1
|
Kim T, Hong J, Kim J, Cho J, Kim Y. Two-Dimensional Peptide Assembly via Arene-Perfluoroarene Interactions for Proliferation and Differentiation of Myoblasts. J Am Chem Soc 2023; 145:1793-1802. [PMID: 36625369 DOI: 10.1021/jacs.2c10938] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Supramolecular assembly based on aromatic interactions can provide well-defined nanostructures with an understanding of intermolecular interactions at the molecular level. The peptide assembly via a supramolecular approach can overcome the inherent limitations of bioactive peptides, such as proteolytic degradations and rapid internalizations into the cytosol. Although extensive research has been carried out on supramolecular peptide materials with a two-dimensional (2D) structure, more needs to be reported on biological activity studies using well-defined 2D peptide materials. Physical and chemical properties of the 2D peptide assembly attributed to their large surface area and flexibility can show low cytotoxicity, enhanced molecular loading, and higher bioconjugation efficiency in biological applications. Here, we report supramolecular 2D materials based on the pyrene-grafted amphiphilic peptide, which contains a peptide sequence (Asp-Gly-Glu-Ala; DGEA) that is reported to bind to the integrin α2β1 receptor in 2D cell membranes. The addition of octafluoronaphthalene (OFN) to the pyrene-grafted peptide could induce a well-ordered 2D assembly by face-centered arene-perfluoroarene stacking. The DGEA-peptide 2D assembly with a flat structure, structural stability against enzymatic degradations, and a larger size can enhance the proliferation and differentiation of muscle cells via continuous interactions with cell membrane receptors integrin α2β1 showing a low intracellular uptake (15%) compared to that (62%) of the vesicular peptide assembly. These supramolecular approaches via the arene-perfluoroarene interaction provide a strategy to fabricate well-defined 2D peptide materials with an understanding of assembly at the molecular level for the next-generation peptide materials.
Collapse
Affiliation(s)
- Taeyeon Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul02841, Republic of Korea
| | - Jinwoo Hong
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul02841, Republic of Korea
| | - Jehan Kim
- Pohang Accelerator Laboratory, POSTECH, Pohang37673, Gyeongbuk, Republic of Korea
| | - Jinhan Cho
- Department of Chemical and Biological Engineering, Korea University, Seoul02841, Republic of Korea
| | - Yongju Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul02841, Republic of Korea.,Department of Integrative Energy Engineering, Korea University, Seoul02841, Republic of Korea
| |
Collapse
|
2
|
Höglsperger F, Betz T, Ravoo BJ. Reversible Photoresponsive Modulation of Osmotic Pressure via Macromolecular Host-Guest Interaction. ACS Macro Lett 2022; 11:537-542. [PMID: 35575318 DOI: 10.1021/acsmacrolett.2c00133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The high spatiotemporal resolution of light as an external stimulus allows the control of shape, mechanical properties, and even forces generated by photoresponsive soft materials. For this purpose, supramolecular systems that respond readily and reversibly to photoirradiation and convert microscopic changes into macroscopic effects are needed. This work demonstrates the reversible light-responsive modulation of the osmotic pressure of an aqueous solution of an azobenzene-containing polymer (azopolymer) and α-cyclodextrin. Osmometry shows that this multivalent and photoresponsive host-guest complex can be used to modulate the concentration of solutes in the solution. Upon alternating irradiation with UV and blue light, the osmolality is reversibly switched by 28 mOsm kg-1. The switching amplitude increases linearly with the concentration of azopolymer and cyclodextrin. This drastic change in osmotic pressure is achieved by carefully designing an azopolymer that provides multivalent interactions as well as high water solubility. In this way, our study demonstrates a tunable control of colligative properties by photoinduced modulation of supramolecular interactions.
