1
|
Phuangkaew T, Saipai S, Hoven VP, Na Nongkhai P. Magnetic Nanoparticles Stabilized by Phosphorylcholine-Containing Polymer for Label-Free C-Reactive Protein Detection. ACS OMEGA 2025; 10:10317-10326. [PMID: 40124022 PMCID: PMC11923640 DOI: 10.1021/acsomega.4c10064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/05/2025] [Accepted: 03/03/2025] [Indexed: 03/25/2025]
Abstract
This research aims to develop a simple yet effective assay for detecting C-reactive protein (CRP), based on magnetic nanoparticles functionalized with a phosphorylcholine-containing polymer. Magnetic nanoparticles stabilized with poly[(methacrylic acid)-ran-(methacryloyloxyethyl phosphorylcholine)] (PMAMPC-MNPs), were prepared by coprecipitation of ferric and ferrous salts in the presence of PMAMPC. Carboxyl groups in the methacrylic acid (MA) repeat units chelate with Fe atoms during MNPs formation, while the methacryloyloxyethyl phosphorylcholine (MPC) repeat units provide specifically binding sites and conjugate with CRP in the presence of Ca2+, leading to the aggregation of PMAMPC-MNPs. The PMAMPC-MNPs were characterized by attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), transmission electron microscopy (TEM), dynamic light scattering (DLS), thermogravimetric analysis (TGA), and X-ray diffraction (XRD). To determine CRP detection with the naked eye, the precipitation of PMAMPC-MNPs in the presence of CRP and Ca2+ was monitored without an external magnetic field. Additionally, by taking advantage of the peroxidase-like activity of MNPs, the addition of 3,3',5,5'-tetramethylbenzidine (TMB) and H2O2 to the supernatant of unbound PMAMPC-MNPs after magnetic separation allows for the colorimetric determination of CRP. This measurement is inversely proportional to the amount of CRP and is detected in an antibody-free system, with a linear range of 1-5 μg/mL and an experimental limit of detection (LOD) of 1.0 μg/mL. Moreover, 3 μg/mL CRP can also be detected in 50% diluted rabbit serum, covering the CRP cutoff level associated with the risk threshold for cardiovascular disease.
Collapse
Affiliation(s)
- Tinnakorn Phuangkaew
- Department
of Chemistry, Faculty of Science, Chulalongkorn
University, Phayathai
Road, Pathumwan, Bangkok 10330, Thailand
| | - Suttawan Saipai
- Program
in Petrochemistry and Polymer Science, Faculty of Science, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok 10330, Thailand
| | - Voravee P. Hoven
- Department
of Chemistry, Faculty of Science, Chulalongkorn
University, Phayathai
Road, Pathumwan, Bangkok 10330, Thailand
- Center
of Excellence in Materials and Bio-interfaces, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok 10330, Thailand
| | - Piyaporn Na Nongkhai
- Research
Unit for Sensor Innovation (RUSI), Burapha
University, Chon Buri 20131, Thailand
- Department
of Chemistry and Center of Excellence for Innovation in Chemistry,
Faculty of Science, Burapha University, Chon Buri 20131, Thailand
| |
Collapse
|
2
|
António M, Lima T, Vitorino R, Daniel-da-Silva AL. Label-free dynamic light scattering assay for C-reactive protein detection using magnetic nanoparticles. Anal Chim Acta 2022; 1222:340169. [DOI: 10.1016/j.aca.2022.340169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 11/26/2022]
|
3
|
Seetasang S, Xu Y. Recent progress and perspectives in applications of 2-methacryloyloxyethyl phosphorylcholine polymers in biodevices at small scales. J Mater Chem B 2022; 10:2323-2337. [DOI: 10.1039/d1tb02675e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bioinspired materials have attracted attention in a wide range of fields. Among these materials, a polymer family containing 2-methacryloyloxyethyl phosphorylcholine (MPC), which has a zwitterionic phosphorylcholine headgroup inspired by the...
