The introduction of a switchable function into the structure of a bioactive compound can endow it with unique capabilities for regulating biological activity under the influence of various types of external stimuli, which makes such hybrid compounds promising objects for photopharmacology, targeted drug delivery and bio-imaging. This work is devoted to the synthesis and study of new spirocyclic derivatives of important human hormones-β-estradiol and estrone-possessing a wide range of biological activities. The obtained hybrid compounds represent an indoline spiropyrans family, a widely known class of organic photochromic compounds. The structure of the compounds was confirmed by 1H and 13C NMR, IR, HRMS and single-crystal X-ray analysis. The intermolecular interactions in the crystals of spiropyran (3) were defined by Hirshfeld surfaces and 2D fingerprint plots, which were successfully acquired from CrystalExplorer (v21.5). All target hybrids demonstrated pronounced activity in the visible region of the spectrum. The mechanisms of thermal isomerization processes of spiropyrans and their protonated merocyanine forms were studied by DFT methods, which revealed the energetic advantage of the protonation process with the formation of a β-cisoid CCCH conformer at the first stage and its further isomerization to more stable β-transoid forms. The proposed mechanism of acidochromic transformation was confirmed by the additional NMR study data that allowed for the detecting of the intermediate CCCH isomer. The study of the short-term cytotoxicity of new spirocyclic derivatives of estrogens and their 2-formyl-precursors was performed on the HeLa cell model. The precursors and spiropyrans differed in toxicity, suggesting their variable applicability in novel anti-cancer technologies.
Collapse
Affiliation(s)
- Ilya V Ozhogin
- Institute of Physical and Organic Chemistry, Southern Federal University, 194/2 Stachka Ave., 344090 Rostov-on-Don, Russia
| | - Artem D Pugachev
- Institute of Physical and Organic Chemistry, Southern Federal University, 194/2 Stachka Ave., 344090 Rostov-on-Don, Russia
| | - Nadezhda I Makarova
- Institute of Physical and Organic Chemistry, Southern Federal University, 194/2 Stachka Ave., 344090 Rostov-on-Don, Russia
| | - Anna A Belanova
- Academy of Biology and Biotechnology, Southern Federal University, 194/1 Stachka Ave., 344090 Rostov-on-Don, Russia
| | - Anastasia S Kozlenko
- Institute of Physical and Organic Chemistry, Southern Federal University, 194/2 Stachka Ave., 344090 Rostov-on-Don, Russia
| | - Irina A Rostovtseva
- Institute of Physical and Organic Chemistry, Southern Federal University, 194/2 Stachka Ave., 344090 Rostov-on-Don, Russia
| | - Peter V Zolotukhin
- Academy of Biology and Biotechnology, Southern Federal University, 194/1 Stachka Ave., 344090 Rostov-on-Don, Russia
| | - Oleg P Demidov
- Faculty of Chemistry and Pharmacy, North-Caucasus Federal University, 1 Pushkina Str., 355000 Stavropol, Russia
| | - Islam M El-Sewify
- Department of Chemistry, Faculty of Science, Ain Shams University, Cairo 11566, Egypt
| | - Gennady S Borodkin
- Institute of Physical and Organic Chemistry, Southern Federal University, 194/2 Stachka Ave., 344090 Rostov-on-Don, Russia
| | - Anatoly V Metelitsa
- Institute of Physical and Organic Chemistry, Southern Federal University, 194/2 Stachka Ave., 344090 Rostov-on-Don, Russia
| | - Boris S Lukyanov
- Institute of Physical and Organic Chemistry, Southern Federal University, 194/2 Stachka Ave., 344090 Rostov-on-Don, Russia
| |
Collapse
|
3
|
Kozlenko AS, Ozhogin IV, Pugachev AD, Lukyanova MB, El-Sewify IM, Lukyanov BS. A Modern Look at Spiropyrans: From Single Molecules to Smart Materials. Top Curr Chem (Cham) 2023; 381:8. [PMID: 36624333 DOI: 10.1007/s41061-022-00417-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 11/30/2022] [Indexed: 01/11/2023]
Abstract
Photochromic compounds of the spiropyran family have two main isomers capable of inter-switching with UV or visible light. In the current review, we discuss recent advances in the synthesis, investigation of properties, and applications of spiropyran derivatives. Spiropyrans of the indoline series are in focus as the most promising representatives of multi-sensitive spirocyclic compounds, which can be switched by a number of external stimuli, including light, temperature, pH, presence of metal ions, and mechanical stress. Particular attention is paid to the structural features of molecules, their influence on photochromic properties, and the reactions taking place during isomerization, as the understanding of the structure-property relationships will rationalize the synthesis of compounds with predetermined characteristics. The main prospects for applications of spiropyrans in such fields as smart material production, molecular electronics and nanomachinery, sensing of environmental and biological molecules, and photopharmacology are also discussed.
Collapse
Affiliation(s)
- Anastasia S Kozlenko
- Institute of Physical and Organic Chemistry, Southern Federal University, Stachki Prosp., 194/2, Rostov-On-Don, 344090, Russia.
| | - Ilya V Ozhogin
- Institute of Physical and Organic Chemistry, Southern Federal University, Stachki Prosp., 194/2, Rostov-On-Don, 344090, Russia
| | - Artem D Pugachev
- Institute of Physical and Organic Chemistry, Southern Federal University, Stachki Prosp., 194/2, Rostov-On-Don, 344090, Russia
| | - Maria B Lukyanova
- Institute of Physical and Organic Chemistry, Southern Federal University, Stachki Prosp., 194/2, Rostov-On-Don, 344090, Russia
| | - Islam M El-Sewify
- Institute of Physical and Organic Chemistry, Southern Federal University, Stachki Prosp., 194/2, Rostov-On-Don, 344090, Russia.,Department of Chemistry, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Boris S Lukyanov
- Institute of Physical and Organic Chemistry, Southern Federal University, Stachki Prosp., 194/2, Rostov-On-Don, 344090, Russia
| |
Collapse
|
4
|
Pramanik B, Ahmed S. Peptide-Based Low Molecular Weight Photosensitive Supramolecular Gelators. Gels 2022; 8:533. [PMID: 36135245 PMCID: PMC9498526 DOI: 10.3390/gels8090533] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 11/20/2022] Open
Abstract
Over the last couple of decades, stimuli-responsive supramolecular gels comprising synthetic short peptides as building blocks have been explored for various biological and material applications. Though a wide range of stimuli has been tested depending on the structure of the peptides, light as a stimulus has attracted extensive attention due to its non-invasive, non-contaminant, and remotely controllable nature, precise spatial and temporal resolution, and wavelength tunability. The integration of molecular photo-switch and low-molecular-weight synthetic peptides may thus provide access to supramolecular self-assembled systems, notably supramolecular gels, which may be used to create dynamic, light-responsive "smart" materials with a variety of structures and functions. This short review summarizes the recent advancement in the area of light-sensitive peptide gelation. At first, a glimpse of commonly used molecular photo-switches is given, followed by a detailed description of their incorporation into peptide sequences to design light-responsive peptide gels and the mechanism of their action. Finally, the challenges and future perspectives for developing next-generation photo-responsive gels and materials are outlined.