Collapse
Affiliation(s)
- Fabian Höglsperger
- Center for Soft Nanoscience and Organic Chemistry Institute, Westfälische Wilhelms-Universität Münster, Busso-Peus-Str. 10, Münster 48149, Germany
| | - Timo Betz
- Third Institute of Physics─Biophysics, University of Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - Bart Jan Ravoo
- Center for Soft Nanoscience and Organic Chemistry Institute, Westfälische Wilhelms-Universität Münster, Busso-Peus-Str. 10, Münster 48149, Germany
| |
Collapse
|
3
|
Ren L, Chen J, Lu Q, Han J, Wu H. Antifouling Nanofiltration Membrane Fabrication via Surface Assembling Light-Responsive and Regenerable Functional Layer. ACS APPLIED MATERIALS & INTERFACES 2020; 12:52050-52058. [PMID: 33156605 DOI: 10.1021/acsami.0c16858] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Membrane fouling, caused by aggregation of organics and microorganisms from filtrate on the membrane surface, seriously reduces the service life of a nanofiltration (NF) membrane. Developing facile and renewable antifouling modification methods without sacrificing separation properties of the membrane remain an imperative requirement. Herein, a thin-film composite (TFC) NF membrane with a light-responsive and regenerable functional layer (P-TFC) was fabricated via host-guest interactions between the azobenzene (guest) labeled functional polymers and the β-cyclodextrin (host) bonded membrane surface (H-TFC). The P-TFC-3 not only showed outstanding antifouling ability and high flux recovery ratio (FRR > 90% at the fourth antiadhesive test) but also exhibited enhanced water permeability (17.9 L m-2 h-1 bar-1) and high selectivity (αMgSO4NaCl = 33.4 and fast antibiotics enrichment capacity) compared with the pristine membrane. Furthermore, when the functional layer was contaminated, it can be removed by ultraviolet light irradiation and a new functional layer can be rebuilt by adding fresh azobenzene labeled functional polymers. After several regeneration processes, the membranes still showed constant separation properties and high flux recovery ability (FRR > 90%). This work proposes an easy-to-assemble and regenerable surface modification strategy to endow TFC NF membranes with excellent fouling resistance and sustainable utilization ability while maintaining high separation properties.
Collapse
Affiliation(s)
- Liang Ren
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Jianxin Chen
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, Hebei University of Technology, Tianjin 300130, China
| | - Qing Lu
- Tianjin Bokelin Medical Packaging Technology Co., Ltd., Tasly Group, Tianjin 300410, China
| | - Jian Han
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Hong Wu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
4
|
Wu K, Sun J, Ma Y, Wei D, Lee O, Luo H, Fan H. Spatiotemporal regulation of dynamic cell microenvironment signals based on an azobenzene photoswitch. J Mater Chem B 2020; 8:9212-9226. [PMID: 32929441 DOI: 10.1039/d0tb01737j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Dynamic biochemical and biophysical signals of cellular matrix define and regulate tissue-specific cell functions and fate. To recapitulate this complex environment in vitro, biomaterials based on structural- or degradation-tunable polymers have emerged as powerful platforms for regulating the "on-demand" cell-material dynamic interplay. As one of the most prevalent photoswitch molecules, the photoisomerization of azobenzene demonstrates a unique advantage in the construction of dynamic substrates. Moreover, the development of azobenzene-containing biomaterials is particularly helpful in elucidating cells that adapt to a dynamic microenvironment or integrate spatiotemporal variations of signals. Herein, this minireview, places emphasis on the research progress of azobenzene photoswitches in the dynamic regulation of matrix signals. Some techniques and material design methods have been discussed to provide some theoretical guidance for the rational and efficient design of azopolymer-based material platforms. In addition, considering that the UV-light response of traditional azobenzene photoswitches is not conducive to biological applications, we have summarized the recent approaches to red-shifting the light wavelength for azobenzene activation.
Collapse
Affiliation(s)
- Kai Wu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, Sichuan, China.
| | - Jing Sun
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, Sichuan, China.
| | - Yanzhe Ma
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, Sichuan, China.
| | - Dan Wei
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, Sichuan, China.
| | - Oscar Lee
- Institute of Clinical Medicine National Yang-Ming University, Taipei, Taiwan
| | - Hongrong Luo
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, Sichuan, China.
| | - Hongsong Fan
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, Sichuan, China.
| |
Collapse
|
5
|
Chen F, Wegner SV. Blue-Light-Switchable Bacterial Cell-Cell Adhesions Enable the Control of Multicellular Bacterial Communities. ACS Synth Biol 2020; 9:1169-1180. [PMID: 32243746 DOI: 10.1021/acssynbio.0c00054] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Although the fundamental importance and biotechnological potential of multibacterial communities, also called biofilms, are well-known, our ability to control them is limited. We present a new way of dynamically controlling bacteria-bacteria adhesions by using blue light and how these photoswitchable adhesions can be used to regulate multicellularity and associated bacterial behavior. To achieve this, the photoswitchable proteins nMagHigh and pMagHigh were expressed on bacterial surfaces as adhesins to allow multicellular clusters to assemble under blue light and reversibly disassemble in the dark. Regulation of the bacterial cell-cell adhesions with visible light provides unique advantages including high spatiotemporal control, tunability, and noninvasive remote regulation. Moreover, these photoswitchable adhesions make it possible to regulate collective bacterial functions including aggregation, quorum sensing, biofilm formation, and metabolic cross-feeding between auxotrophic bacteria with light. Overall, the photoregulation of bacteria-bacteria adhesions provides a new way of studying bacterial cell biology and will enable the design of biofilms for biotechnological applications.