Collapse
|
4
|
Lucío MI, Montoto AH, Fernández E, Alamri S, Kunze T, Bañuls MJ, Maquieira Á. Label-free detection of C-Reactive protein using bioresponsive hydrogel-based surface relief diffraction gratings. Biosens Bioelectron 2021; 193:113561. [PMID: 34416432 DOI: 10.1016/j.bios.2021.113561] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 07/13/2021] [Accepted: 08/09/2021] [Indexed: 01/19/2023]
Abstract
Responsive hydrogel-based surface relief gratings have demonstrated great performances as transducers in optical sensing. However, novel and smart designs of hydrogels are needed for the appropriate detection of analytes and biomolecules since the existing materials are very limited to specific molecules. In this work, a biosensing system based on surface relief gratings made of bioresponsive hydrogels has been developed. In particular, the hydrogel contains phosphocholine moieties to specifically recognize C-Reactive protein (CRP). The CRP-Sensing hydrogel capacity to selectively detect CRP was fully demonstrated. Using Direct Laser Interference Patterning, micro-gratings were created on CRP-Sensing hydrogel substrates and applied for the label-free sensing of CRP using a simple laser-based homemade optical setup. Limits of detection (LOD) and quantification (LOQ) in human serum dilutions of 1.07 and 8.92 mg L-1, respectively, were reached. These results demonstrate that the biosensing system allows the selective label-free detection of CRP within concentration ranges around those related to risks of cardiovascular diseases and sepsis. Besides, amplification strategies have been carried out improving the sensitivity, widening the linear range, and reaching better LOD and LOQ (0.30 mg L-1 and 4.36 mg L-1). Finally, all the approaches were tested for the quantification of CRP in certified human serum with recoveries of around 100%.
Collapse
Affiliation(s)
- María Isabel Lucío
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - Andy Hernández Montoto
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - Estrella Fernández
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - Sabri Alamri
- Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS, Winterbergstr. 28, 01277 Dresden, Germany; Fusion Bionic GmbH, Löbtauer Straße 69, 01159 Dresden, Germany
| | - Tim Kunze
- Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS, Winterbergstr. 28, 01277 Dresden, Germany; Fusion Bionic GmbH, Löbtauer Straße 69, 01159 Dresden, Germany
| | - María-José Bañuls
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022 Valencia, Spain; Departamento de Química, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain.
| | - Ángel Maquieira
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022 Valencia, Spain; Departamento de Química, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| |
Collapse
|
5
|
Nagy-Simon T, Hada AM, Suarasan S, Potara M. Recent advances on the development of plasmon-assisted biosensors for detection of C-reactive protein. J Mol Struct 2021; 1246:131178. [DOI: 10.1016/j.molstruc.2021.131178] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/21/2021] [Accepted: 07/23/2021] [Indexed: 01/02/2023]
|
6
|
Kokorina AA, Ponomaryova TS, Goryacheva IY. Photoluminescence-based immunochemical methods for determination of C-reactive protein and procalcitonin. Talanta 2021; 224:121837. [PMID: 33379055 DOI: 10.1016/j.talanta.2020.121837] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/26/2020] [Accepted: 10/28/2020] [Indexed: 12/16/2022]
Abstract
Modern, sensitive, rapid, and selective analytical methods for the detection of inflammatory markers are a crucial tool for the assessment of inflammation state, efficacy of medical intervention, and the prediction of future diseases. Their development requires understanding of current state for point-of-care testing of inflammatory markers and identification of their crucial drawbacks. This review summarizes the progress in the application of luminescent labels for immunoassays. The luminescent labels became more popular in the latest decade due to their high sensitivity, selectivity, and robustness. This review presents a constructive analysis of different luminescent labels such as fluorescent organic dyes, quantum dots, long-lived emissive nanoparticles, and up-converting nanocrystals, as well as a range of the strategies for inflammatory markers determination. The advantages and disadvantages of all classes of luminescent labels are demonstrated, and the strategies of labels modification for their improvement are discussed. The current approaches for the creation of luminescent probes and robust assays are also highlighted.
