1
|
Tarai A, Nath B. A review on oxime functionality: an ordinary functional group with significant impacts in supramolecular chemistry. Chem Commun (Camb) 2024; 60:7266-7287. [PMID: 38916274 DOI: 10.1039/d4cc01397b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
The oxime functional group is pivotal in chemistry, finding extensive applications in medical science, catalysis, organic functional group transformations, and the recognition of essential and toxic analytes. While the coordination chemistry of oxime derivatives has been thoroughly explored and several reviews have been published on this topic in reputable journals, a comprehensive review encompassing various aspects such as crystal engineering, cation and anion recognition, as well as coordination chemistry activities, is still in demand. This feature article highlights the diverse applications of oxime derivatives across multiple domains of chemistry, including medicine, agriculture, crystal engineering, coordination chemistry, and molecular recognition studies. Each of the oxime derivatives in this feature article are meticulously described in terms of their medicinal applications, crop protection, crystal engineering attributes, analyte recognition capabilities, and coordination chemistry aspects. By providing a comprehensive overview of their versatile applications, this article aims to inspire researchers to explore and develop novel oxime-based derivatives for future applications.
Collapse
Affiliation(s)
- Arup Tarai
- School of Advanced Sciences and Languages (SASL), VIT Bhopal University, Bhopal-466114, Madya Pradesh, India.
| | - Bhaskar Nath
- Department of Educational Sciences, Assam University Silchar, Assam-788011, India.
| |
Collapse
|
2
|
Banerjee S, Ghosh P, Karak A, Banik D, Mahapatra AK. A chemodosimetric chemosensor for the ratiometric detection of nerve agent-mimic DCP in solution and vapor phases. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024. [PMID: 38644746 DOI: 10.1039/d4ay00451e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Nerve agents are among the most deadly and lethal chemical warfare agents (CWAs). Rapid identification is crucial for specialized individuals to take action against dangerous drugs. This paper describes the synthesis and characterisation of a probe (MNFZ) based on the methoxy naphthalene-furoic hydrazide group. The probe rapidly (100 s) detects and quantifies the nerve-agent simulant diethyl chlorophosphate (DCP) in both solution and vapor phases. This sensor uses a new recognition center, furoic hydrazide, where the nitrogen atom of the imine group (CN) attacks the electrophilic core phosphorus atom of DCP, followed by the hydrolysis of the imine group in the acetonitrile (ACN) solution to produce the corresponding aldehyde MNPA. The development of ICT character resulted in a distinct red-shifted ratiometric fluorescence response to DCP, with a very low limit of detection (12.2 nM). The probe is an efficient chemosensor due to its high selectivity over other organophosphorus compounds as well as its chemical stability across a wide pH range. DFT calculations, 1H NMR and HRMS were performed to finalize the sensing mechanism. Lastly, the as-designed sensor was successfully used to build a highly sensitive portable kit in test strips and a cotton biopolymer for simple and safe real-time monitoring of DCP.
Collapse
Affiliation(s)
- Shilpita Banerjee
- Molecular Sensor and Supramolecular Chemistry Laboratory, Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, 711 103, India.
| | - Pintu Ghosh
- Molecular Sensor and Supramolecular Chemistry Laboratory, Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, 711 103, India.
| | - Anirban Karak
- Molecular Sensor and Supramolecular Chemistry Laboratory, Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, 711 103, India.
| | - Dipanjan Banik
- Molecular Sensor and Supramolecular Chemistry Laboratory, Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, 711 103, India.
| | - Ajit Kumar Mahapatra
- Molecular Sensor and Supramolecular Chemistry Laboratory, Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, 711 103, India.
| |
Collapse
|
3
|
Tohora N, Ahamed S, Mahato M, Sultana T, Chourasia J, Maiti A, Das SK. Highly specific and sensitive chromo-fluorogenic detection of sarin, tabun, and mustard gas stimulants: a multianalyte recognition approach. Photochem Photobiol Sci 2024; 23:763-780. [PMID: 38519812 DOI: 10.1007/s43630-024-00553-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 02/12/2024] [Indexed: 03/25/2024]
Abstract
Nerve agents are the most notorious substances, which can be fatal to an individual because they block the activity of acetylcholinesterase. Fighting against unpredictable terrorist assaults and wars requires the simple and quick detection of chemical warfare agent vapor. In the present contribution, we have introduced a rhodamine-based chemosensor, BDHA, for the detection of nerve gas-mimicking agents diethylchlorophosphate (DCP) and diethylcyanophosphonate (DCNP) and mustard gas-mimicking agent 2-chloroethyl ethyl sulfide (CEES), both in the liquid and vapor phase. Probe BDHA provides the ability for detection by the naked eye in terms of colorimetric and fluorometric changes. It has been revealed that the interaction between nerve agents mimics and probe BDHA facilitates spirolactam ring opening due to the phosphorylation process. Thus, the highly fluorescent and colored species developed while probe BDHA is colorless and non-fluorescent due to the intramolecular spirolactam ring. Moreover, probe BDHA can effectively recognize DCP, DCNP, and CEES in the µM range despite many toxic analytes and could be identified based on the response times and quantum yield values. Inexpensive, easily carried paper strips-based test kits were developed for the quick, on-location solid and vapor phase detection of these mustard gas imitating agents (CEES) and nerve gas mimicking agents (DCP and DCNP) without needing expensive equipment or skilled personnel. More remarkably, the test strips' color and fluorescence can be rapidly restored, exposing them to triethyl amine (TEA) for cyclic use, suggesting a potential application in the real-time identification of chemical warfare agents. To accomplish the on-location application of BDHA, we have experimented with soil samples to find traces of DCP. Therefore, the chromo-fluorogenic probe BDHA is a promising, instantaneous, and on-the-spot monitoring tool for the selective detection of DCP, DCNP, and CEES in the presence of others.
Collapse
Affiliation(s)
- Najmin Tohora
- Department of Chemistry, University of North Bengal, Raja Rammohunpur, Darjeeling, West Bengal, 734013, India
| | - Sabbir Ahamed
- Department of Chemistry, University of North Bengal, Raja Rammohunpur, Darjeeling, West Bengal, 734013, India
| | - Manas Mahato
- Department of Chemistry, University of North Bengal, Raja Rammohunpur, Darjeeling, West Bengal, 734013, India
| | - Tuhina Sultana
- Department of Chemistry, University of North Bengal, Raja Rammohunpur, Darjeeling, West Bengal, 734013, India
| | - Jyoti Chourasia
- Department of Chemistry, University of North Bengal, Raja Rammohunpur, Darjeeling, West Bengal, 734013, India
| | - Arpita Maiti
- Department of Chemistry, University of North Bengal, Raja Rammohunpur, Darjeeling, West Bengal, 734013, India
| | - Sudhir Kumar Das
- Department of Chemistry, University of North Bengal, Raja Rammohunpur, Darjeeling, West Bengal, 734013, India.
| |
Collapse
|
4
|
Saha S, Sahoo P. Detection of exposed phosgene in household bleach: development of a selective and cost-effective sensing tool. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2023; 25:1144-1149. [PMID: 37345355 DOI: 10.1039/d3em00171g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/23/2023]
Abstract
Sensing of gaseous environment pollutants and health hazards is in demand these days and in this regard, lethal phosgene has emerged as a leading entrant. In this contribution, we have successfully developed a facile chemodosimeter (ANO) based on an anthracene fluorophore and oxime recognition site with an interesting mechanism to sense lethal phosgene evolved from bleaching powder, a very popular disinfectant and sanitizer. The ANO probe is highly competent in recognizing deadly phosgene in solution and in the gaseous phase with a detection limit in the nanomolar range (1.52 nM). The sensing mechanism is confirmed by UV-vis, emission spectroscopy, mass spectrometry, and computational studies.