Collapse
Affiliation(s)
- Fei Chen
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, 48149 Münster, Germany
| | - Seraphine V. Wegner
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, 48149 Münster, Germany
| |
Collapse
|
6
|
Li W, Dong K, Wang H, Zhang P, Sang Y, Ren J, Qu X. Remote and reversible control of in vivo bacteria clustering by NIR-driven multivalent upconverting nanosystems. Biomaterials 2019; 217:119310. [DOI: 10.1016/j.biomaterials.2019.119310] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 06/13/2019] [Accepted: 06/25/2019] [Indexed: 11/27/2022]
|
7
|
Goldmann AS, Boase NRB, Michalek L, Blinco JP, Welle A, Barner-Kowollik C. Adaptable and Reprogrammable Surfaces. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1902665. [PMID: 31414512 DOI: 10.1002/adma.201902665] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 06/06/2019] [Indexed: 06/10/2023]
Abstract
Establishing control over chemical reactions on interfaces is a key challenge in contemporary surface and materials science, in particular when introducing well-defined functionalities in a reversible fashion. Reprogrammable, adaptable and functional interfaces require sophisticated chemistries to precisely equip them with specific functionalities having tailored properties. In the last decade, reversible chemistries-both covalent and noncovalent-have paved the way to precision functionalize 2 or 3D structures that provide both spatial and temporal control. A critical literature assessment reveals that methodologies for writing and erasing substrates exist, yet are still far from reaching their full potential. It is thus critical to assess the current status and to identify avenues to overcome the existing limitations. Herein, the current state-of-the-art in the field of reversible chemistry on surfaces is surveyed, while concomitantly identifying the challenges-not only synthetic but also in current surface characterization methods. The potential within reversible chemistry on surfaces to function as true writeable memories devices is identified, and the latest developments in readout technologies are discussed. Finally, we explore how spatial and temporal control over reversible, light-induced chemistries has the potential to drive the future of functional interface design, especially when combined with powerful laser lithographic applications.
Collapse
Affiliation(s)
- Anja S Goldmann
- School of Chemistry, Physics, and Mechanical Engineering, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD, 4000, Australia
| | - Nathan R B Boase
- School of Chemistry, Physics, and Mechanical Engineering, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD, 4000, Australia
| | - Lukas Michalek
- School of Chemistry, Physics, and Mechanical Engineering, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD, 4000, Australia
| | - James P Blinco
- School of Chemistry, Physics, and Mechanical Engineering, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD, 4000, Australia
| | - Alexander Welle
- Institute of Functional Interfaces, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Christopher Barner-Kowollik
- School of Chemistry, Physics, and Mechanical Engineering, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD, 4000, Australia
- Macromolecular Architectures, Institut für Technische Chemie und Polymerchemie, Karlsruhe Institute of Technology (KIT), Engesserstr. 18, 76131, Karlsruhe, Germany
| |
Collapse
|
8
|
Mediating the Migration of Mesenchymal Stem Cells by Dynamically Changing the Density of Cell-selective Peptides Immobilized on β-Cyclodextrin-modified Cell-resisting Polymer Brushes. CHINESE JOURNAL OF POLYMER SCIENCE 2019. [DOI: 10.1007/s10118-019-2324-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
9
|
Chen F, Ricken J, Xu D, Wegner SV. Bacterial Photolithography: Patterning
Escherichia coli
Biofilms with High Spatial Control Using Photocleavable Adhesion Molecules. ACTA ACUST UNITED AC 2018; 3:e1800269. [DOI: 10.1002/adbi.201800269] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 10/29/2018] [Indexed: 12/30/2022]
Affiliation(s)
- Fei Chen
- Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
| | - Julia Ricken
- Department of Biophysical ChemistryUniversity of Heidelberg Im Neuenheimer Feld 253 69120 Heidelberg Germany
| | - Dongdong Xu
- Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
| | - Seraphine V. Wegner
- Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
| |
Collapse
|
10
|
Xu R, Ma S, Wu Y, Zhou F, Liu W. Promoting Lubricity and Antifouling Properties by Supramolecular-Recognition-Based Surface Grafting. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:13116-13122. [PMID: 30173516 DOI: 10.1021/acs.langmuir.8b02375] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In the supramolecular host-guest system, the host molecule selectively identifies the guest and forms the inclusion complex with the guest molecule. In this study, the physicochemical properties of solid surfaces were regulated by the interfacial supramolecular recognition. The host-guest interaction between β-cyclodextrin and guest molecules, including adamantaneacetic acid, sodium dodecyl sulfonate, and a copolymer of 2-methacryloyloxy-2-methyladamantane and 3-sulfopropyl methacrylate potassium salt, was introduced onto the silicon substrate to construct supramolecular composite surfaces. After the assembly of hydrophilic guest molecules on the host surface, the wettability, aqueous lubrication, and anti-algae cell adhesion properties of the supramolecular composite surfaces were improved. This strategy of host-guest interfacial supramolecular recognition provides a new route to prepare aqueous lubrication and antifouling materials.