Collapse
Affiliation(s)
- Alina A Kokorina
- Saratov State University, Astrakhanskaya Street 83, 410012, Saratov, Russia.
| | | | | |
Collapse
|
7
|
Bravin C, Amendola V. Wide range detection of C-Reactive protein with a homogeneous immunofluorimetric assay based on cooperative fluorescence quenching assisted by gold nanoparticles. Biosens Bioelectron 2020; 169:112591. [DOI: 10.1016/j.bios.2020.112591] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/25/2020] [Accepted: 09/01/2020] [Indexed: 01/08/2023]
|
8
|
Comparative study on formation of protein coronas under three different serum origins. Biointerphases 2020; 15:061002. [PMID: 33187398 DOI: 10.1116/6.0000396] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Nanomaterials form a complex called "protein corona" by contacting with protein-containing biological fluids such as serum when they are exposed to physiological environments. The characteristics of these proteins, which are one of the substantial factors in cellular response, are affected by the interactions between the nanomaterials and the biological systems. Many studies have investigated the biological behaviors of nanomaterials by conducting experiments in vitro and in vivo; however, the origin of the biological materials used is rather inconsistent. This is due to the fact that the composition of the protein coronas may differ depending on the animal origin, not on the composition or size of the nanoparticles. The resulting differences in the composition of the protein coronas can lead to different conclusions. To identify the differences in protein corona formation among sera of different species, we investigated protein coronas of gold and silica nanoparticles in serum obtained from various species. Using comparative proteomic analysis, common proteins adsorbed onto each nanoparticle among the three different sera were identified as highly abundant proteins in the serum. These findings indicate that protein corona formation is dependent on the serum population rather than the size or type of the nanoparticles. Additionally, in the physiological classification of protein coronas, human serum (HS) was found to be rich in apolipoproteins. In conclusion, our data indicate that HS components are different from those of bovine or mouse, indicating that the serum species origin should be carefully considered when selecting a biological fluid.
Collapse
|
9
|
|
10
|
António M, Ferreira R, Vitorino R, Daniel-da-Silva AL. A simple aptamer-based colorimetric assay for rapid detection of C-reactive protein using gold nanoparticles. Talanta 2020; 214:120868. [PMID: 32278414 DOI: 10.1016/j.talanta.2020.120868] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 02/21/2020] [Accepted: 02/24/2020] [Indexed: 12/12/2022]
Abstract
C-reactive protein (CRP) is a clinical biomarker for inflammatory diseases. In this work, we present a simple and fast colorimetric method for CRP detection that employs citrate-capped gold nanoparticles (AuNPs) and a CRP-binding aptamer as sensing elements. The aptamer consisted in a guanine rich single-stranded DNA (ssDNA) that adsorbs onto the surface of the AuNPs. In the presence of the CRP, the ssDNA releases from the AuNPs surface to interact preferentially with the protein to form guanine-quadruplexes. The exposure of the unprotected AuNPs to buffer salts leads to aggregation and subsequent color change from red-wine to blue-purple that was readily seen by the naked eye. The AuNPs aggregation was monitored using UV-Vis spectroscopy and the CRP concentration in the samples could be correlated with the aggregation ratio (A670nm/A520nm). A linear sensing range of 0.889-20.7 μg/mL was found. The detection limit (LOD) was 1.2 μg/mL which is comparable to the typical clinical cutoff concentration in high-sensitivity CRP assays (1 μg/mL) and lower than the detection limit of nephelometric methods used in clinical practice. This method can provide a fast (5 min analysis time), simple, and sensitive way for CRP detection, with negligible interference of bovine serum albumin (BSA) up to concentrations of 100 nM.
Collapse
Affiliation(s)
- Maria António
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Rita Ferreira
- QOPNA & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Rui Vitorino
- iBiMED-Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, Aveiro, 3810-193, Portugal.