Collapse
Affiliation(s)
- Bapan Pramanik
- Department of Chemistry, Ben-Gurion University of the Negev, Be’er Sheva 84105, Israel
| | - Sahnawaz Ahmed
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research Kolkata, Kolkata 700054, India
| |
Collapse
|
5
|
Ding G, Gai F, Gou Z, Zuo Y. Multistimuli-responsive fluorescent probes based on spiropyrans for the visualization of lysosomal autophagy and anticounterfeiting. J Mater Chem B 2022; 10:4999-5007. [PMID: 35713019 DOI: 10.1039/d2tb00580h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Lysosomes, as the main degradative organelles, play an important role in a variety of cellular metabolic activities including autophagy and apoptosis, catabolism and transporting substances. Lysosomal autophagy is an important physiological process and causes a slight change in the intra-lysosomal pH to facilitate the breakdown of macromolecular proteins. Therefore, detecting the fluctuation of intra-lysosomal pH is of great significance in monitoring physiological and pathological activities in living organisms. However, few probes have enabled the ratiometric monitoring of lysosomal pH and lysosomal autophagy in dual channels. Fortunately, spiropyrans, as compounds with multistimuli-responsive discoloration properties, form two different isomers under acid induction and ultraviolet induction. To fill this gap, in this work, two novel multistimuli-responsive fluorescent probes with lysosomal targeting in dual channels based on spiropyrans were rationally designed and synthesized. Notably, the two probes exhibited different absorption wavelengths in their UV-responsive and pH-responsive moieties due to their different electron-donating groups. Moreover, bioimaging experiments clearly demonstrate that the probes Lyso-SP and Lyso-SQ monitor lysosomal autophagy by facilitating the visualization of fluctuations in intra-lysosomal pH. Meanwhile, their potential applications in the field of dual-anticounterfeiting were explored based on their photoluminescence ability. We expect that more multistimuli-responsive fluorescent probes can be developed by this design approach.
Collapse
Affiliation(s)
- Guowei Ding
- School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Jinan, Shandong 250022, P. R. China.
| | - Fengqing Gai
- School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Jinan, Shandong 250022, P. R. China.
| | - Zhiming Gou
- School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Jinan, Shandong 250022, P. R. China.
| | - Yujing Zuo
- School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Jinan, Shandong 250022, P. R. China.
| |
Collapse
|
6
|
Cathepsin D inhibitors based on tasiamide B derivatives with cell membrane permeability. Bioorg Med Chem 2022; 57:116646. [DOI: 10.1016/j.bmc.2022.116646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/22/2022] [Accepted: 01/26/2022] [Indexed: 11/21/2022]
|
7
|
He J, Zhao H, Wu H, Yang Y, Wang Z, He Z, Jiang G. Achieving enhanced solid-state photochromism and mechanochromism by introducing a rigid steric hindrance group. Phys Chem Chem Phys 2021; 23:17939-17944. [PMID: 34382052 DOI: 10.1039/d1cp02983e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
For photochromic molecules, effective isomerization usually requires conformational freedom, which is usually unavailable under solvent-free conditions. In this work, we report a new method, which can realize the reversible switching of spiropyran molecules by introducing a rigid aromatic ring group and this method can provide the required free volume to transform from a closed-ring to an open-ring form. This new molecule can quickly change color in the solid state under ultraviolet light, and can be erased after being heated at 60 °C for about 5 minutes. Furthermore, this new compound presents mechanochromicity when a mechanical force is applied. What is more, it can be used for at least 30 cycles of print-erase operations without apparent fatigue. This new molecule exhibits improved photochromic and anti-fatigue properties in the solid state, which can promote its application in both ultraviolet printing and anti-counterfeiting materials.
Collapse
Affiliation(s)
- Junzhao He
- College of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | | | | | | | | | | | | |
Collapse
|
8
|
Ma Y, Chen K, Lu J, Shen J, Ma C, Liu S, Zhao Q, Wong WY. Phosphorescent Soft Salt Based on Platinum(II) Complexes: Photophysics, Self-Assembly, Thermochromism, and Anti-counterfeiting Application. Inorg Chem 2021; 60:7510-7518. [PMID: 33896189 DOI: 10.1021/acs.inorgchem.1c00826] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A new platinum(II) complex-based soft salt S1, ([Pt(tpp)(ed)]+[Pt(pba) (CN)2]-) (tpp = 2-(4-(trifluoromethyl)phenyl)pyridine, ed = ethane-1,2-diamine, pba = 4-(2-pyridyl)benzaldehyde), was designed and synthesized. UV-visible absorption and photoluminescence (PL) spectra were studied to elucidate the nature of ground and excited states. The soft salt complex was found to show self-assembly properties with the assistance of electrostatic, π-π stacking, and Pt···Pt interactions, resulting in the remarkable emergence of low-energy absorption and PL bands. Morphological transformation of S1 from undefined nanosized aggregates to nanofibers with different solvent compositions has been demonstrated. Interestingly, a luminescent polymer film was prepared by doping S1 into a polyethylene glycol matrix. The film displayed distinctive emission color change from yellow to red upon heating. Eventually, a high-level anti-counterfeiting application was accomplished using a time-resolved imaging technique based on the thermochromic luminescence property and long emission decay time displayed by S1. It is anticipated that this work can provide deep insights into the control of intermolecular interactions between cationic and anionic complexes of soft salt upon exposure to different external stimuli, resulting in the development of smart luminescent materials for various applications.