Collapse
Affiliation(s)
- Shrabani Saha
- Department of Chemistry, Visva-Bharati University, Santiniketan, 731235, India.
| | - Prithidipa Sahoo
- Department of Chemistry, Visva-Bharati University, Santiniketan, 731235, India.
| |
Collapse
|
5
|
Meng WQ, Sedgwick AC, Kwon N, Sun M, Xiao K, He XP, Anslyn EV, James TD, Yoon J. Fluorescent probes for the detection of chemical warfare agents. Chem Soc Rev 2023; 52:601-662. [PMID: 36149439 DOI: 10.1039/d2cs00650b] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Chemical warfare agents (CWAs) are toxic chemicals that have been intentionally developed for targeted and deadly use on humans. Although intended for military targets, the use of CWAs more often than not results in mass civilian casualties. To prevent further atrocities from occurring during conflicts, a global ban was implemented through the chemical weapons convention, with the aim of eliminating the development, stockpiling, and use of CWAs. Unfortunately, because of their relatively low cost, ease of manufacture and effectiveness on mass populations, CWAs still exist in today's world. CWAs have been used in several recent terrorist-related incidents and conflicts (e.g., Syria). Therefore, they continue to remain serious threats to public health and safety and to global peace and stability. Analytical methods that can accurately detect CWAs are essential to global security measures and for forensic analysis. Small molecule fluorescent probes have emerged as attractive chemical tools for CWA detection, due to their simplicity, ease of use, excellent selectivity and high sensitivity, as well as their ability to be translated into handheld devices. This includes the ability to non-invasively image CWA distribution within living systems (in vitro and in vivo) to permit in-depth evaluation of their biological interactions and allow potential identification of therapeutic countermeasures. In this review, we provide an overview of the various reported fluorescent probes that have been designed for the detection of CWAs. The mechanism for CWA detection, change in optical output and application for each fluorescent probe are described in detail. The limitations and challenges of currently developed fluorescent probes are discussed providing insight into the future development of this research area. We hope the information provided in this review will give readers a clear understanding of how to design a fluorescent probe for the detection of a specific CWA. We anticipate that this will advance our security systems and provide new tools for environmental and toxicology monitoring.
Collapse
Affiliation(s)
- Wen-Qi Meng
- Department of Protective Medicine Against Chemical Agents, Faculty of Naval Medicine, Naval Medical University, 800 Xiangying Rd., Shanghai 200433, China.
| | - Adam C Sedgwick
- Chemistry Research Laboratory, University of Oxford, Mansfield Road, OX1 3TA, UK
| | - Nahyun Kwon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 120-750, Korea.
| | - Mingxue Sun
- Department of Protective Medicine Against Chemical Agents, Faculty of Naval Medicine, Naval Medical University, 800 Xiangying Rd., Shanghai 200433, China.
| | - Kai Xiao
- Department of Protective Medicine Against Chemical Agents, Faculty of Naval Medicine, Naval Medical University, 800 Xiangying Rd., Shanghai 200433, China.
| | - Xiao-Peng He
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Rd., Shanghai 200237, China. .,The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Shanghai 200438, China.,National Center for Liver Cancer, Shanghai 200438, China
| | - Eric V Anslyn
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712-1224, USA.
| | - Tony D James
- Department of Chemistry, University of Bath, Bath, BA2 7AY, UK. .,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 120-750, Korea.
| |
Collapse
|
6
|
Kumar V, Kim H, Pandey B, James TD, Yoon J, Anslyn EV. Recent advances in fluorescent and colorimetric chemosensors for the detection of chemical warfare agents: a legacy of the 21st century. Chem Soc Rev 2023; 52:663-704. [PMID: 36546880 DOI: 10.1039/d2cs00651k] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Chemical warfare agents (CWAs) are among the most prominent threats to the human population, our peace, and social stability. Therefore, their detection and quantification are of utmost importance to ensure the security and protection of mankind. In recent years, significant developments have been made in supramolecular chemistry, analytical chemistry, and molecular sensors, which have improved our capability to detect CWAs. Fluorescent and colorimetric chemosensors are attractive tools that allow the selective, sensitive, cheap, portable, and real-time analysis of the potential presence of CWAs, where suitable combinations of selective recognition and transduction can be integrated. In this review, we provide a detailed discussion on recently reported molecular sensors with a specific focus on the sensing of each class of CWAs such as nerve agents, blister agents, blood agents, and other toxicants. We will also discuss the current technology used by military forces, and these discussions will include the type of instrumentation and established protocols. Finally, we will conclude this review with our outlook on the limitations and challenges in the area and summarize the potential of promising avenues for this field.
Collapse
Affiliation(s)
- Vinod Kumar
- Process and Technology Development Division, Defence Research & Development Establishment, Jhansi Road, Gwalior 474002, India.
| | - Heejeong Kim
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea.
| | - Bipin Pandey
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712-1224, USA.
| | - Tony D James
- Department of Chemistry, University of Bath, Bath, BA2 7AY, UK.
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea.
| | - Eric V Anslyn
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712-1224, USA.
| |
Collapse
|
7
|
Maurya CK, Pathak U, Gupta PK. Ditopic Chemodosimeter for Selective Detection of Nerve Agent Tabun Simulant DCNP. ChemistrySelect 2022. [DOI: 10.1002/slct.202202103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Chandra Kant Maurya
- Synthetic Chemistry Division Defence R&D Establishment (DRDE) Jhansi Road Gwalior (MP) India- 474002
| | - Uma Pathak
- Synthetic Chemistry Division Defence R&D Establishment (DRDE) Jhansi Road Gwalior (MP) India- 474002
| | - Pradeep Kumar Gupta
- Synthetic Chemistry Division Defence R&D Establishment (DRDE) Jhansi Road Gwalior (MP) India- 474002
| |
Collapse
|
8
|
Mo W, Zhu Z, Kong F, Li X, Chen Y, Liu H, Cheng Z, Ma H, Li B. Controllable synthesis of conjugated microporous polymer films for ultrasensitive detection of chemical warfare agents. Nat Commun 2022; 13:5189. [PMID: 36057648 PMCID: PMC9440894 DOI: 10.1038/s41467-022-32878-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 08/22/2022] [Indexed: 01/05/2023] Open
Abstract
Nerve agents, one of the most toxic chemical warfare agents, seriously threaten human life and public security. The high toxicity of nerve agents makes the development of fluorescence sensors with suitable limit of detection challenging. Here, we propose a sensor design based on a conjugated microporous polymer film for the detection of diethyl chlorophosphate, a substitute of Sarin, with low detection limit of 2.5 ppt. This is due to the synergy of the susceptible on-off effect of hybridization and de-hybridization of hybrid local and charge transfer (HLCT) materials and the microporous structure of CMP films facilitating the inward diffusion of DCP vapors, and the extended π-conjugated structure. This strategy provides a new idea for the future development of gas sensors. In addition, a portable sensor is successfully integrated based on TCzP-CMP films that enables wireless, remote, ultrasensitive, and real-time detection of DCP vapors.
Collapse
Affiliation(s)
- Wanqi Mo
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Engineering Research Center of Forest Bio-Preparation, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Zihao Zhu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Engineering Research Center of Forest Bio-Preparation, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Fanwei Kong
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Engineering Research Center of Forest Bio-Preparation, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Xiaobai Li
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Engineering Research Center of Forest Bio-Preparation, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, P. R. China.
- Post-doctoral Mobile Research Station of Forestry Engineering, Northeast Forestry University, Harbin, 150040, P. R. China.
| | - Yu Chen
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Engineering Research Center of Forest Bio-Preparation, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Huaqian Liu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Engineering Research Center of Forest Bio-Preparation, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Zhiyong Cheng
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Engineering Research Center of Forest Bio-Preparation, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Hongwei Ma
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Engineering Research Center of Forest Bio-Preparation, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, P. R. China.
- Post-doctoral Mobile Research Station of Forestry Engineering, Northeast Forestry University, Harbin, 150040, P. R. China.
| | - Bin Li
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Engineering Research Center of Forest Bio-Preparation, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, P. R. China.
- Post-doctoral Mobile Research Station of Forestry Engineering, Northeast Forestry University, Harbin, 150040, P. R. China.
| |
Collapse
|
9
|
Zhu B, Sheng R, Chen T, Rodrigues J, Song QH, Hu X, Zeng L. Molecular engineered optical probes for chemical warfare agents and their mimics: Advances, challenges and perspectives. Coord Chem Rev 2022. [DOI: https://doi.org/10.1016/j.ccr.2022.214527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
10
|
Molecular engineered optical probes for chemical warfare agents and their mimics: Advances, challenges and perspectives. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214527] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
11
|
Mia R, Cragg PJ, Fronczek FR, Wallace KJ. Killing two birds with one stone: phosphorylation by a tabun mimic and subsequent capture of cyanide using a single fluorescent chemodosimeter. NEW J CHEM 2022. [DOI: 10.1039/d2nj04014j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In the presence of the tabun mimic diethylcyanophosphonate (DECP), a fluorescent bifunctional coumarin–enamine chemodosimeter is first phosphorylated and subsequently attacked by the released cyanide ions.