| | - Ana L Daniel-da-Silva
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
11
|
Iwasaki S, Kawasaki H, Iwasaki Y. Label-Free Specific Detection and Collection of C-Reactive Protein Using Zwitterionic Phosphorylcholine-Polymer-Protected Magnetic Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:1749-1755. [PMID: 29728047 DOI: 10.1021/acs.langmuir.8b01007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
In this study, poly[2-methacryloyloxyethyl phosphorylcholine (MPC)]-protected Fe3O4 nanoparticles were prepared and used for the label-free specific detection and collection of an acute inflammation marker, C-reactive protein (CRP), in a simulated body fluid. The Fe3O4 nanoparticle surface was modified using poly(MPC) by surface-initiated atom-transfer radical polymerization. The density of poly(MPC) was 0.16 chains/nm2, and the colloidal stability of the nanoparticles in aqueous media and human plasma was effectively improved by surface modification. The size of the as-prepared poly(MPC)-protected Fe3O4 nanoparticles was ∼200 nm. After coming into contact with CRP, the nanoparticles aggregated as CRP comprises five subunits, and each subunit can bind to a phosphorylcholine group with two free Ca2+ ions. The change in the nanoparticle size exhibited a good correlation with the CRP concentration in the range of 0-600 nM. A low limit of detection of 10 nM for CRP was observed. The particles effectively reduced the adsorption of nonspecific proteins, and the change in the nanoparticle size with CRP was not affected by the coexistence of bovine serum albumin at a concentration 1000 times greater than that of CRP. Nanoparticle aggregates formed using CRP were dissociated using ethylenediamine- N, N, N', N'-tetraacetic acid, disodium salt, thereby regenerating poly(MPC)-protected Fe3O4 nanoparticles. In addition, CRP was collected from aqueous media using an acidic buffer solution and human plasma. CRP-containing aqueous solutions were treated with poly(MPC)-protected Fe3O4. After poly(MPC)-protected Fe3O4 nanoparticles were separated using a neodymium magnet and centrifugation, the concentration of CRP in the media dramatically decreased. In stark contrast, the concentration of albumin present in the test solution did not change even after treatment with the nanoparticles. Therefore, nanoparticles specifically recognize CRP from complex biological fluids. Although inhibition tests in the presence of 1,2-dioleoyl- sn-glycero-3-phosphocholine liposomes or free poly(MPC) were also carried out, the binding of poly(MPC)-protected Fe3O4 to CRP was not affected by these inhibitors. In conclusion, poly(MPC)-brush-bearing magnetic nanoparticles can serve not only as reliable materials for detecting and controlling the levels of CRP in simulated body fluids but also as diagnostic and therapeutic materials.
Collapse
Affiliation(s)
- Sana Iwasaki
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering , Kansai University , 3-3-35 Yamate-cho , Suita-shi , Osaka 564-8680 , Japan
| | - Hideya Kawasaki
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering , Kansai University , 3-3-35 Yamate-cho , Suita-shi , Osaka 564-8680 , Japan
| | - Yasuhiko Iwasaki
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering , Kansai University , 3-3-35 Yamate-cho , Suita-shi , Osaka 564-8680 , Japan
| |
Collapse
|
12
|
Zhang X, Chi KN, Li DL, Deng Y, Ma YC, Xu QQ, Hu R, Yang YH. 2D-porphrinic covalent organic framework-based aptasensor with enhanced photoelectrochemical response for the detection of C-reactive protein. Biosens Bioelectron 2019; 129:64-71. [PMID: 30684856 DOI: 10.1016/j.bios.2019.01.009] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 01/01/2019] [Accepted: 01/04/2019] [Indexed: 01/25/2023]
Abstract
In this study, a novel photoelectrochemical (PEC) aptasensor based on two-dimensional (2D) porphyrinic covalent organic frameworks (p-COFs) for the label-free detection of C-reactive protein (CRP) is presented. The obtained p-COFs possess high conductivity and an improved stability due to strong and rigid covalent linkages. The introduction of p-COFs hinder the recombination of electrons and holes, decreasing their band gap (Eg), thereby which improved the photocurrent conversion efficiency. Compared with pure porphyrin, p-COFs exhibited enhanced photocurrent intensity. An amplified photocurrent conversion efficiency and enhanced photocurrent results from H2O2, which act as active molecules and electron donors. As an unprecedented application of COFs in PEC bioanalysis, the detection of CRP with a PEC aptasensor is presented. The assembly of a CRP aptamer on the surface of Ag nanoparticles hinders the electron transfer, resulting in the decrease of the photocurrent response. This PEC aptasensor exhibits good analytical performances such as a rapid response, high stability, wide linear range and excellent selectivity, making COFs promising candidates for PEC bioanalysis.