Collapse
Affiliation(s)
- Yun Ma
- State Key Laboratory of Organic Electronics and Information Displays and Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications (NUPT), 9 Wenyuan Road, Nanjing 210023, Jiangsu, P. R. China.,Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 999077, P. R. China
| | - Kexin Chen
- State Key Laboratory of Organic Electronics and Information Displays and Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications (NUPT), 9 Wenyuan Road, Nanjing 210023, Jiangsu, P. R. China
| | - Jinyu Lu
- State Key Laboratory of Organic Electronics and Information Displays and Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications (NUPT), 9 Wenyuan Road, Nanjing 210023, Jiangsu, P. R. China
| | - Jiandong Shen
- State Key Laboratory of Organic Electronics and Information Displays and Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications (NUPT), 9 Wenyuan Road, Nanjing 210023, Jiangsu, P. R. China
| | - Chenxi Ma
- State Key Laboratory of Organic Electronics and Information Displays and Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications (NUPT), 9 Wenyuan Road, Nanjing 210023, Jiangsu, P. R. China
| | - Shujuan Liu
- State Key Laboratory of Organic Electronics and Information Displays and Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications (NUPT), 9 Wenyuan Road, Nanjing 210023, Jiangsu, P. R. China
| | - Qiang Zhao
- State Key Laboratory of Organic Electronics and Information Displays and Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications (NUPT), 9 Wenyuan Road, Nanjing 210023, Jiangsu, P. R. China
| | - Wai-Yeung Wong
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 999077, P. R. China.,Hong Kong Polytechnic University, Shenzhen Research Institute, Shenzhen 518057, P. R. China
| |
Collapse
|
9
|
Pugachev AD, Ozhogin IV, Lukyanova MB, Lukyanov BS, Kozlenko AS, Rostovtseva IA, Makarova NI, Tkachev VV, Aldoshin SM, Metelitsa AV. Synthesis, structure and photochromic properties of indoline spiropyrans with electron-withdrawing substituents. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129615] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
10
|
Chao X, Qi Y, Zhang Y. Highly Photostable Fluorescent Tracker with pH-Insensitivity for Long-Term Imaging of Lysosomal Dynamics in Live Cells. ACS Sens 2021; 6:786-796. [PMID: 33378157 DOI: 10.1021/acssensors.0c01588] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Visualizing and tracking lysosomal dynamic changes is crucially important in the fields of physiology and pathology. Most currently used pH-dependent small-molecule lysotrackers and sensors usually fail to visualize and track the changes due to (1) their leakage from lysosomes when the lysosomal pH increases and (2) their low photostability. Therefore, it is of significant interest to develop lysosomal probes for visualizing and tracking lysosomal dynamics independent of pH fluctuations and with high photostability. Herein, we found that the popular dicyanomethylene-4H-pyran (DCM) derivative DCM-NH2 can selectively target and label lysosomes with bright red fluorescence regardless of pH changes. The fluorescence enhancement in lysosomes has probably resulted from their microenvironment of polarity and viscosity. Compared with the commonly used commercial lysosomal molecular probes (LysoTracker Deep Red (LTDR) and LysoTracker Red DND-99), DCM-NH2 was demonstrated to exhibit a much stronger tolerance in lysosomes against various treatments and microenvironmental changes, and lysosomal membrane permeability could not cause DCM-NH2 to lose imaging of their targets as well. Moreover, DCM-NH2 exhibited a superior anti-photobleaching ability and low (photo-) cytotoxicity, which, along with pH-insensitivity, ensured its capability of long-term visualizing and tracking lysosomal dynamics. Lysosomal dynamic events such as the kiss-and-run process, fusion-fission, and mitophagy were successfully recorded with DCM-NH2. Our study thus confirms that DCM-NH2 is highly competitive for lysosomal imaging by overcoming the limitations of the commercial LysoTrackers and highlights the unexplored application of DCM-NH2 in bioimaging.
Collapse
Affiliation(s)
- Xijuan Chao
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yongmei Qi
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yingmei Zhang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
11
|
Ozhogin IV, Zolotukhin PV, Mukhanov EL, Rostovtseva IA, Makarova NI, Tkachev VV, Beseda DK, Metelitsa AV, Lukyanov BS. Novel molecular hybrids of indoline spiropyrans and α-lipoic acid as potential photopharmacological agents: Synthesis, structure, photochromic and biological properties. Bioorg Med Chem Lett 2021; 31:127709. [PMID: 33242575 DOI: 10.1016/j.bmcl.2020.127709] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 11/16/2020] [Accepted: 11/18/2020] [Indexed: 11/18/2022]
Abstract
Organic photochromic compounds are attracting great interest as photoswitchable components of various bioconjugates for using in photopharmacology, targeted drug delivery and bio-imaging. Here we report on the synthesis of two novel molecular hybrids of indoline spiropyrans and alpha-lipoic acid via an esterification reaction. Preliminary photochemical studies revealed photochromic activity of 5-methoxy-substituted spirocompounds in their acetonitrile solutions. Both hybrid spiropyrans along with their parent substances in the hybrids were tested for the short-term cytotoxicity on HeLa cell cultures. The results of cytotoxicity studies showed unpredictable biocompatibility of the hybrids in comparison with the parent hydroxyl-substituted spiropyrans and α-lipoic acid, especially at the relatively high concentration of 2 mM. Using flow cytometry, we demonstrated that the both hybrids induced antioxidant response in the model cells. After the 24 h treatment, the hybrids administered at lower (500 µM) concentration caused suppressed cytosolic ROS and/or induced cellular thiols. At higher concentration, one of the hybrids demonstrated properties qualitatively similar to alpha-lipoic acid, yet far more strong. Together, flow cytometry results suggested that both hybrids of spiropyrans possess emergent biochemical and signaling antioxidant properties, exceeding those of alpha-lipoic acid.
Collapse
Affiliation(s)
- Ilya V Ozhogin
- Institute of Physical and Organic Chemistry, Southern Federal University, 194/2 Stachka Ave., 344090 Rostov-on-Don, Russian Federation.
| | - Peter V Zolotukhin
- Academy of Biology and Biotechnology, Southern Federal University, 194/1 Stachka Ave., 344090 Rostov-on-Don, Russian Federation
| | - Eugene L Mukhanov
- Institute of Physical and Organic Chemistry, Southern Federal University, 194/2 Stachka Ave., 344090 Rostov-on-Don, Russian Federation
| | - Irina A Rostovtseva
- Institute of Physical and Organic Chemistry, Southern Federal University, 194/2 Stachka Ave., 344090 Rostov-on-Don, Russian Federation
| | - Nadezhda I Makarova
- Institute of Physical and Organic Chemistry, Southern Federal University, 194/2 Stachka Ave., 344090 Rostov-on-Don, Russian Federation
| | - Valery V Tkachev
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, 1 Akad. Semenova Ave., 142432 Chernogolovka, Moscow Region, Russian Federation
| | - Darya K Beseda
- Academy of Biology and Biotechnology, Southern Federal University, 194/1 Stachka Ave., 344090 Rostov-on-Don, Russian Federation
| | - Anatoly V Metelitsa
- Institute of Physical and Organic Chemistry, Southern Federal University, 194/2 Stachka Ave., 344090 Rostov-on-Don, Russian Federation
| | - Boris S Lukyanov
- Institute of Physical and Organic Chemistry, Southern Federal University, 194/2 Stachka Ave., 344090 Rostov-on-Don, Russian Federation
| |
Collapse
|
12
|
Enantiomeric selectivity of ruthenium (II) chiral complexes with antitumor activity, in vitro and in vivo. J Inorg Biochem 2020; 216:111339. [PMID: 33388703 DOI: 10.1016/j.jinorgbio.2020.111339] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 12/12/2020] [Accepted: 12/13/2020] [Indexed: 01/17/2023]
Abstract
Different enantiomers of chiral drugs show distinctive activities. Here, a pair of chiral ruthenium Λ-[Ru(phen)2(TPEPIP)]2+ (Λ-Ru), and Δ-[Ru(phen)2(TPEPIP)]2+ (Δ-Ru) (phen = 1,10-phenanthroline; TPEPIP = 2-(4'-(1,2,2-triphenylvinyl)-[1,1'-biphenyl]-4-yl)-1H-imidazo[4,5-f][1,10]phenanthroline) compounds have been prepared and characterized. Both have aggregation-induced emission characteristics, although Λ-Ru exhibits much higher activity, towards duplex DNA extracted from SGC-7901 cancer cells. In vitro experiments demonstrate that both Λ-Ru and Δ-Ru can induce the apoptosis of tumor cells with Λ-Ru showing greater activity than Δ-Ru. Λ-Ru aggregates in the cell nucleus of SGC-7901 within 5 h which shows that nucleic acids may be the effective target of Λ-Ru. In vivo experiments with nude mice showed that Λ-Ru can inhibit the growth and proliferation of a tumor, in tumor-bearing mice as well as targeting the tumor site, as demonstrated by fluorescence. These results demonstrate the dual-function of Λ-Ru, which could be used for real-time visualization of a chemotherapeutic agent.