Collapse
Affiliation(s)
- Rashid Mia
- Department of Chemistry and Biochemistry, The University of Southern Mississippi, Hattiesburg, MS 39406, USA
| | - Peter J. Cragg
- School of Pharmacy and Biomedical Sciences, University of Brighton, Brighton, BN2 4GJ, UK
| | - Frank R. Fronczek
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Karl J. Wallace
- Department of Chemistry and Biochemistry, The University of Southern Mississippi, Hattiesburg, MS 39406, USA
| |
Collapse
|
12
|
Gori M, Thakur A, Sharma A, Flora SJS. Organic-Molecule-Based Fluorescent Chemosensor for Nerve Agents and Organophosphorus Pesticides. Top Curr Chem (Cham) 2021; 379:33. [PMID: 34346011 DOI: 10.1007/s41061-021-00345-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 07/11/2021] [Indexed: 11/29/2022]
Abstract
Organophosphorus (OP) compounds are typically a broad class of compounds that possess various uses such as insecticides, pesticides, etc. One of the most evil utilizations of these compounds is as chemical warfare agents, which pose a greater threat than biological weapons because of their ease of access. OP compounds are highly toxic compounds that cause irreversible inhibition of enzyme acetylcholinesterase, which is essential for hydrolysis of neurotransmitter acetylcholine, leading to series of neurological disorders and even death. Due to the extensive use of these organophosphorus compounds in agriculture, there is an increase in the environmental burden of these toxic chemicals, with severe environmental consequences. Hence, the rapid and sensitive, selective, real-time detection of OP compounds is very much required in terms of environmental protection, health, and survival. Several techniques have been developed over a few decades to easily detect them, but still, numerous challenges and problems remain to be solved. Major advancement has been observed in the development of sensors using the spectroscopic technique over recent years because of the advantages offered over other techniques, which we focus on in the presented review.
Collapse
Affiliation(s)
- Muskan Gori
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Raebareli, India
| | - Ashima Thakur
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Raebareli, India
| | - Abha Sharma
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Raebareli, India.
| | - S J S Flora
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli, India
| |
Collapse
|
13
|
Kumar V. Chromo-fluorogenic sensors for chemical warfare agents in real-time analysis: journey towards accurate detection and differentiation. Chem Commun (Camb) 2021; 57:3430-3444. [PMID: 33725077 DOI: 10.1039/d1cc00132a] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The existence of chemical weapons (blister and nerve agents) is an unfortunate reality of the modern world. The usage of these chemical agents by rogue states or terrorist groups has showcased their ugly faces in the past and even in recent years. Despite extensive and strenuous efforts by the Organization for the Prohibition of Chemical Weapons (OPCW) to eliminate chemical warfare agents (CWAs) by the prohibition of their production and the destruction of their stockpiles, many countries still possess them in enormous quantities. Given the potential threat from these lethal agents, it is imperative to have a foolproof chemical sensor and detection system, which should consist of readily deployable chemical probes that can operate with high specificity and sensitivity. Over the last decade, our group has been engaged in designing and developing novel field-deployable sensing techniques by exploring approaches based on supramolecular tools, which can result in excellent specificity, sensitivity, high speed, portability and low cost. In this article, I describe our group's journey and success stories in the development of chemical warfare detection protocols, detailing the range of unique chemical probes and methods explored to achieve the specific detection of individual agents under real environmental conditions. It is interesting to note that the combination of three molecular probes (SQ, Fc and LH2) could simply achieve the detection of all CWAs at room temperature in one go without the need for nonportable and expensive instruments. The ease and generality of these techniques/methods suggest great promise for the highly specific chemical sensing of almost the entire class of CWAs. In this paper, a brief introduction is first provided to present the basic chemistry related to CWAs and the importance of supramolecular chemistry in the design of new protocols with new insights. The manipulation of molecular probes is then debated towards the development of a system for the chromo-fluorogenic sensing of CWAs without interference from most relevant analytes. Finally, the outlook of open challenges and the future developments of this rapidly evolving field is discussed.
Collapse
Affiliation(s)
- Vinod Kumar
- Process and Technology Development Division, Defence Research & Development Establishment, Jhansi Road, Gwalior 474002, India.
| |
Collapse
|
14
|
She M, Wang Z, Chen J, Li Q, Liu P, Chen F, Zhang S, Li J. Design strategy and recent progress of fluorescent probe for noble metal ions (Ag, Au, Pd, and Pt). Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213712] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
15
|
Sen B, Rabha M, Sheet SK, Koner D, Saha N, Khatua S. Bis-heteroleptic Ru(ii) polypyridine complex-based luminescent probes for nerve agent simulant and organophosphate pesticide. Inorg Chem Front 2021. [DOI: 10.1039/d0qi00997k] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Two bis-heteroleptic Ru(ii) complexes of a 4,7-dihydroxy-1,10-phenanthroline ligand were synthesized for the detection of the nerve agent gas mimic, DCP, and the organophosphate pesticide, dichlorvos, through the “off–on” luminescence response.
Collapse
Affiliation(s)
- Bhaskar Sen
- Centre for Advanced Studies
- Department of Chemistry
- North Eastern Hill University
- Shillong
- India
| | - Monosh Rabha
- Centre for Advanced Studies
- Department of Chemistry
- North Eastern Hill University
- Shillong
- India
| | - Sanjoy Kumar Sheet
- Centre for Advanced Studies
- Department of Chemistry
- North Eastern Hill University
- Shillong
- India
| | | | - Nirmalendu Saha
- Department of Zoology
- North Eastern Hill University
- Shillong
- India
| | - Snehadrinarayan Khatua
- Centre for Advanced Studies
- Department of Chemistry
- North Eastern Hill University
- Shillong
- India
| |
Collapse
|
16
|
Saylan Y, Akgönüllü S, Denizli A. Plasmonic Sensors for Monitoring Biological and Chemical Threat Agents. BIOSENSORS-BASEL 2020; 10:bios10100142. [PMID: 33076308 PMCID: PMC7602421 DOI: 10.3390/bios10100142] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/09/2020] [Accepted: 10/11/2020] [Indexed: 02/07/2023]
Abstract
Sensors are excellent options owing to their ability to figure out a large number of problems and challenges in several areas, including homeland security, defense, medicine, pharmacology, industry, environment, agriculture, food safety, and so on. Plasmonic sensors are used as detection devices that have important properties, such as rapid recognition, real-time analysis, no need labels, sensitive and selective sensing, portability, and, more importantly, simplicity in identifying target analytes. This review summarizes the state-of-art molecular recognition of biological and chemical threat agents. For this purpose, the principle of the plasmonic sensor is briefly explained and then the use of plasmonic sensors in the monitoring of a broad range of biological and chemical threat agents is extensively discussed with different types of threats according to the latest literature. A conclusion and future perspectives are added at the end of the review.
Collapse
|
17
|
|
18
|
Xin X, Ai J, Li F, Zhao J, Zhang L. An imidazole functionalized copper(II)‐organic framework for highly selective sensing of picric acid and metal ions in water. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5803] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Xuelian Xin
- College of Public HealthHebei University 180 East Wusi Road Baoding Hebei 071002 China
| | - Jin Ai
- College of Public HealthHebei University 180 East Wusi Road Baoding Hebei 071002 China
| | - Fugang Li
- State Key Laboratory of Heavy Oil Processing & College of ScienceChina University of Petroleum (East China) 66 West Changjiang Road Qingdao Shandong 266580 China
| | - Jiaqi Zhao
- College of Public HealthHebei University 180 East Wusi Road Baoding Hebei 071002 China
| | - Liangliang Zhang
- Frontiers Science Center for Flexible ElectronicsShaanxi Institute of Flexible Electronics & Shaanxi Institute of Biomedical Materials and Engineering, Northwestern Polytechnical University 127 West Youyi Road Xi'an 710072 China
| |
Collapse
|
19
|
Fan S, Zhang G, Dennison GH, FitzGerald N, Burn PL, Gentle IR, Shaw PE. Challenges in Fluorescence Detection of Chemical Warfare Agent Vapors Using Solid-State Films. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1905785. [PMID: 31692155 DOI: 10.1002/adma.201905785] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Indexed: 06/10/2023]
Abstract
Organophosphorus (OP)-based nerve agents are extremely toxic and potent acetylcholinesterase inhibitors and recent attacks involving nerve agents highlight the need for fast detection and intervention. Fluorescence-based detection, where the sensing material undergoes a chemical reaction with the agent causing a measurable change in the luminescence, is one method for sensing and identifying nerve agents. Most studies use the simulants diethylchlorophosphate and di-iso-propylfluorophosphate to evaluate the performance of sensors due to their reduced toxicity relative to OP nerve agents. While detection of nerve agent simulants in solution is relatively widely reported, there are fewer reports on vapor detection using solid-state sensors. Herein, progress in organic semiconductor sensing materials developed for solid-state detection of OP-based nerve agent vapors is reviewed. The effect of acid impurities arising from the hydrolysis of simulants and nerve agents on the efficacy and selectivity of the reported sensing materials is also discussed. Indeed, in some cases it is unclear whether it is the simulant that is detected or the acid hydrolysis products. Finally, it is highlighted that while analyte diffusion into the sensing film is critical in the design of fast, responsive sensing systems, it is an area that is currently not well studied.