Collapse
Affiliation(s)
- Xi Zhang
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, Yunnan 650500, PR China
| | - Kuan-Neng Chi
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, Yunnan 650500, PR China
| | - De-Lei Li
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, Yunnan 650500, PR China
| | - Yan Deng
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, Yunnan 650500, PR China
| | - Yu-Chan Ma
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, Yunnan 650500, PR China
| | - Quan-Qing Xu
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, Yunnan 650500, PR China
| | - Rong Hu
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, Yunnan 650500, PR China.
| | - Yun-Hui Yang
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, Yunnan 650500, PR China.
| |
Collapse
|
13
|
Shimada T, Yasui T, Yokoyama A, Goda T, Hara M, Yanagida T, Kaji N, Kanai M, Nagashima K, Miyahara Y, Kawai T, Baba Y. Biomolecular recognition on nanowire surfaces modified by the self-assembled monolayer. LAB ON A CHIP 2018; 18:3225-3229. [PMID: 30264843 DOI: 10.1039/c8lc00438b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Molecular recognition is one of the key factors in designing biosensors due to which nanowires functionalized with molecular recognition have attracted a lot of attention as promising candidates for nanostructures embedded in biosensors. However, the difficulty in real-world applications with analytical specificity is that molecular recognition on nanowires mainly depends on antibody modification with multistep modification procedures. Furthermore, the antibody modification suffers from nonspecific adsorption of undesired proteins in body fluid on the nanowires, which causes false responses and lowers sensitivity. Herein, we propose biomolecular recognition using surface-modified nanowires via thiolated 2-methacryloxyethyl phosphorylcholine (MPC-SH). MPC-SH enables self-assembled monolayer (SAM) modification, which contributes to the reduction of nonspecific adsorption of biomolecules onto the nanowires, and the specific capture of a target protein is attained in the presence of calcium ions. Our concept demonstrates the recognition of the biomarker protein on nanowire surfaces modified by MPC-SH SAM with a single step modification procedure.
Collapse
Affiliation(s)
- Taisuke Shimada
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
António M, Nogueira J, Vitorino R, Daniel-da-Silva AL. Functionalized Gold Nanoparticles for the Detection of C-Reactive Protein. NANOMATERIALS 2018; 8:nano8040200. [PMID: 29597295 PMCID: PMC5923530 DOI: 10.3390/nano8040200] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 03/21/2018] [Accepted: 03/26/2018] [Indexed: 02/07/2023]
Abstract
C-reactive protein (CRP) is a very important biomarker of infection and inflammation for a number of diseases. Routine CRP measurements with high sensitivity and reliability are highly relevant to the assessment of states of inflammation and the efficacy of treatment intervention, and require the development of very sensitive, selective, fast, robust and reproducible assays. Gold nanoparticles (Au NPs) are distinguished for their unique electrical and optical properties and the ability to conjugate with biomolecules. Au NP-based probes have attracted considerable attention in the last decade in the analysis of biological samples due to their simplicity, high sensitivity and selectivity. Thus, this article aims to be a critical and constructive analysis of the literature of the last three years regarding the advances made in the development of bioanalytical assays based on gold nanoparticles for the in vitro detection and quantification of C-reactive protein from biological samples. Current methods for Au NP synthesis and the strategies for surface modification aiming at selectivity towards CRP are highlighted.