Collapse
|
13
|
Maity D. Selected peptide-based fluorescent probes for biological applications. Beilstein J Org Chem 2020; 16:2971-2982. [PMID: 33335605 PMCID: PMC7722625 DOI: 10.3762/bjoc.16.247] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 11/18/2020] [Indexed: 01/07/2023] Open
Abstract
To understand the molecular interactions, present in living organisms and their environments, chemists are trying to create novel chemical tools. In this regard, peptide-based fluorescence techniques have attracted immense interest. Synthetic peptide-based fluorescent probes are advantageous over protein-based sensors, since they are synthetically accessible, more stable, and can be easily modified in a site-specific manner for selective biological applications. Peptide receptors labeled with environmentally sensitive/FRET fluorophores have allowed direct detection/monitoring of biomolecules in aqueous media and in live cells. In this review, key peptide-based approaches for different biological applications are presented.
Collapse
Affiliation(s)
- Debabrata Maity
- Department of Chemistry, New York University, New York, NY 10003, USA
| |
Collapse
|
14
|
Ma Y, Yu Y, She P, Lu J, Liu S, Huang W, Zhao Q. On-demand regulation of photochromic behavior through various counterions for high-level security printing. SCIENCE ADVANCES 2020; 6:eaaz2386. [PMID: 32494612 PMCID: PMC7164943 DOI: 10.1126/sciadv.aaz2386] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 01/22/2020] [Indexed: 05/28/2023]
Abstract
Materials exhibiting reversible changes in optical properties upon light irradiation have shown great potential in diverse optoelectronic areas. In particular, the modulation of photochromic behavior on demand for such materials is of fundamental importance, but it remains a formidable challenge. Here, we report a facile and effective strategy to engineer controllable photochromic properties by varying the counterions in a series of zinc complexes consisting of a spirolactam-based photochromic ligand. Colorability and coloration rate can be finely tuned by conveniently changing their counterions. Through utilization of the reversible feature of the metal-ligand coordination bond between Zn2+ and the spirolactam-based ligand, dynamic manipulation of photochromic behavior was achieved. Furthermore, we demonstrated the practical applications of the tunable photochromic properties for these complexes by creating photochromic films and developing multilevel security printing. These findings show opportunities for the development of smart materials with dynamically controllable responsive behavior in advanced optoelectronic applications.
Collapse
Affiliation(s)
- Yun Ma
- Key Laboratory for Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications (NUPT), 9 Wenyuan Road, Nanjing 210023, Jiangsu, P. R. China
| | - Yaxin Yu
- Key Laboratory for Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications (NUPT), 9 Wenyuan Road, Nanjing 210023, Jiangsu, P. R. China
| | - Pengfei She
- Key Laboratory for Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications (NUPT), 9 Wenyuan Road, Nanjing 210023, Jiangsu, P. R. China
| | - Jinyu Lu
- Key Laboratory for Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications (NUPT), 9 Wenyuan Road, Nanjing 210023, Jiangsu, P. R. China
| | - Shujuan Liu
- Key Laboratory for Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications (NUPT), 9 Wenyuan Road, Nanjing 210023, Jiangsu, P. R. China
| | - Wei Huang
- Key Laboratory for Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications (NUPT), 9 Wenyuan Road, Nanjing 210023, Jiangsu, P. R. China
- Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi’an 710072, P. R. China
| | - Qiang Zhao
- Key Laboratory for Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications (NUPT), 9 Wenyuan Road, Nanjing 210023, Jiangsu, P. R. China
| |
Collapse
|
15
|
Pugachev AD, Ozhogin IV, Lukyanova MB, Lukyanov BS, Rostovtseva IA, Dorogan IV, Makarova NI, Tkachev VV, Metelitsa AV, Aldoshin SM. Visible to near-IR molecular switches based on photochromic indoline spiropyrans with a conjugated cationic fragment. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 230:118041. [PMID: 31955116 DOI: 10.1016/j.saa.2020.118041] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 12/31/2019] [Accepted: 01/05/2020] [Indexed: 06/10/2023]
Abstract
Photochromic molecules which can absorb and emit light within the "biological window" (650-1450 nm) are of great interest for using in various important biomedical applications such as bio-imaging, photopharmacology, targeted drug delivery, etc. Here we present three new indoline spiropyrans containing conjugated cationic fragments and halogen substituents in the 2H-chromene moiety which were synthesized by a simple one-pot method. The molecular structure of the obtained compounds was confirmed by FT-IR, 1H and 13C NMR spectroscopy (including 2D methods), HRMS, elemental and single crystal X-ray analysis. Photochemical studies revealed the photochromic activity of spiropyrans at room temperature which caused photoswitchable fluorescence in the near-IR region after UV-irradiation. While the spirocyclic forms of compounds demonstrated absorption bands in the UV-Vis spectra with maxima in the visible region at about 445 nm and were not fluorescent, the photogenerated merocyanine isomers absorbed in the near-IR range at 708-738 nm and emitted at 768-791 nm. It was found that compound 1a with fluorine substituent possesses the most red-shifted absorption and emission bands of merocyanine form among all the known photochromic spiropyrans with maxima at 738 and 791 nm correspondingly. TD DFT calculations have shown that the longest wavelength absorption maxima of the merocyanine forms correspond to S0-S1 transitions of the isomers with at least one trans-trans-trans-configured vinylindolium fragment which brings them closer to cyanine-like structure and causes an appearance of the absorption and emission bands in the near-IR region.
Collapse
Affiliation(s)
- Artem D Pugachev
- Institute of Physical and Organic Chemistry, Southern Federal University, 194/2 Stachka ave., 344090 Rostov-on-Don, Russian Federation
| | - Ilya V Ozhogin
- Institute of Physical and Organic Chemistry, Southern Federal University, 194/2 Stachka ave., 344090 Rostov-on-Don, Russian Federation.