Collapse
Affiliation(s)
- Shengqiang Fan
- Centre for Organic Photonics & Electronics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Guanran Zhang
- Centre for Organic Photonics & Electronics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Genevieve H Dennison
- Land Division, Defence Science and Technology Group, Fishermans Bend, Victoria, 3207, Australia
| | - Nicholas FitzGerald
- Land Division, Defence Science and Technology Group, Fishermans Bend, Victoria, 3207, Australia
| | - Paul L Burn
- Centre for Organic Photonics & Electronics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Ian R Gentle
- Centre for Organic Photonics & Electronics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Paul E Shaw
- Centre for Organic Photonics & Electronics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| |
Collapse
|
20
|
Pandya SJ, Kapitanov IV, Usmani Z, Sahu R, Sinha D, Gathergood N, Ghosh KK, Karpichev Y. An example of green surfactant systems based on inherently biodegradable IL-derived amphiphilic oximes. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.112857] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
21
|
Juhlin L, Mikaelsson T, Hakonen A, Schmidt MS, Rindzevicius T, Boisen A, Käll M, Andersson PO. Selective surface-enhanced Raman scattering detection of Tabun, VX and Cyclosarin nerve agents using 4-pyridine amide oxime functionalized gold nanopillars. Talanta 2020; 211:120721. [PMID: 32070593 DOI: 10.1016/j.talanta.2020.120721] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 01/02/2020] [Accepted: 01/06/2020] [Indexed: 11/29/2022]
Abstract
We have earlier demonstrated sensitive detection of low the volatile nerve agents Tabun, Cyclosarin and VX by using handheld Raman instrumentation in conjunction with surface-enhanced Raman scattering (SERS) attained with gold and silver coated Si nanopillar substrates. In the present proof-of-concept study, the gold substrates chemically are functionalized to realize selectivity towards organophosphorus compounds (OPs) with high sensitivity. A potential capturer and reporter molecule, chemical nerve agent antidote, 4-pyridine amide oxime, is evaluated due to its high Raman cross section, high chemical affinity towards gold, and binding specificity to the target substances Tabun, VX and Cyclosarin via the oxime group. Upon selective and covalent binding, the SERS probe undergoes structural changes which are reflected in the spectral SERS responses, making it suitable for indirect monitoring of nerve agents in aqueous solution. With the probe attached to the hotspots of Au-coated Si nanopillars, the SERS signals distinctly discriminate between specific and non-specific analyte binding of Tabun, Cyclosarin and VX down to sub ppm levels. SERS spectrum of 4-PAO is measured after microliter drop coating of aqueous sample solution onto the functionalized substrates and subsequent water evaporation from surfaces. This binding assay is complemented by letting functionalized substrates being immersed into sample solutions 1 h before measuring. Binding specific SERS response decreases in following order: Tabun > VX > Cyclosarin. Overall, the concept looks promising, as expected the candidate probe 4-PAO introduces selectivity to the nanopillar gold substrates without loss of sensitivity.
Collapse
Affiliation(s)
- Lars Juhlin
- CBRN Defence and Security, Swedish Defence Research Agency, FOI, SE-90182, Umeå, Sweden
| | - Therese Mikaelsson
- CBRN Defence and Security, Swedish Defence Research Agency, FOI, SE-90182, Umeå, Sweden
| | - Aron Hakonen
- Department of Physics, Chalmers University of Technology, 412 96, Göteborg, Sweden
| | | | - Tomas Rindzevicius
- Department of Health Technology, Technical University of Denmark, Ørsteds Plads, 2800 Kgs. Lyngby, Denmark
| | - Anja Boisen
- Department of Health Technology, Technical University of Denmark, Ørsteds Plads, 2800 Kgs. Lyngby, Denmark
| | - Mikael Käll
- Department of Physics, Chalmers University of Technology, 412 96, Göteborg, Sweden
| | - Per Ola Andersson
- CBRN Defence and Security, Swedish Defence Research Agency, FOI, SE-90182, Umeå, Sweden; Department of Engineering Sciences, Uppsala University, SE-751 21, Uppsala, Sweden.
| |
Collapse
|
22
|
Guria UN, Maiti K, Ali SS, Gangopadhyay A, Samanta SK, Roy K, Mandal D, Mahapatra AK. An Organic Nanofibrous Polymeric Composite for Ratiometric Detection of Diethyl Chlorophosphate (DCP) in Solution and Vapor. ChemistrySelect 2020. [DOI: 10.1002/slct.202000179] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Uday Narayan Guria
- Department of ChemistryIndian Institute of Engineering Science and Technology, Shibpur Howrah 711103 West Bengal India
| | - Kalipada Maiti
- Department of ChemistryIndian Institute of Engineering Science and Technology, Shibpur Howrah 711103 West Bengal India
| | - Syed Samim Ali
- Department of ChemistryIndian Institute of Engineering Science and Technology, Shibpur Howrah 711103 West Bengal India
| | - Ankita Gangopadhyay
- Department of ChemistryIndian Institute of Engineering Science and Technology, Shibpur Howrah 711103 West Bengal India
| | - Sandip Kumar Samanta
- Department of ChemistryIndian Institute of Engineering Science and Technology, Shibpur Howrah 711103 West Bengal India
| | - Krittish Roy
- Department of Physics Jadavpur UniversityJadavpur University Campus Area, Jadavpur, 188, Raja S.C. Mallick Rd Kolkata West Bengal 700032 India
| | - Dipankar Mandal
- Department of Physics Jadavpur UniversityJadavpur University Campus Area, Jadavpur, 188, Raja S.C. Mallick Rd Kolkata West Bengal 700032 India
- Institute of Nano Science & Technology (INST) Habitat Centre, Phase 10, Sector 64, Mohali Punjab 160062 India
| | - Ajit K. Mahapatra
- Department of ChemistryIndian Institute of Engineering Science and Technology, Shibpur Howrah 711103 West Bengal India
| |
Collapse
|
23
|
Xu H, Zhang H, Zhao L, Peng C, Liu G, Cheng T. A naphthalimide-based fluorescent probe for the highly sensitive and selective detection of nerve agent mimic DCP in solution and vapor phase. NEW J CHEM 2020. [DOI: 10.1039/d0nj00416b] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The fluorescent probe for DCP displays excellent selectivity and sensitivity with a low detection limit of 5.5 nM in DMF.