Collapse
Affiliation(s)
- Maria António
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - João Nogueira
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Rui Vitorino
- iBiMED-Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Ana L Daniel-da-Silva
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
15
|
Wu JG, Wei SC, Chen Y, Chen JH, Luo SC. Critical Study of the Recognition between C-Reactive Protein and Surface-Immobilized Phosphorylcholine by Quartz Crystal Microbalance with Dissipation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:943-951. [PMID: 29120646 DOI: 10.1021/acs.langmuir.7b02724] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
C-reactive protein (CRP), a biomarker for cardiovascular disease, has been reported to have a strong affinity to zwitterionic phosphorylcholine (PC) groups in the presence of calcium ions. In addition, PC-immobilized surfaces have been used as a nonfouling coating to prevent nonspecific protein binding. By appropriately using the features of PC-immobilized surfaces, including specific recognition to CRP and nonfouling surface, it is reasonable to create an antibody-free biosensor for the specific capture of CRP. In this study, PC-functionalized 3,4-ethylenedioxythiophene (EDOT) monomers were used to prepare PC-immobilized surfaces. The density of PC groups on the surface can be fine-tuned by changing the composition of the monomer solutions for the electropolymerization. The density of PC group was confirmed by X-ray photoelectron spectroscopy (XPS). The specific interaction of CRP with PC groups was monitored by using a quartz crystal microbalance with dissipation (QCM-D). The amount of protein binding could be estimated by the reduction in frequency readout. Through the QCM-D measurement, we revealed the nonfouling property and the specific CRP capture from our PC-immobilized surfaces. Notably, the dissipation energy also dropped during the binding process between CRP and PC, indicating the release of water molecules from the PC groups during CRP adsorption. We anticipate that surface-bound water molecules are mainly released from areas near the immobilized PC groups. Based on Hofmeister series, we further examined the influence of ions by introducing four different anions including both kosmotrope (order maker) and chaotrope (disorder maker) into the buffer for the CRP binding test. The results showed that the concentration and the type of anions play an important role in CRP binding. The present fundamental study reveals deep insights into the recognition between CRP and surface-immobilized PC groups, which can facilitate the development of CRP sensing platforms.
Collapse
Affiliation(s)
- Jhih-Guang Wu
- Department of Materials Science and Engineering, National Taiwan University , No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Shu-Chen Wei
- Department of Internal Medicine, National Taiwan University Hospital and College of Medicine , No. 1 Jen Ai Road, Section 1, Taipei 10051, Taiwan
| | - Yue Chen
- Department of Materials Science and Engineering, National Taiwan University , No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Jie-Hao Chen
- Department of Materials Science and Engineering, National Taiwan University , No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Shyh-Chyang Luo
- Department of Materials Science and Engineering, National Taiwan University , No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| |
Collapse
|
16
|
Liu TZ, Hu R, Zhang X, Zhang KL, Liu Y, Zhang XB, Bai RY, Li D, Yang YH. Metal–Organic Framework Nanomaterials as Novel Signal Probes for Electron Transfer Mediated Ultrasensitive Electrochemical Immunoassay. Anal Chem 2016; 88:12516-12523. [DOI: 10.1021/acs.analchem.6b04191] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Ting-Zhi Liu
- College
of Chemistry and Chemical Engineering, Yunnan Normal University, Yunnan, Kunming, 650092, People’s Republic of China
| | - Rong Hu
- College
of Chemistry and Chemical Engineering, Yunnan Normal University, Yunnan, Kunming, 650092, People’s Republic of China
| | - Xi Zhang
- College
of Chemistry and Chemical Engineering, Yunnan Normal University, Yunnan, Kunming, 650092, People’s Republic of China
| | - Kun-Lei Zhang
- College
of Chemistry and Chemical Engineering, Yunnan Normal University, Yunnan, Kunming, 650092, People’s Republic of China
| | - Yi Liu
- College
of Chemistry and Chemical Engineering, Yunnan Normal University, Yunnan, Kunming, 650092, People’s Republic of China
| | - Xiao-Bing Zhang
- Molecular
Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing
and Chemometrics, College of Chemistry and Chemical Engineering, Collaborative
Innovation Center for Molecular Engineering for Theronastics, Hunan University, Changsha, 410082, People’s Republic of China
| | - Ru-Yan Bai
- College
of Chemistry and Chemical Engineering, Yunnan Normal University, Yunnan, Kunming, 650092, People’s Republic of China
| | - Delei Li
- College
of Chemistry and Chemical Engineering, Yunnan Normal University, Yunnan, Kunming, 650092, People’s Republic of China
| | - Yun-Hui Yang
- College
of Chemistry and Chemical Engineering, Yunnan Normal University, Yunnan, Kunming, 650092, People’s Republic of China
| |
Collapse
|
17
|