| | - Maria B Lukyanova
- Institute of Physical and Organic Chemistry, Southern Federal University, 194/2 Stachka ave., 344090 Rostov-on-Don, Russian Federation
| | - Boris S Lukyanov
- Institute of Physical and Organic Chemistry, Southern Federal University, 194/2 Stachka ave., 344090 Rostov-on-Don, Russian Federation; Don State Technical University, 1 Gagarin sq., 344000 Rostov-on-Don, Russian Federation
| | - Irina A Rostovtseva
- Institute of Physical and Organic Chemistry, Southern Federal University, 194/2 Stachka ave., 344090 Rostov-on-Don, Russian Federation
| | - Igor V Dorogan
- Institute of Physical and Organic Chemistry, Southern Federal University, 194/2 Stachka ave., 344090 Rostov-on-Don, Russian Federation
| | - Nadezhda I Makarova
- Institute of Physical and Organic Chemistry, Southern Federal University, 194/2 Stachka ave., 344090 Rostov-on-Don, Russian Federation
| | - Valery V Tkachev
- Institute of Problems of Chemical Physics, Russian Acadeemy of Sciences, 1 Akad. Semenova ave., 142432 Chernogolovka, Moscow Region, Russian Federation; Institute of Physiologically Active Substances, 1 Severny proezd, 142432 Chernogolovka, Moscow Region, Russian Federation
| | - Anatoly V Metelitsa
- Institute of Physical and Organic Chemistry, Southern Federal University, 194/2 Stachka ave., 344090 Rostov-on-Don, Russian Federation
| | - Sergey M Aldoshin
- Institute of Problems of Chemical Physics, Russian Acadeemy of Sciences, 1 Akad. Semenova ave., 142432 Chernogolovka, Moscow Region, Russian Federation
| |
Collapse
|
16
|
Cui J, Kim G, Kim S, Kwon JE, Park SY. Ultra‐pH‐Sensitive Small Molecule Probe Showing a Ratiometric Fluorescence Color Change. CHEMPHOTOCHEM 2020. [DOI: 10.1002/cptc.202000023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Junjie Cui
- Center for Supramolecular Optoelectronic MaterialsResearch Institute of Advanced MaterialsDepartment of Materials Science and EngineeringSeoul National University 1 Gwanak-ro, Gwanak-gu Seoul 08826 South Korea
| | - Gayoung Kim
- Center for TheragnosisKorea Institute of Science and Technology 5 Hwarang-ro 14-gil, Seongbuk-gu Seoul 02792 South Korea
| | - Sehoon Kim
- Center for TheragnosisKorea Institute of Science and Technology 5 Hwarang-ro 14-gil, Seongbuk-gu Seoul 02792 South Korea
| | - Ji Eon Kwon
- Center for Supramolecular Optoelectronic MaterialsResearch Institute of Advanced MaterialsDepartment of Materials Science and EngineeringSeoul National University 1 Gwanak-ro, Gwanak-gu Seoul 08826 South Korea
| | - Soo Young Park
- Center for Supramolecular Optoelectronic MaterialsResearch Institute of Advanced MaterialsDepartment of Materials Science and EngineeringSeoul National University 1 Gwanak-ro, Gwanak-gu Seoul 08826 South Korea
| |
Collapse
|
17
|
Bhattacharyya S, Maity M, Chowdhury A, Saha ML, Panja SK, Stang PJ, Mukherjee PS. Coordination-Assisted Reversible Photoswitching of Spiropyran-Based Platinum Macrocycles. Inorg Chem 2020; 59:2083-2091. [PMID: 31971781 PMCID: PMC10615217 DOI: 10.1021/acs.inorgchem.9b03572] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Control over the stimuli-responsive behavior of smart molecular systems can influence their capability to execute complex functionalities. Herein, we report the development of a suite of spiropyran-based multi-stimuli-responsive self-assembled platinum(II) macrocycles (5-7), rendering coordination-assisted enhanced photochromism relative to the corresponding ligands. 5 showed shrinking and swelling during photoreversal, while 6 and 7 are fast and fatigue-free supramolecular photoswitches. 6 turns out to be a better fatigue-resistant photoswitch and can retain an intact photoswitching ability of up to 20 reversible cycles. The switching behavior of the macrocycles can also be precisely controlled by tuning the pH of the medium. Our present strategy for the construction of rapid stimuli-responsive supramolecular architectures via coordination-driven self-assembly represents an efficient route for the development of smart molecular switches.
Collapse
Affiliation(s)
- Soumalya Bhattacharyya
- Department of Inorganic and Physical Chemistry , Indian Institute of Science , Bangalore , Karnataka 560012 India
| | - Manoranjan Maity
- Department of Inorganic and Physical Chemistry , Indian Institute of Science , Bangalore , Karnataka 560012 India
| | - Aniket Chowdhury
- Department of Inorganic and Physical Chemistry , Indian Institute of Science , Bangalore , Karnataka 560012 India
- Department of Industrial Chemistry , Mizoram University , Aizawl , Mizoram 796004 , India
| | - Manik Lal Saha
- Department of Chemistry , University of Utah , 315 South 1400 East , Salt Lake City , Utah 84112 , United States
| | - Sumit Kumar Panja
- Department of Inorganic and Physical Chemistry , Indian Institute of Science , Bangalore , Karnataka 560012 India
| | - Peter J Stang
- Department of Chemistry , University of Utah , 315 South 1400 East , Salt Lake City , Utah 84112 , United States
| | - Partha Sarathi Mukherjee
- Department of Inorganic and Physical Chemistry , Indian Institute of Science , Bangalore , Karnataka 560012 India
| |
Collapse
|
18
|
Jafari MR, Yu H, Wickware JM, Lin YS, Derda R. Light-responsive bicyclic peptides. Org Biomol Chem 2019; 16:7588-7594. [PMID: 30067270 DOI: 10.1039/c7ob03178e] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this paper, we describe a method for the synthesis of light-responsive (LR) bicyclic macrocycles from linear peptides composed of 20 natural amino acids. Small molecules, peptide macrocycles, and protein conjugates that reversibly turn their function on and off in response to visible light enabled the fields of photopharmacology and optochemical genetics. Bioactive LR molecules could be produced by grafting azobenzene or other LR-structures onto molecules with known biological functions (e.g., alpha-helical peptides). It is also possible to discover such LR ligands de novo by selecting compounds with a desired function-such as binding to a target-from a library of LR-compounds or a genetically-encoded (GE) library of LR-macrocycles. The bicyclic topology of ligands offers added value such as improved binding and stability when compared to monocyclic peptides, but approaches for the design of bicyclic light-responsive architectures are limited. To address this need, we developed a tridentate C2-symmetric hydroxyl amine and di-chlorobenzene containing azobenzene (HADCAz) LR-linker with two orthogonally reactive functionalities (chlorobenzyl and hydroxylamine) to convert a linear unprotected peptide into a bicyclic peptide in a one-pot, two-step reaction. This linker reversibly isomerizes from the trans to cis form upon irradiation with blue light (365 nm). The resulting bicyclic peptide contains two loops of amino acids, one of which is constrained with an azobenzene moiety that can change the conformation in response to visible light. A scalable synthetic route to the HADCAz linker allowed us to demonstrate its application in multiple synthetic bicyclic peptides with loops that contain 2-5 amino acids.