Collapse
Affiliation(s)
- Hui Xu
- Key Laboratory of Resource Chemistry of Ministry of Education
- Shanghai Key Laboratory of Rare Earth Functional Materials
- Shanghai Normal University
- Shanghai 200241
- P. R. China
| | - Han Zhang
- Key Laboratory of Resource Chemistry of Ministry of Education
- Shanghai Key Laboratory of Rare Earth Functional Materials
- Shanghai Normal University
- Shanghai 200241
- P. R. China
| | - Lei Zhao
- Key Laboratory of Resource Chemistry of Ministry of Education
- Shanghai Key Laboratory of Rare Earth Functional Materials
- Shanghai Normal University
- Shanghai 200241
- P. R. China
| | - Cheng Peng
- Key Laboratory of Resource Chemistry of Ministry of Education
- Shanghai Key Laboratory of Rare Earth Functional Materials
- Shanghai Normal University
- Shanghai 200241
- P. R. China
| | - Guohua Liu
- Key Laboratory of Resource Chemistry of Ministry of Education
- Shanghai Key Laboratory of Rare Earth Functional Materials
- Shanghai Normal University
- Shanghai 200241
- P. R. China
| | - Tanyu Cheng
- Key Laboratory of Resource Chemistry of Ministry of Education
- Shanghai Key Laboratory of Rare Earth Functional Materials
- Shanghai Normal University
- Shanghai 200241
- P. R. China
| |
Collapse
|
24
|
A Selective Fluorescence Turn-On Probe for the Detection of DCNP (Nerve Agent Tabun Simulant). MATERIALS 2019; 12:ma12182943. [PMID: 31514369 PMCID: PMC6766206 DOI: 10.3390/ma12182943] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 08/30/2019] [Accepted: 09/09/2019] [Indexed: 02/07/2023]
Abstract
Diethylcyanophosphonate (DCNP) is a simulant of Tabun (GA) which is an extremely toxic chemical substance and is used as a chemical warfare (CW) nerve agent. Due to its toxic properties, monitoring methods have been constantly come under the spotlight. What we are proposing within this report is a next-generation fluorescent probe, DMHN1, which allows DCNP to become fully traceable in a sensitive, selective, and responsive manner. This is the first fluorescent turn-on probe within the dipolar naphthalene platform induced by ESIPT (excited state intramolecular proton transfer) suppression that allows us to sense DCNP without any disturbance by other similar G-series chemical weapons. The successful demonstrations of practical applications, such as in vitro analysis, soil analysis, and the development of an on-site real-time prototype sensing kit, encourage further applications in a variety of fields.
Collapse
|
25
|
Cave H, Ede JA, Sambrook MR, Dodd H, Fucassi F, Cragg AS, Lansley AH, Cragg PJ. Hydrogen-bonding interactions in crown-(thio)urea complexes with anions, chemical warfare agents and simulants. Supramol Chem 2019. [DOI: 10.1080/10610278.2019.1659268] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Hannah Cave
- School of Pharmacy and Biomolecular Sciences, Huxley Building, University of Brighton, Brighton, UK
| | - Jayne A. Ede
- CBR Division, Defence Science and Technology Laboratory (Dstl) Porton Down, Salisbury, UK
| | - Mark R. Sambrook
- CBR Division, Defence Science and Technology Laboratory (Dstl) Porton Down, Salisbury, UK
| | - Howard Dodd
- School of Pharmacy and Biomolecular Sciences, Huxley Building, University of Brighton, Brighton, UK
| | - Flavia Fucassi
- School of Pharmacy and Biomolecular Sciences, Huxley Building, University of Brighton, Brighton, UK
| | - Alexander S. Cragg
- School of Pharmacy and Biomolecular Sciences, Huxley Building, University of Brighton, Brighton, UK
- School of Physical Sciences, University of Kent, Canterbury, UK
| | - Adam H. Lansley
- School of Pharmacy and Biomolecular Sciences, Huxley Building, University of Brighton, Brighton, UK
| | - Peter J. Cragg
- School of Pharmacy and Biomolecular Sciences, Huxley Building, University of Brighton, Brighton, UK
| |
Collapse
|
26
|
Qin T, Huang Y, Zhu K, Wang J, Pan C, Liu B, Wang L. A flavonoid-based fluorescent test strip for sensitive and selective detection of a gaseous nerve agent simulant. Anal Chim Acta 2019; 1076:125-130. [PMID: 31203956 DOI: 10.1016/j.aca.2019.05.025] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 04/26/2019] [Accepted: 05/11/2019] [Indexed: 01/12/2023]
Abstract
Developing fluorescent sensors with ability of monitoring gaseous nerve agents in a sensitive and selective manner is of great importance due to the extreme toxicity and volatility of organophosphorus nerve agents. Herein we reported a novel oxime-modified flavonoid sensor and carefully investigated its sensing behavior towards nerve agent simulants, diethylchlorophosphate (DCP). In the presence of DCP, a remarkable fluorescence enhancement accompanied with emission color change could be observed by naked eyes in solution. The response time was less than 90 s and LOD value was calculated as 0.78 μmol/L in solution. The sensing mechanism could be ascribed to the specific reaction between halophosphate and hydroxyl group of oxime. Furthermore, sensor strips have been successfully constructed by using PEG as matrix with a simple preparation process, and also achieved the sensitive and selective detection of DCP vapor. These results in this study may provide important references for further design of dye-based sensor strips for detection of nerve agents both in solution and gas phase.
Collapse
Affiliation(s)
- Tianyi Qin
- Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China; Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen, 518060, China
| | - Yingying Huang
- Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Kangning Zhu
- Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China; Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen, 518060, China
| | - Jiahao Wang
- Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Chengjun Pan
- Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Bin Liu
- Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China; Guangdong Research Center for Interfacial Engineering of Functional Materials, Shenzhen University, Shenzhen, 518060, China.
| | - Lei Wang
- Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China; Guangdong Research Center for Interfacial Engineering of Functional Materials, Shenzhen University, Shenzhen, 518060, China.
| |
Collapse
|
27
|
Sheet SK, Sen B, Khatua S. Organoiridium(III) Complexes as Luminescence Color Switching Probes for Selective Detection of Nerve Agent Simulant in Solution and Vapor Phase. Inorg Chem 2019; 58:3635-3645. [PMID: 30843684 DOI: 10.1021/acs.inorgchem.8b03044] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In this work, cationic organoiridium(III) complex based photoluminescent (PL) probes have been developed to selectively detect the chemical warfare nerve agent mimic, diethyl chlorophosphate(DCP) at nanomolar range by distinct bright green to orange-red luminescence color switching (on-off-on) in solution as well as in the vapor phase. Interference of other chemical warfare agents (CWAs) and their mimics was not observed either by PL spectroscopy or with the naked-eye in solution and gas phase. The detection was attained via a simultaneous nucleophilic attack of two -OH groups of the 4,7-dihydroxy-1,10-phenanthroline ligand with DCP by forming bulkier phosphotriester. The detailed reaction mechanism was established through extensive 1H NMR titration, 31P NMR, and ESI-MS analysis. Finally, a test paper strip and solid poly(ethylene oxide) (PEO) film with iridium(III) complex 1[PF6] were fabricated for the vapor-phase detection of DCP. The solution and vapor-phase detection properties of these luminescent Ir(III) complexes can offer a worthy approach into the design of new metal complex based PL switching probes for chemical warfare agents.
Collapse
Affiliation(s)
- Sanjoy Kumar Sheet
- Centre for Advanced Studies, Department of Chemistry , North Eastern Hill University , Shillong , Meghalaya 793022 , India
| | - Bhaskar Sen
- Centre for Advanced Studies, Department of Chemistry , North Eastern Hill University , Shillong , Meghalaya 793022 , India
| | - Snehadrinarayan Khatua
- Centre for Advanced Studies, Department of Chemistry , North Eastern Hill University , Shillong , Meghalaya 793022 , India
| |
Collapse
|
28
|
Ghosh A, Das S, Mandal S, Sahoo P. A unique dual sensor for the detection of DCNP (nerve agent mimic) and Cd2+ in water. NEW J CHEM 2019. [DOI: 10.1039/c9nj03327k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A unique carbazole–pyrrole conjugate CPC dual sensor was successfully developed for the simultaneous detection of DCNP (nerve agent mimic) and Cd2+ – a heavy metal toxicant – in aqueous medium at very low concentrations.
Collapse
Affiliation(s)
- Ayndrila Ghosh
- Department of Chemistry
- Siksha Bhavana
- Visva-Bharati University
- Santiniketan
- India
| | - Sujoy Das
- Department of Chemistry
- Siksha Bhavana
- Visva-Bharati University
- Santiniketan
- India
| | - Saurodeep Mandal
- Department of Chemistry
- Siksha Bhavana
- Visva-Bharati University
- Santiniketan
- India
| | - Prithidipa Sahoo
- Department of Chemistry
- Siksha Bhavana
- Visva-Bharati University
- Santiniketan
- India
| |
Collapse
|
29
|
Gharami S, Aich K, Das S, Patra L, Mondal TK. Facile detection of organophosphorus nerve agent mimic (DCP) through a new quinoline-based ratiometric switch. NEW J CHEM 2019. [DOI: 10.1039/c9nj02218j] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Here a new quinoline-based (BIMQ) probe was developed which displayed ratiometric detection of organophosphorus chemical vapor threat, DCP.