Goda T, Miyahara Y. Engineered zwitterionic phosphorylcholine monolayers for elucidating multivalent binding kinetics of C-reactive protein. Acta Biomater 2016; 40:46-53. [PMID: 26873368 DOI: 10.1016/j.actbio.2016.02.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 02/04/2016] [Accepted: 02/08/2016] [Indexed: 11/16/2022]
Abstract
UNLABELLED Understanding of the activation dynamics of C-reactive protein (CRP) on plasma membranes is important in the development of zwitterionic biomaterials for their uses in the tissues of inflammation and infection. Previously, the use of a zwitterionic phosphorylcholine group, a biomimetic ligand for CRP in the presence of calcium ions, for binding experiments has revealed that the adsorption dynamics changed by ionic microenvironments. Here we focused on the effect of the ligand density on a surface, a major physicochemical parameter, on the multivalent binding modes. A building block from synthetic origin, a phospholipid analogue with thiol ends, was developed for making a cell membrane-mimicked self-assembled monolayers with tunable lateral ligand density on the molecular basis. The multivalent binding kinetics of CRP, a pentraxin in the original conformation, onto the engineered surface was measured using a surface plasmon resonance technique. The binding experiments revealed that the on-rate and off-rate constants in the first ligand-occupation reaction increased with increasing the ligand density, which resulted in stable values of the dissociation constant. Notably, the binding affinity in the second ligand-occupation reaction showed the optimal value as a function of the ligand density. Moreover, the binding experiments using a monomeric CRP-specific DNA aptamer revealed that pentameric CRP underwent structural transition into the monomers following the adsorption onto the surfaces via multivalent contacts in a pH-dependent manner. The bioengineering-based approach reveals for the first time how the multiple binding reaction is altered by the ligand arrangement at the molecular resolution and how CRP is activated by the conformational transition induced by the multiplex bindings. STATEMENT OF SIGNIFICANCE C-reactive protein (CRP), a major acute-phase pentraxin, binds to plasma membranes through the multivalent contacts with zwitterionic phosphorylcholine groups. However, details in the molecular dynamics is unknown due to a lack of proper sensing platform. The paper describe the synthesis of thiol-functionalized phosphorylcholine for the development of a robust cell membrane-mimetic surface on a surface plasmon resonance sensor at desired lateral ligand densities. The engineered approach on molecular basis enables a rigorous arrangement of the ligand on the surface, whose tunability and robustness are not achieved using conventional supported lipid layers. The effect of the ligand density on the multivalent binding kinetics provides the understanding of how the multivalent contacts induce conformational transitions of CRP and responses to inflammation.
Collapse
Affiliation(s)
- Tatsuro Goda
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan.
| | - Yuji Miyahara
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan
| |
Collapse
|
18
|
Goda T, Toya M, Matsumoto A, Miyahara Y. Poly(3,4-ethylenedioxythiophene) Bearing Phosphorylcholine Groups for Metal-Free, Antibody-Free, and Low-Impedance Biosensors Specific for C-Reactive Protein. ACS APPLIED MATERIALS & INTERFACES 2015; 7:27440-27448. [PMID: 26588324 DOI: 10.1021/acsami.5b09325] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Conducting polymers possessing biorecognition elements are essential for developing electrical biosensors sensitive and specific to clinically relevant biomolecules. We developed a new 3,4-ethylenedioxythiophene (EDOT) derivative bearing a zwitterionic phosphorylcholine group via a facile synthesis through the Michael-type addition thiol-ene "click" reaction for the detection of an acute-phase biomarker human C-reactive protein (CRP). The phosphorylcholine group, a major headgroup in phospholipid, which is the main constituent of plasma membrane, was also expected to resist nonspecific adsorption of other proteins at the electrode/solution interface. The biomimetic EDOT derivative was randomly copolymerized with EDOT, via an electropolymerization technique with a dopant sodium perchlorate, onto a glassy carbon electrode to make the synthesized polymer film both conductive and target-responsive. The conducting copolymer films were characterized by cyclic voltammetry, scanning electron microscopy, attenuated total reflection Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and electrochemical impedance spectroscopy. The specific interaction of CRP with phosphorylcholine in a calcium-containing buffer solution was determined by differential pulse voltammetry, which measures the altered redox reaction between the indicators ferricyanide/ferrocyanide as a result of the binding event. The conducting polymer-based protein sensor achieved a limit of detection of 37 nM with a dynamic range of 10-160 nM, covering the dynamically changing CRP levels in circulation during the acute phase. The results will enable the development of metal-free, antibody-free, and low-impedance electrochemical biosensors for the screening of nonspecific biomarkers of inflammation and infection.