Collapse
Affiliation(s)
- Mohammad R Jafari
- Department of Chemistry, University of Alberta, Edmonton, AB T6G2G2, Canada.
| | | | | | | | | |
Collapse
|
19
|
Pugachev AD, Lukyanova MB, Lukyanov BS, Ozhogin IV, Kozlenko AS, Rostovtseva IA, Makarova NI, Tkachev VV, Aksenov NA. New photochromic indoline spiropyrans containing cationic substituent in the 2H-chromene moiety. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2018.10.062] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
20
|
Ramakrishna B, Narayanaswamy K, Singh SP, Bangal PR. Reversible Fluorescence Modulation in a Dyad Comprising Phenothiazine Derivative and Spiropyran. ASIAN J ORG CHEM 2018. [DOI: 10.1002/ajoc.201800338] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Bheerappagari Ramakrishna
- Analytical Division; CSIR-Indian Institute of Chemical Technology; Uppal Road Tarnaka, Hyderabad 500007 Telangana India
| | - Kamatham Narayanaswamy
- Polymers and Functional Materials; CSIR-Indian Institute of Chemical Technology; Uppal Road Tarnaka, Hyderabad 500007 Telangana India
| | - Surya Prakash Singh
- Polymers and Functional Materials; CSIR-Indian Institute of Chemical Technology; Uppal Road Tarnaka, Hyderabad 500007 Telangana India
| | - Prakriti Ranjan Bangal
- Analytical Division; CSIR-Indian Institute of Chemical Technology; Uppal Road Tarnaka, Hyderabad 500007 Telangana India
| |
Collapse
|
21
|
Synthesis, structure and photochromic properties of novel highly functionalized spiropyrans of 1,3-benzoxazin-4-one series. J Mol Struct 2018. [DOI: 10.1016/j.molstruc.2018.02.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
22
|
Li S, Kan W, Zhao B, Liu T, Fang Y, Bai L, Wang L. A fluorescent pH probe for an aqueous solution composed of 7-hydroxycoumarin, Schiff base and phenanthro[9,10-d]imidazole moieties (PICO). HETEROCYCL COMMUN 2018. [DOI: 10.1515/hc-2017-0174] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
AbstractThe pH fluorescent probe 7-hydroxy-4-methyl-8-(((2-(1-phenyl-1H-phenanthro[9,10-d]imidazol-2-yl)phenyl)imino)methyl)-2H-chromen-2-one (PICO) contains a donor–π–acceptor (D–π–A) conjugated system. The ‘off−on’ probe PICO has a pKa value of 8.01 and its fluorescence intensity is enhanced with increasing pH.
Collapse
|
23
|
Yao D, Li S, Zhu X, Wu J, Tian H. Tumor-cell targeting polydiacetylene micelles encapsulated with an antitumor drug for the treatment of ovarian cancer. Chem Commun (Camb) 2018; 53:1233-1236. [PMID: 27995230 DOI: 10.1039/c6cc08581d] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Peptide functionalized polydiacetylene (PDA) micelles encapsulated with camptothecin (CPT) kill ovarian cancer cells by the lysosome release of anticancer drug CPT. Moreover, the sub-30 nm PDA micelles penetrate efficiently into a tumor for enhanced therapeutic efficacy.
Collapse
Affiliation(s)
- Defan Yao
- Key Labs for Advanced Materials and Institute of Fine Chemicals, East China University of Science and Technology, Shanghai 200237, China.
| | - Shang Li
- Key Labs for Advanced Materials and Institute of Fine Chemicals, East China University of Science and Technology, Shanghai 200237, China.
| | - Xiaomin Zhu
- Key Labs for Advanced Materials and Institute of Fine Chemicals, East China University of Science and Technology, Shanghai 200237, China.
| | - Junchen Wu
- Key Labs for Advanced Materials and Institute of Fine Chemicals, East China University of Science and Technology, Shanghai 200237, China.
| | - He Tian
- Key Labs for Advanced Materials and Institute of Fine Chemicals, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
24
|
Faggi E, Luis SV, Alfonso I. Sensing, Transport and Other Potential Biomedical Applications of Pseudopeptides. Curr Med Chem 2018; 26:4065-4097. [PMID: 29493442 DOI: 10.2174/0929867325666180301091040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 01/17/2018] [Accepted: 01/20/2018] [Indexed: 11/22/2022]
Abstract
Pseudopeptides are privileged synthetic molecules built from the designed combination of peptide-like and abiotic artificial moieties. Consequently, they are benefited from the advantages of both families of chemical structures: modular synthesis, chemical and functional diversity, tailored three-dimensional structure, usually high stability in biological media and low non-specific toxicity. Accordingly, in the last years, these compounds have been used for different biomedical applications, ranging from bio-sensing, ion transport, the molecular recognition of biologically relevant species, drug delivery or gene transfection. This review highlights a selection of the most remarkable and recent advances in this field.
Collapse
Affiliation(s)
- Enrico Faggi
- Department of Biological Chemistry and Molecular Modelling, Institute of Advanced Chemistry of Catalonia, Consejo Superior de Investigaciones Cientificas, Barcelona, Spain
| | - Santiago V Luis
- Department of Inorganic and Organic Chemistry, Universitat Jaume I, Castellon, Spain
| | - Ignacio Alfonso
- Department of Biological Chemistry and Molecular Modelling, Institute of Advanced Chemistry of Catalonia, Consejo Superior de Investigaciones Cientificas, Barcelona, Spain
| |
Collapse
|
25
|
Qi Q, Li C, Liu X, Jiang S, Xu Z, Lee R, Zhu M, Xu B, Tian W. Solid-State Photoinduced Luminescence Switch for Advanced Anticounterfeiting and Super-Resolution Imaging Applications. J Am Chem Soc 2017; 139:16036-16039. [PMID: 29045132 DOI: 10.1021/jacs.7b07738] [Citation(s) in RCA: 195] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Solid-state organic photoswitches with reversible luminescence modulation property are highly attractive because of their wide prospects in advanced photonic applications, such as optical data storage, anticounterfeiting and bioimaging. Yet, developing such materials has long been a significant challenge. In this work, we construct an efficient solid-state photoswitch based on a spiropyran-functionalized distyrylanthracene derivative (DSA-2SP) that exhibits exceptional reversible absorption/luminescence modulation ability. Efficient photoswitching between DSA-2SP and its photoisomer DSA-2MC are facilitated by large free volumes induced by nonplanar molecular structures of DSA moieties, as well as the intramolecular hydrogen bonds between the DSA and MC moieties. Consequently, the excellent solid-state photochromic property of DSA-2SP is highly applicable as both anticounterfeiting inks and super-resolution imaging agents.