Collapse
Affiliation(s)
- Saswati Gharami
- Department of Chemistry
- Jadavpur University
- Kolkata-700 032
- India
| | - Krishnendu Aich
- Department of Chemistry
- Jadavpur University
- Kolkata-700 032
- India
| | - Sangita Das
- Department of Chemistry
- Jadavpur University
- Kolkata-700 032
- India
| | - Lakshman Patra
- Department of Chemistry
- Jadavpur University
- Kolkata-700 032
- India
| | | |
Collapse
|
30
|
Rapid and selective visual detection of DCNP (nerve gas mimic) in sea water and soil with a simple paper strip. RESULTS IN CHEMISTRY 2019. [DOI: 10.1016/j.rechem.2019.100014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|
31
|
Paitandi RP, Singh RS, Dwivedi BK, Singh VD, Pandey DS. Time dependent aggregation induced emission enhancement and the study of molecular packing in closely related azo-phenol BODIPY species. Dalton Trans 2018; 47:3785-3795. [PMID: 29446426 DOI: 10.1039/c7dt04047d] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Fluorescent azo-phenol BODIPYs (1-3) have been obtained by the substituent (-OCH3/-CH3) directed synthesis of ortho (L1) and para (L2-L3) azo-phenol aldehydes. These display aggregation caused quenching (ACQ, 1) and aggregation induced emission enhancement (AIEE, 2 and 3) depending on the position of azo relative to the phenolic hydroxyl group. An intriguing time dependent morphological transition from nanospheres to ordered nanorods and subsequent emission changes in AIEE active azo-phenol BODIPYs have been successfully realized by time dependent fluorescence, scanning electron (SEM), transmission electron (TEM) and fluorescence optical microscopy (FOM) studies. The existence of one-dimensional (1D) nanorods as ultimate species in these compounds (2-3) has been supported by crystal packing patterns. Diverse aggregated forms and hierarchical nanostructures have been related to variable extents of fluorescence enhancement. The plausible charge transfer process and its role in AIEE have been supported by DFT studies.
Collapse
Affiliation(s)
- Rajendra Prasad Paitandi
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi - 221 005, India.
| | | | | | | | | |
Collapse
|
32
|
Hu Y, Zhou X, Jung H, Nam SJ, Kim MH, Yoon J. Colorimetric and Fluorescent Detecting Phosgene by a Second-Generation Chemosensor. Anal Chem 2018; 90:3382-3386. [PMID: 29412636 DOI: 10.1021/acs.analchem.7b05011] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Because of the current shortage of first-generation phosgene sensors, increased attention has been given to the development of fluorescent and colorimetric based methods for detecting this toxic substance. In an effort focusing on this issue, we designed the new, second-generation phosgene chemosensor 1 and demonstrated that it undergoes a ring-opening reaction with phosgene in association with color and fluorescent changes with a detection limit of 3.2 ppb. Notably, in comparison with the first-generation sensor RB-OPD, 1 not only undergoes a much faster response toward phosgene with an overall response time within 2 min, but it also generates no byproducts during the sensing process. Finally, sensor 1 embedded nanofibers were successfully fabricated and used for accurate and sensitive detection of phosgene.
Collapse
Affiliation(s)
- Ying Hu
- Department of Chemistry and Nano Science , Ewha Womans University , Seoul 120-750 , Korea
| | - Xin Zhou
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Laboratory of Fiber Materials and Modern Textile, The Growing Base for State Key Laboratory , Qingdao University , Shandong 266071 , People's Republic of China
| | - Hyeseung Jung
- Department of Chemistry and Nano Science , Ewha Womans University , Seoul 120-750 , Korea
| | - Sang-Jip Nam
- Department of Chemistry and Nano Science , Ewha Womans University , Seoul 120-750 , Korea
| | - Myung Hwa Kim
- Department of Chemistry and Nano Science , Ewha Womans University , Seoul 120-750 , Korea
| | - Juyoung Yoon
- Department of Chemistry and Nano Science , Ewha Womans University , Seoul 120-750 , Korea
| |
Collapse
|
33
|
Chen L, Wu D, Yoon J. Recent Advances in the Development of Chromophore-Based Chemosensors for Nerve Agents and Phosgene. ACS Sens 2018; 3:27-43. [PMID: 29231710 DOI: 10.1021/acssensors.7b00816] [Citation(s) in RCA: 132] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The extreme toxicity and ready accessibility of nerve agents and phosgene has caused an increase in the demand to develop effective systems for the detection of these substances. Among the traditional platforms utilized for this purpose, chemosensors including surface acoustic wave (SAW) sensors, enzymes, carbon nanotubes, nanoparticles, and chromophore based sensors have attracted increasing attention. In this review, we describe in a comprehensive manner recent progress that has been made on the development of chromophore-based chemosensors for detecting nerve agents (mimic) and phosgene. This review comprises two sections focusing on studies of the development of chemosensors for nerve agents (mimic) and phosgene. In each of the sections, the discussion follows a format which concentrates on different reaction sites/mechanisms involved in the sensing processes. Finally, chemosensors uncovered in these efforts are compared with those based on other sensing methods and challenges facing the design of more effective chemosensors for the detection of nerve agents (mimic) and phosgene are discussed.
Collapse
Affiliation(s)
- Liyan Chen
- Department
of Chemistry and Nano Science, Ewha Womans University, Seoul, 120-750, Korea
| | - Di Wu
- Department
of Chemistry and Nano Science, Ewha Womans University, Seoul, 120-750, Korea
| | - Juyoung Yoon
- Department
of Chemistry and Nano Science, Ewha Womans University, Seoul, 120-750, Korea
| |
Collapse
|
34
|
Chen L, Oh H, Wu D, Kim MH, Yoon J. An ESIPT fluorescent probe and a nanofiber platform for selective and sensitive detection of a nerve gas mimic. Chem Commun (Camb) 2018; 54:2276-2279. [DOI: 10.1039/c7cc09901k] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
An ESIPT based fluorescent probe, containing a hydroxyphenyl-benzothiazole fluorophore and an oxime reaction site, serves as a selective probe for a nerve gas mimic, diethyl cyanophosphonate (DECP), in solutions and the gas phase.
Collapse
Affiliation(s)
- Liyan Chen
- Department of Chemistry and Nano Science
- Ewha Womans University
- Seoul
- Korea
| | - Hyerim Oh
- Department of Chemistry and Nano Science
- Ewha Womans University
- Seoul
- Korea
| | - Di Wu
- Department of Chemistry and Nano Science
- Ewha Womans University
- Seoul
- Korea
- School of Chemistry
| | - Myung Hwa Kim
- Department of Chemistry and Nano Science
- Ewha Womans University
- Seoul
- Korea
| | - Juyoung Yoon
- Department of Chemistry and Nano Science
- Ewha Womans University
- Seoul
- Korea
| |
Collapse
|
35
|
Kittle JD, Fisher BP, Esparza AJ, Morey AM, Iacono ST. Sensing Chemical Warfare Agent Simulants via Photonic Crystals of the Morpho didius Butterfly. ACS OMEGA 2017; 2:8301-8307. [PMID: 30023581 PMCID: PMC6045417 DOI: 10.1021/acsomega.7b01680] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 11/10/2017] [Indexed: 05/14/2023]
Abstract
The rapid and portable detection of trace chemical warfare agents (CWAs) remains a challenge for the international security and monitoring community. This work reports the first use of natural photonic crystals (PhCs) as vapor sensors for CWA simulants. Dimethyl methylphosphonate, a nerve agent simulant, and dichloropentane, a mustard gas simulant, were successfully detected at the parts per million level by processing visible light reflected from the PhC inherent to the wing scales of the Morpho didius butterfly. Additionally, modeling of this natural system suggested several parameters for enhancing the sensitivity of a synthetic PhC toward CWA simulants, including materials selection, structure, and spacing of the PhC, and partial functionalization of the PhC toward the analyte of interest. Collectively, this study provides strategies for designing a sensitive, selective, rapid, and affordable means for CWA detection.