Collapse
Affiliation(s)
- Tatsuro Goda
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University , 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan
| | - Masahiro Toya
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University , 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan
| | - Akira Matsumoto
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University , 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan
| | - Yuji Miyahara
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University , 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan
| |
Collapse
|
19
|
Immobilization and electrocatalysis of Ru(III) ions on phosphonate functionalized gold nanoparticles. Electrochim Acta 2015. [DOI: 10.1016/j.electacta.2015.01.089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
20
|
Goda T, Ishihara K, Miyahara Y. Critical update on 2-methacryloyloxyethyl phosphorylcholine (MPC) polymer science. J Appl Polym Sci 2015. [DOI: 10.1002/app.41766] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Tatsuro Goda
- Institute of Biomaterials and Bioengineering; Tokyo Medical and Dental University; 2-3-10 Kanda-Surugadai Chiyoda Tokyo 101-0062 Japan
| | - Kazuhiko Ishihara
- Department of Materials Engineering; The University of Tokyo; 7-3-1 Hongo Bunkyo Tokyo 113-8656 Japan
- Department of Bioengineering; The University of Tokyo; 7-3-1 Hongo Bunkyo Tokyo 113-8656 Japan
| | - Yuji Miyahara
- Institute of Biomaterials and Bioengineering; Tokyo Medical and Dental University; 2-3-10 Kanda-Surugadai Chiyoda Tokyo 101-0062 Japan
| |
Collapse
|
21
|
Kamon Y, Kitayama Y, Itakura AN, Fukazawa K, Ishihara K, Takeuchi T. Synthesis of grafted phosphorylcholine polymer layers as specific recognition ligands for C-reactive protein focused on grafting density and thickness to achieve highly sensitive detection. Phys Chem Chem Phys 2015; 17:9951-8. [DOI: 10.1039/c5cp00469a] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
We studied the effects of layer thickness and grafting density of poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC) thin layers as specific ligands for the highly sensitive binding of C-reactive protein (CRP).
Collapse
Affiliation(s)
- Yuri Kamon
- Graduate School of Engineering
- Kobe University
- Kobe 657-8501
- Japan
| | - Yukiya Kitayama
- Graduate School of Engineering
- Kobe University
- Kobe 657-8501
- Japan
| | | | - Kyoko Fukazawa
- Department of Materials Engineering
- School of Engineering
- The University of Tokyo
- Bunkyo-ku
- Japan
| | - Kazuhiko Ishihara
- Department of Materials Engineering
- School of Engineering
- The University of Tokyo
- Bunkyo-ku
- Japan
| | | |
Collapse
|
22
|
Affiliation(s)
- Tatsuro Goda
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University
| |
Collapse
|
23
|
Abstract
The stability of gold nanoparticles is a major issue which decides their impending usage in nanobiotechnological applications. Often biomimetically synthesized nanoparticles are deemed useless owing to their instability in aqueous medium. So, surfactants are used to stabilize the nanoparticles. But does the surfactant only stabilize by being adsorbed to the surface of the nanoparticles and not play significantly in moulding the size and shape of the nanoparticles? Keeping this idea in mind, gold nanoparticles (GNPs) synthesized by l-tryptophan (Trp) mediated reduction of chloroauric acid (HAuCl4) were stabilized by anionic surfactant, sodium dodecyl sulphate (SDS), and its effect on the moulding of size and properties of the GNPs was studied. Interestingly, unlike most of the gold nanoparticles synthesis mechanism showing saturation growth mechanism, inclusion of SDS in the reaction mixture for GNPs synthesis resulted in a bimodal mechanism which was studied by UV-Vis spectroscopy. The mechanism was further substantiated with transmission electron microscopy. Zeta potential of GNPs solutions was measured to corroborate stability observations recorded visually.
Collapse
|
24
|
Jin Q, Wang Y, Cai T, Wang H, Ji J. Bioinspired photo-degradable amphiphilic hyperbranched poly(amino ester)s: Facile synthesis and intracellular drug delivery. POLYMER 2014. [DOI: 10.1016/j.polymer.2014.07.053] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|