Collapse
Affiliation(s)
- Qingkai Qi
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University , Changchun 130012, China.,Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023, China
| | - Chong Li
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology , Wuhan 430074, China
| | - Xiaogang Liu
- Singapore University of Technology and Design , 8 Somapah Road, Singapore 487372, Singapore
| | - Shan Jiang
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University , Changchun 130012, China
| | - Zhaochao Xu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023, China
| | - Richmond Lee
- Singapore University of Technology and Design , 8 Somapah Road, Singapore 487372, Singapore
| | - Mingqiang Zhu
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology , Wuhan 430074, China
| | - Bin Xu
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University , Changchun 130012, China
| | - Wenjing Tian
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University , Changchun 130012, China
| |
Collapse
|
26
|
Mondal B, Ghosh AK, Mukherjee PS. Reversible Multistimuli Switching of a Spiropyran-Functionalized Organic Cage in Solid and Solution. J Org Chem 2017; 82:7783-7790. [DOI: 10.1021/acs.joc.7b00722] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Bijnaneswar Mondal
- Inorganic and Physical Chemistry
Department, Indian Institute of Science, Bangalore-560012, India
| | - Aloke Kumar Ghosh
- Inorganic and Physical Chemistry
Department, Indian Institute of Science, Bangalore-560012, India
| | - Partha Sarathi Mukherjee
- Inorganic and Physical Chemistry
Department, Indian Institute of Science, Bangalore-560012, India
| |
Collapse
|
27
|
Zheng X, Zhu W, Ai H, Huang Y, Lu Z. A rapid response colorimetric and ratiometric fluorescent sensor for detecting fluoride ion, and its application in real sample analysis. Tetrahedron Lett 2016. [DOI: 10.1016/j.tetlet.2016.11.032] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
28
|
Theoretical modeling of electrocyclic 2H-pyran and 2H-1,4-oxazine ring opening reactions in photo- and thermochromic spiropyrans and spirooxazines. Chem Heterocycl Compd (N Y) 2016. [DOI: 10.1007/s10593-016-1956-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
29
|
Doddi S, Narayanaswamy K, Ramakrishna B, Singh SP, Bangal PR. Synthesis and Spectroscopic Investigation of Diketopyrrolopyrrole - Spiropyran Dyad for Fluorescent Switch Application. J Fluoresc 2016; 26:1939-1949. [PMID: 27492608 DOI: 10.1007/s10895-016-1886-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 07/18/2016] [Indexed: 11/29/2022]
Abstract
We report the synthesis and characterization of a new fluorescent dyad SP-DPP-SP(9) via efficient palladium-catalyzed Sonogashira coupling of prop-2-yn-1-yl 3-(3',3'dimethyl-6-nitrospiro[chromene-2,2'-indolin]-1'-yl)propanoatespiropyran, SP(8), a well known photochromic accepter, with 3,6-bis(5-bromothiophen-2-yl)-2,5-bis((R)-2-ethylhexyl)-2,5-dihydropyrrolo[3,4-c]pyrrole-1,4-dione, DPP(4), a highly fluorescent donor. Under visible light exposure the SP unit is in a closed hydrophobic form, whereas under UV irradiation it converts to a polar, hydrophilic open form named Merocyanine (MC), which is responsible for functioning of photo-switch application. The photochemistry pertaining to fluorescence switch, 'on/off' behaviour, of model dyad SP-DPP-SP(9) is experimentally analyzed in solution as well as in solid state in polymer matrices by photoluminescence(PL) and absorption spectroscopy. After absorption of UV light the spiropyran unit of the dyad under goes the rupture of the spiro C-O bond leading to the formation of MC. The absorption band of MC fairly overlaps to the fluorescence of DPP unit resulting quenching of fluorescence via fluorescence resonance energy transfer from exited DPP unit to ground state MC. In contrary, the fluorescence of DPP is fully regained upon transformation of MC to SP by exposure to visible light or thermal stimuli. Hence, the fluorescence intensity of dyad 9 is regulated by reversible conversion among the two states of the photochromic spiropyran units and the fluorescence resonance energy transfer (FRET) between the MC form of SP and the DPP unit. Conversely, these scrutiny of the experiment express that the design of dyad 9 is viable as efficient fluorescent switch molecule in many probable commercial applications, such as, logic gates and photonic and optical communications.
Collapse
Affiliation(s)
- Siva Doddi
- Inorganic and Physical Chemistry Division, Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad, 500007, India
| | - K Narayanaswamy
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| | - Bheerappagari Ramakrishna
- Inorganic and Physical Chemistry Division, Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad, 500007, India
| | | | | |
Collapse
|
30
|
New spiropyrans based on 1,3-benzoxazine-2-one: acid catalyzed synthesis and theoretical insight into the photochromic activity. Tetrahedron Lett 2016. [DOI: 10.1016/j.tetlet.2016.04.054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
31
|
Dual-responsive pH sensor based on a phenanthro[9,10-d]imidazole fluorophore modified by amino diacetate. Tetrahedron Lett 2016. [DOI: 10.1016/j.tetlet.2016.03.046] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
32
|
Qi Q, Li Y, Yan X, Zhang F, Jiang S, Su J, Xu B, Fu X, Sun L, Tian W. Intracellular pH sensing using polymeric micelle containing tetraphenylethylene-oxazolidine. Polym Chem 2016. [DOI: 10.1039/c6py01072e] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The self-assembled polymeric micelle can be used as an effective probe for intracellular pH detection by switching its luminescence from cyan to red with high selectivity and contrast.
Collapse
Affiliation(s)
- Qingkai Qi
- State Key Laboratory of Supramolecular Structure and Materials
- Jilin University
- Changchun
- P. R. China
| | - Yue Li
- Edmond H. Fischer Signal Transduction Laboratory
- College of Life Sciences
- Jilin University
- Changchun 130012
- P. R. China
| | - Xiaoyu Yan
- Department of Pathophysiology
- Basic Medical College
- Jilin University
- Changchun 130021
- China
| | - Fengli Zhang
- State Key Laboratory of Supramolecular Structure and Materials
- Jilin University
- Changchun
- P. R. China
| | - Shan Jiang
- State Key Laboratory of Supramolecular Structure and Materials
- Jilin University
- Changchun
- P. R. China
| | - Jing Su
- Department of Pathophysiology
- Basic Medical College
- Jilin University
- Changchun 130021
- China
| | - Bin Xu
- State Key Laboratory of Supramolecular Structure and Materials
- Jilin University
- Changchun
- P. R. China
| | - Xueqi Fu
- Edmond H. Fischer Signal Transduction Laboratory
- College of Life Sciences
- Jilin University
- Changchun 130012
- P. R. China
| | - Liankun Sun
- Department of Pathophysiology
- Basic Medical College
- Jilin University
- Changchun 130021
- China
| | - Wenjing Tian
- State Key Laboratory of Supramolecular Structure and Materials
- Jilin University
- Changchun
- P. R. China
| |
Collapse
|
33
|
G-quadruplex induced chirality of methylazacalix[6]pyridine via unprecedented binding stoichiometry: en route to multiplex controlled molecular switch. Sci Rep 2015; 5:10479. [PMID: 25990684 PMCID: PMC4438431 DOI: 10.1038/srep10479] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 04/15/2015] [Indexed: 12/30/2022] Open
Abstract
Nucleic acid based molecular device is a developing research field which attracts great interests in material for building machinelike nanodevices. G-quadruplex, as a new type of DNA secondary structures, can be harnessed to construct molecular device owing to its rich structural polymorphism. Herein, we developed a switching system based on G-quadruplexes and methylazacalix[6]pyridine (MACP6). The induced circular dichroism (CD) signal of MACP6 was used to monitor the switch controlled by temperature or pH value. Furthermore, the CD titration, Job-plot, variable temperature CD and 1H-NMR experiments not only confirmed the binding mode between MACP6 and G-quadruplex, but also explained the difference switching effect of MACP6 and various G-quadruplexes. The established strategy has the potential to be used as the chiral probe for specific G-quadruplex recognition.
Collapse
|
34
|
Doddi S, Ramakrishna B, Venkatesh Y, Bangal PR. Photo-driven near-IR fluorescence switch: synthesis and spectroscopic investigation of squarine-spiropyran dyad. RSC Adv 2015. [DOI: 10.1039/c5ra20252c] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Novel NIR fluorescent dyad was synthesized using Squarine derivatives (SQ) and Spiropyran (SP) and characterized. Light driven reversible changes between two isomers of SP modulate the fluorescence of SQ leading to ON/OFF switching behaviors.