Collapse
Affiliation(s)
- Joshua D. Kittle
- Department
of Chemistry, United States Air Force Academy, 2355 Fairchild Drive, 80840 Colorado Springs, Colorado, United States
| | - Benjamin P. Fisher
- Department
of Chemistry, United States Air Force Academy, 2355 Fairchild Drive, 80840 Colorado Springs, Colorado, United States
| | - Anthony J. Esparza
- Department
of Chemistry, United States Air Force Academy, 2355 Fairchild Drive, 80840 Colorado Springs, Colorado, United States
| | - Aimee M. Morey
- Department
of Chemistry, United States Air Force Academy, 2355 Fairchild Drive, 80840 Colorado Springs, Colorado, United States
| | - Scott T. Iacono
- Department
of Chemistry, United States Air Force Academy, 2355 Fairchild Drive, 80840 Colorado Springs, Colorado, United States
| |
Collapse
|
36
|
Korb M, Mahrholdt J, Lang H. (Planar‐Chiral) Ferrocenylmethanols: From Anionic Homo Phospho‐Fries Rearrangements to α‐Ferrocenyl Carbenium Ions. Eur J Inorg Chem 2017. [DOI: 10.1002/ejic.201700645] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Marcus Korb
- Technische Universität Chemnitz Faculty of Natural Sciences Institute of Chemistry Inorganic Chemistry 09107 Chemnitz Germany
| | - Julia Mahrholdt
- Technische Universität Chemnitz Faculty of Natural Sciences Institute of Chemistry Inorganic Chemistry 09107 Chemnitz Germany
| | - Heinrich Lang
- Technische Universität Chemnitz Faculty of Natural Sciences Institute of Chemistry Inorganic Chemistry 09107 Chemnitz Germany
| |
Collapse
|
37
|
Raj P, Singh N. Fluorescence Chemosensors for Chemical Warfare Agent Mimic Diethylcyanophosphonate Via
Co 2+
-Naphthalimide Based Nanoaggregate in Aqueous Medium. ChemistrySelect 2017. [DOI: 10.1002/slct.201700679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Pushap Raj
- Department of Chemistry; Indian Institute Technology Ropar; Punjab 140001 India
| | - Narinder Singh
- Department of Chemistry; Indian Institute Technology Ropar; Punjab 140001 India
| |
Collapse
|
38
|
Kim Y, Jang YJ, Mulay SV, Nguyen TTT, Churchill DG. Fluorescent Sensing of a Nerve Agent Simulant with Dual Emission over Wide pH Range in Aqueous Solution. Chemistry 2017; 23:7785-7790. [DOI: 10.1002/chem.201700975] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Indexed: 12/19/2022]
Affiliation(s)
- Youngsam Kim
- Molecular Logic Gate Laboratory; Department of Chemistry; Korea Advanced Institute of Science and Technology (KAIST); 373-1 Guseong-dong, Yuseong-gu Daejeon 305-701 Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations; Institution of Basic Science (IBS); 373-1 Guseong-dong, Yuseong-gu Daejeon 305-701 Republic of Korea
| | - Yoon Jeong Jang
- Chemical Defense Research Institute; Seoul Republic of Korea
| | - Sandip V. Mulay
- Molecular Logic Gate Laboratory; Department of Chemistry; Korea Advanced Institute of Science and Technology (KAIST); 373-1 Guseong-dong, Yuseong-gu Daejeon 305-701 Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations; Institution of Basic Science (IBS); 373-1 Guseong-dong, Yuseong-gu Daejeon 305-701 Republic of Korea
| | - Thuy-Tien T. Nguyen
- Molecular Logic Gate Laboratory; Department of Chemistry; Korea Advanced Institute of Science and Technology (KAIST); 373-1 Guseong-dong, Yuseong-gu Daejeon 305-701 Republic of Korea
| | - David G. Churchill
- Molecular Logic Gate Laboratory; Department of Chemistry; Korea Advanced Institute of Science and Technology (KAIST); 373-1 Guseong-dong, Yuseong-gu Daejeon 305-701 Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations; Institution of Basic Science (IBS); 373-1 Guseong-dong, Yuseong-gu Daejeon 305-701 Republic of Korea
| |
Collapse
|
39
|
Raj P, Singh A, Singh A, Singh N. Syntheses, crystal structures and photophysical properties of Cu(ii) complexes: fine tuning of a coordination sphere for selective binding of azamethiphos. Dalton Trans 2017; 46:985-994. [DOI: 10.1039/c6dt04039j] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We have synthesized two copper complexesC1–2and these complexes were explored as chemosensors for selective binding with azamethiphos.
Collapse
Affiliation(s)
- Pushap Raj
- Department of Chemistry
- Indian Institute of Technology Ropar
- India
| | - Amanpreet Singh
- Department of Chemistry
- Indian Institute of Technology Ropar
- India
| | - Ajnesh Singh
- Department of Applied Sciences and Humanities
- Jawaharlal Nehru Govt. Engineering College
- Sundernagar
- India
| | - Narinder Singh
- Department of Chemistry
- Indian Institute of Technology Ropar
- India
| |
Collapse
|
40
|
Jang YJ, Mulay SV, Kim Y, Jorayev P, Churchill DG. Nerve agent simulant diethyl chlorophosphate detection using a cyclization reaction approach with high stokes shift system. NEW J CHEM 2017. [DOI: 10.1039/c6nj03712g] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A intramolecular cyclization reaction-based “turn-on” fluorescent probe (CoumNMe2) for selective detection of diethyl chlorophosphate (DCP) over close competitors diethyl cyanophosphonate (DECP), and diethyl methylphosphonate (DEMP) was developed.
Collapse
Affiliation(s)
- Yoon Jeong Jang
- Molecular Logic Gate Laboratory
- Department of Chemistry
- Korea Advanced Institute of Science and Technology (KAIST)
- Daejeon
- Republic of Korea
| | - Sandip V. Mulay
- Molecular Logic Gate Laboratory
- Department of Chemistry
- Korea Advanced Institute of Science and Technology (KAIST)
- Daejeon
- Republic of Korea
| | - Youngsam Kim
- Molecular Logic Gate Laboratory
- Department of Chemistry
- Korea Advanced Institute of Science and Technology (KAIST)
- Daejeon
- Republic of Korea
| | - Perman Jorayev
- Molecular Logic Gate Laboratory
- Department of Chemistry
- Korea Advanced Institute of Science and Technology (KAIST)
- Daejeon
- Republic of Korea
| | - David G. Churchill
- Molecular Logic Gate Laboratory
- Department of Chemistry
- Korea Advanced Institute of Science and Technology (KAIST)
- Daejeon
- Republic of Korea
| |
Collapse
|
41
|
Harusawa S, Shioiri T. Diethyl phosphorocyanidate (DEPC): a versatile reagent for organic synthesis. Tetrahedron 2016. [DOI: 10.1016/j.tet.2016.09.070] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
42
|
Xu W, Fu Y, Yao J, Fan T, Gao Y, He Q, Zhu D, Cao H, Cheng J. Aggregation State Reactivity Activation of Intramolecular Charge Transfer Type Fluorescent Probe and Application in Trace Vapor Detection of Sarin Mimics. ACS Sens 2016. [DOI: 10.1021/acssensors.6b00366] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Wei Xu
- State
Key Lab of Transducer Technology, Shanghai Institute of Microsystem
and Information Technology, Chinese Academy of Sciences, Changning
Road 865, Shanghai 200050, China
- University of the Chinese Academy of Sciences, Yuquan Road 19, Beijing,100039, China
| | - Yanyan Fu
- State
Key Lab of Transducer Technology, Shanghai Institute of Microsystem
and Information Technology, Chinese Academy of Sciences, Changning
Road 865, Shanghai 200050, China
| | - Junjun Yao
- State
Key Lab of Transducer Technology, Shanghai Institute of Microsystem
and Information Technology, Chinese Academy of Sciences, Changning
Road 865, Shanghai 200050, China
- University of the Chinese Academy of Sciences, Yuquan Road 19, Beijing,100039, China
| | - Tianchi Fan
- State
Key Lab of Transducer Technology, Shanghai Institute of Microsystem
and Information Technology, Chinese Academy of Sciences, Changning
Road 865, Shanghai 200050, China
- University of the Chinese Academy of Sciences, Yuquan Road 19, Beijing,100039, China
| | - Yixun Gao
- State
Key Lab of Transducer Technology, Shanghai Institute of Microsystem
and Information Technology, Chinese Academy of Sciences, Changning
Road 865, Shanghai 200050, China
- University of the Chinese Academy of Sciences, Yuquan Road 19, Beijing,100039, China
| | - Qingguo He
- State
Key Lab of Transducer Technology, Shanghai Institute of Microsystem
and Information Technology, Chinese Academy of Sciences, Changning
Road 865, Shanghai 200050, China
| | - Defeng Zhu
- State
Key Lab of Transducer Technology, Shanghai Institute of Microsystem
and Information Technology, Chinese Academy of Sciences, Changning
Road 865, Shanghai 200050, China
| | - Huimin Cao
- State
Key Lab of Transducer Technology, Shanghai Institute of Microsystem
and Information Technology, Chinese Academy of Sciences, Changning
Road 865, Shanghai 200050, China
| | - Jiangong Cheng
- State
Key Lab of Transducer Technology, Shanghai Institute of Microsystem
and Information Technology, Chinese Academy of Sciences, Changning
Road 865, Shanghai 200050, China
| |
Collapse
|
43
|
García-Calvo J, Calvo-Gredilla P, Ibáñez-Llorente M, Rodríguez T, Torroba T. Detection of Contaminants of High Environmental Impact by Means of Fluorogenic Probes. CHEM REC 2016; 16:810-24. [DOI: 10.1002/tcr.201500253] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Indexed: 01/19/2023]
Affiliation(s)
- José García-Calvo
- Department of Chemistry; University of Burgos, Faculty of Science; 09001 Burgos Spain
| | | | | | - Teresa Rodríguez
- Department of Chemistry; University of Burgos, Faculty of Science; 09001 Burgos Spain
| | - Tomás Torroba
- Department of Chemistry; University of Burgos, Faculty of Science; 09001 Burgos Spain
| |
Collapse
|
44
|
Meng Q, Fronczek FR, Vicente MGH. Synthesis and spectroscopic properties of β,β'-dibenzo-3,5,8-triaryl-BODIPYs. NEW J CHEM 2016; 40:5740-5751. [PMID: 27708532 PMCID: PMC5047295 DOI: 10.1039/c5nj03324a] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
A series of β,β'-bicyclo-3,5-diaryl-BODIPYs were synthesized from the corresponding β,β'-bicyclo-3,5-diiodo-BODIPYs (1a,b) via Pd(0)-mediated Suzuki cross-coupling reactions in 82-92% yields. Subsequent aromatization with DDQ afforded the corresponding β,β'-dibenzo-aryl-BODIPYs, which showed red-shifted absorptions and emissions in the near-IR range. The dibenzo-appended BODIPYs showed characteristic 1H-, 13C-, 11B- and 19F-NMR shifts, and nearly planar conformations by X-ray crystallography.
Collapse
Affiliation(s)
- Qianli Meng
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Frank R. Fronczek
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA
| | - M. Graça H. Vicente
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
45
|
Abstract
A fluorescent probe showed high selectivity and sensitivity for an organoarsenic blister agent simulant, arsenic trichloride.
Collapse
Affiliation(s)
- Doo-Hee Lee
- Department of Chemistry
- College of Natural Sciences
- Seoul National University
- Seoul 08826
- Republic of Korea
| | - Dong-Nam Lee
- Department of Chemistry
- College of Natural Sciences
- Seoul National University
- Seoul 08826
- Republic of Korea
| | - Jong-In Hong
- Department of Chemistry
- College of Natural Sciences
- Seoul National University
- Seoul 08826
- Republic of Korea
| |
Collapse
|
46
|
Kumar V, Rana H, Raviraju G, Garg P, Baghel A, Gupta AK. Chromogenic and fluorogenic multianalyte detection with a tuned receptor: refining selectivity for toxic anions and nerve agents. RSC Adv 2016. [DOI: 10.1039/c6ra07080a] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
In the present study, a chemical probe was finely tuned for the highly selective and sensitive chromogenic and fluorogenic detection of toxic anions and a nerve agent.
Collapse
Affiliation(s)
- Vinod Kumar
- Defence Research and Development Establishment
- Gwalior 474002
- India
| | - Hemlata Rana
- Defence Research and Development Establishment
- Gwalior 474002
- India
| | - G. Raviraju
- Defence Research and Development Establishment
- Gwalior 474002
- India
| | - Prabhat Garg
- Defence Research and Development Establishment
- Gwalior 474002
- India
| | - Anuradha Baghel
- Defence Research and Development Establishment
- Gwalior 474002
- India
| | - A. K. Gupta
- Defence Research and Development Establishment
- Gwalior 474002
- India
| |
Collapse
|
47
|
Jang YJ, Kim K, Tsay OG, Atwood DA, Churchill DG. Update 1 of: Destruction and Detection of Chemical Warfare Agents. Chem Rev 2015; 115:PR1-76. [DOI: 10.1021/acs.chemrev.5b00402] [Citation(s) in RCA: 249] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Yoon Jeong Jang
- Molecular Logic Gate Laboratory, Department of Chemistry, KAIST, Daejeon, 305-701, Republic of Korea
| | - Kibong Kim
- Molecular Logic Gate Laboratory, Department of Chemistry, KAIST, Daejeon, 305-701, Republic of Korea
| | - Olga G. Tsay
- Molecular Logic Gate Laboratory, Department of Chemistry, KAIST, Daejeon, 305-701, Republic of Korea
| | - David A. Atwood
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506-0055, United States
| | - David G. Churchill
- Molecular Logic Gate Laboratory, Department of Chemistry, KAIST, Daejeon, 305-701, Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), 373-1 Guseong-dong, Yuseong-gu, Daejeon, 305−701, Republic of Korea
| |
Collapse
|
48
|
Singh N, Karpichev Y, Tiwari AK, Kuca K, Ghosh KK. Oxime functionality in surfactant self-assembly: An overview on combating toxicity of organophosphates. J Mol Liq 2015. [DOI: 10.1016/j.molliq.2015.04.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
49
|
Hakonen A, Andersson PO, Stenbæk Schmidt M, Rindzevicius T, Käll M. Explosive and chemical threat detection by surface-enhanced Raman scattering: a review. Anal Chim Acta 2015; 893:1-13. [PMID: 26398417 DOI: 10.1016/j.aca.2015.04.010] [Citation(s) in RCA: 145] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 03/16/2015] [Accepted: 04/03/2015] [Indexed: 01/18/2023]
Abstract
Acts of terror and warfare threats are challenging tasks for defense agencies around the world and of growing importance to security conscious policy makers and the general public. Explosives and chemical warfare agents are two of the major concerns in this context, as illustrated by the recent Boston Marathon bombing and nerve gas attacks on civilians in the Middle East. To prevent such tragic disasters, security personnel must be able to find, identify and deactivate the threats at multiple locations and levels. This involves major technical and practical challenges, such as detection of ultra-low quantities of hazardous compounds at remote locations for anti-terror purposes and monitoring of environmental sanitation of dumped or left behind toxic substances and explosives. Surface-enhanced Raman scattering (SERS) is one of todays most interesting and rapidly developing methods for label-free ultrasensitive vibrational "fingerprinting" of a variety of molecular compounds. Performance highlights include attomolar detection of TNT and DNT explosives, a sensitivity that few, if any, other technique can compete with. Moreover, instrumentation needed for SERS analysis are becoming progressively better, smaller and cheaper, and can today be acquired for a retail price close to 10,000 US$. This contribution aims to give a comprehensive overview of SERS as a technique for detection of explosives and chemical threats. We discuss the prospects of SERS becoming a major tool for convenient in-situ threat identification and we summarize existing SERS detection methods and substrates with particular focus on ultra-sensitive real-time detection. General concepts, detection capabilities and perspectives are discussed in order to guide potential users of the technique for homeland security and anti-warfare purposes.
Collapse
Affiliation(s)
- Aron Hakonen
- Division of Bionanophotonics, Department of Applied Physics, Chalmers University of Technology, 412 96 Göteborg, Sweden.
| | - Per Ola Andersson
- Swedish Defense Research Agency FOI, Division of CBRN Defence & Security, SE-90182 Umeå, Sweden
| | - Michael Stenbæk Schmidt
- DTU Nanotech, Technical University of Denmark, Department of Micro- and Nanotechnology, Ørsteds Plads, Building 345 East, 2800 Kgs. Lyngby, Denmark
| | - Tomas Rindzevicius
- DTU Nanotech, Technical University of Denmark, Department of Micro- and Nanotechnology, Ørsteds Plads, Building 345 East, 2800 Kgs. Lyngby, Denmark
| | - Mikael Käll
- Division of Bionanophotonics, Department of Applied Physics, Chalmers University of Technology, 412 96 Göteborg, Sweden
| |
Collapse
|
50
|
Dvivedi A, Rajakannu P, Ravikanth M. meso-Salicylaldehyde substituted BODIPY as a chemodosimetric sensor for cyanide anions. Dalton Trans 2015; 44:4054-62. [DOI: 10.1039/c4dt03568b] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
meso-Salicylaldehyde substituted BODIPY 3 was synthesized by a simple method and used as a chemodosimetric sensor for CN− anions.
Collapse
|