Collapse
Affiliation(s)
- Siva Doddi
- Inorganic and Physical Chemistry Division
- CSIR-Indian Institute of Chemical Technology
- Hyderabad
- India-500607
| | - Bheerappagari Ramakrishna
- Inorganic and Physical Chemistry Division
- CSIR-Indian Institute of Chemical Technology
- Hyderabad
- India-500607
| | - Yeduru Venkatesh
- Inorganic and Physical Chemistry Division
- CSIR-Indian Institute of Chemical Technology
- Hyderabad
- India-500607
- Academy of Scientific and Innovative Research (AcSIR)
| | - Prakriti Ranjan Bangal
- Inorganic and Physical Chemistry Division
- CSIR-Indian Institute of Chemical Technology
- Hyderabad
- India-500607
- Academy of Scientific and Innovative Research (AcSIR)
| |
Collapse
|
35
|
Ji C, Zheng Y, Li J, Shen J, Yang W, Yin M. An amphiphilic squarylium indocyanine dye for long-term tracking of lysosomes. J Mater Chem B 2015; 3:7494-7498. [DOI: 10.1039/c5tb01738f] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel amphiphilic squarylium indocyanine (LysoCy) is reported for remarkable lysosome tracking in live cells.
Collapse
Affiliation(s)
- Chendong Ji
- State Key Laboratory of Chemical Resource Engineering
- Beijing Laboratory of Biomedical Materials
- Beijing University of Chemical Technology
- 100029 Beijing
- China
| | - Yang Zheng
- Department of Entomology
- China Agricultural University
- 100193 Beijing
- China
| | - Jie Li
- State Key Laboratory of Chemical Resource Engineering
- Beijing Laboratory of Biomedical Materials
- Beijing University of Chemical Technology
- 100029 Beijing
- China
| | - Jie Shen
- Department of Entomology
- China Agricultural University
- 100193 Beijing
- China
| | - Wantai Yang
- State Key Laboratory of Chemical Resource Engineering
- Beijing Laboratory of Biomedical Materials
- Beijing University of Chemical Technology
- 100029 Beijing
- China
| | - Meizhen Yin
- State Key Laboratory of Chemical Resource Engineering
- Beijing Laboratory of Biomedical Materials
- Beijing University of Chemical Technology
- 100029 Beijing
- China
| |
Collapse
|
36
|
Qin M, Li F, Huang Y, Ran W, Han D, Song Y. Twenty Natural Amino Acids Identification by a Photochromic Sensor Chip. Anal Chem 2014; 87:837-42. [DOI: 10.1021/ac504121d] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Meng Qin
- Beijing National
Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Green
Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Fengyu Li
- Beijing National
Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Green
Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Yu Huang
- Beijing National
Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Green
Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Wei Ran
- Beijing National
Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Green
Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Dong Han
- National Center for Nanoscience and Technology, Beijing 100190, P. R. China
| | - Yanlin Song
- Beijing National
Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Green
Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| |
Collapse
|
37
|
Qi Q, Qian J, Ma S, Xu B, Zhang SXA, Tian W. Reversible Multistimuli-Response Fluorescent Switch Based on Tetraphenylethene-Spiropyran Molecules. Chemistry 2014; 21:1149-55. [DOI: 10.1002/chem.201405426] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Indexed: 01/13/2023]
|
38
|
Chen L, Zhu Y, Yang D, Zou R, Wu J, Tian H. Synthesis and antibacterial activities of antibacterial peptides with a spiropyran fluorescence probe. Sci Rep 2014; 4:6860. [PMID: 25358905 PMCID: PMC4215325 DOI: 10.1038/srep06860] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 10/13/2014] [Indexed: 11/21/2022] Open
Abstract
In this report, antibacterial peptides 1-3 were prepared with a spiropyran fluorescence probe. The probe exhibits a change in fluorescence when isomerized from a colorless spiro-form (spiropyran, Sp) to a colored open-form (merocyanine, Mc) under different chemical environments, which can be used to study the mechanism of antimicrobial activity. Peptides 1-3 exhibit a marked decrease in antimicrobial activity with increasing alkyl chain length. This is likely due to the Sp-Mc isomers in different polar environments forming different aggregate sizes in TBS, as demonstrated by time-dependent dynamic light scattering (DLS). Moreover, peptides 1-3 exhibited low cytotoxicity and hemolytic activity. These probe-modified peptides may provide a novel approach to study the effect of structural changes on antibacterial activity, thus facilitating the design of new antimicrobial agents to combat bacterial infection.
Collapse
Affiliation(s)
- Lei Chen
- Key Lab for Advanced Materials and Institute of Fine Chemicals, East China University of Science and Technology, Shanghai 200237 (P. R. China)
| | - Yu Zhu
- Key Lab for Advanced Materials and Institute of Fine Chemicals, East China University of Science and Technology, Shanghai 200237 (P. R. China)
| | - Danling Yang
- Key Lab for Advanced Materials and Institute of Fine Chemicals, East China University of Science and Technology, Shanghai 200237 (P. R. China)
| | - Rongfeng Zou
- Key Lab for Advanced Materials and Institute of Fine Chemicals, East China University of Science and Technology, Shanghai 200237 (P. R. China)
| | - Junchen Wu
- Key Lab for Advanced Materials and Institute of Fine Chemicals, East China University of Science and Technology, Shanghai 200237 (P. R. China)
| | - He Tian
- Key Lab for Advanced Materials and Institute of Fine Chemicals, East China University of Science and Technology, Shanghai 200237 (P. R. China)
| |
Collapse
|
39
|
Zhang YM, Cao Y, Yang Y, Chen JT, Liu Y. A small-sized graphene oxide supramolecular assembly for targeted delivery of camptothecin. Chem Commun (Camb) 2014; 50:13066-9. [DOI: 10.1039/c4cc04533e] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
40
|
Hu F, Huang Y, Zhang G, Zhao R, Yang H, Zhang D. Targeted Bioimaging and Photodynamic Therapy of Cancer Cells with an Activatable Red Fluorescent Bioprobe. Anal Chem 2014; 86:7987-95. [DOI: 10.1021/ac502103t] [Citation(s) in RCA: 244] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Fang Hu
- Beijing
National Laboratory for Molecular Sciences, CAS Key Laboratories of
Organic Solids and Analytical Chemistry for Living Biosystems, Institute
of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street
2, Beijing 100190, China
| | - Yanyan Huang
- Beijing
National Laboratory for Molecular Sciences, CAS Key Laboratories of
Organic Solids and Analytical Chemistry for Living Biosystems, Institute
of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street
2, Beijing 100190, China
| | - Guanxin Zhang
- Beijing
National Laboratory for Molecular Sciences, CAS Key Laboratories of
Organic Solids and Analytical Chemistry for Living Biosystems, Institute
of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street
2, Beijing 100190, China
| | - Rui Zhao
- Beijing
National Laboratory for Molecular Sciences, CAS Key Laboratories of
Organic Solids and Analytical Chemistry for Living Biosystems, Institute
of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street
2, Beijing 100190, China
| | - Hua Yang
- Department
of Cell Biology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Deqing Zhang
- Beijing
National Laboratory for Molecular Sciences, CAS Key Laboratories of
Organic Solids and Analytical Chemistry for Living Biosystems, Institute
of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street
2, Beijing 100190, China
| |
Collapse
|