Collapse
Affiliation(s)
- Rongnian Xu
- State Key Laboratory of Solid Lubrication , Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences , Lanzhou , Gansu 730000 , P. R. China
- University of Chinese Academy of Sciences , Beijing 100083 , P. R. China
| | - Shuanhong Ma
- State Key Laboratory of Solid Lubrication , Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences , Lanzhou , Gansu 730000 , P. R. China
| | - Yang Wu
- State Key Laboratory of Solid Lubrication , Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences , Lanzhou , Gansu 730000 , P. R. China
| | - Feng Zhou
- State Key Laboratory of Solid Lubrication , Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences , Lanzhou , Gansu 730000 , P. R. China
| | - Weimin Liu
- State Key Laboratory of Solid Lubrication , Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences , Lanzhou , Gansu 730000 , P. R. China
- College of Materials Science and Technology , Northwestern Polytechnical University , 127 Youyixi Road , 710072 Xi an , China
| |
Collapse
|
11
|
Zhan W, Wei T, Yu Q, Chen H. Fabrication of Supramolecular Bioactive Surfaces via β-Cyclodextrin-Based Host-Guest Interactions. ACS APPLIED MATERIALS & INTERFACES 2018; 10:36585-36601. [PMID: 30285413 DOI: 10.1021/acsami.8b12130] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Supramolecular host-guest interactions provide a facile and versatile basis for the construction of sophisticated structures and functional assemblies through specific molecular recognition of host and guest molecules to form inclusion complexes. In recent years, these interactions have been exploited as a means of attaching bioactive molecules and polymers to solid substrates for the fabrication of bioactive surfaces. Using a common host molecule, β-cyclodextrin (β-CD), and various guest molecules as molecular building blocks, we fabricated several types of bioactive surfaces with multifunctionality and/or function switchability via host-guest interactions. Other groups have also taken this approach, and several intelligent designs have been developed. The results of these investigations indicate that, compared to the more common covalent bonding-based methods for attachment of bioactive ligands, host-guest based methods are simple, more broadly ("universally") applicable, and allow convenient renewal of bioactivity. In this Spotlight on Applications, we review and summarize recent developments in the fabrication of supramolecular bioactive surfaces via β-CD-based host-guest interactions. The main focus is on the work from our laboratory, but highlights on work from other groups are included. Applications of the materials are also emphasized. These surfaces can be categorized into three types based on: (i) self-assembled monolayers, (ii) polymer brushes, and (iii) multilayered films. The host-guest strategy can be extended from material surfaces to living cell surfaces, and work along these lines is also reviewed. Finally, a brief perspective on the developments of supramolecular bioactive surfaces in the future is presented.
Collapse
Affiliation(s)
- Wenjun Zhan
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , 199 Ren'ai Road , Suzhou 215123 , P. R. China
| | - Ting Wei
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , 199 Ren'ai Road , Suzhou 215123 , P. R. China
| | - Qian Yu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , 199 Ren'ai Road , Suzhou 215123 , P. R. China
| | - Hong Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , 199 Ren'ai Road , Suzhou 215123 , P. R. China
| |
Collapse
|
12
|
Chen F, Wegner SV. Implementation of Blue Light Switchable Bacterial Adhesion for Design of Biofilms. Bio Protoc 2018; 8:e2893. [PMID: 34286002 DOI: 10.21769/bioprotoc.2893] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 05/27/2018] [Accepted: 06/05/2018] [Indexed: 11/02/2022] Open
Abstract
Control of bacterial adhesions to a substrate with high precision in space and time is important to form a well-defined biofilm. Here, we present a method to engineer bacteria such that they adhere specifically to substrates under blue light through the photoswitchable proteins nMag and pMag. This provides exquisite spatiotemporal remote control over these interactions. The engineered bacteria express pMag protein on the surface so that they can adhere to substrates with nMag protein immobilization under blue light, and reversibly detach in the dark. This process can be repeatedly turned on and off. In addition, the bacterial adhesion property can be adjusted by expressing different pMag proteins on the bacterial surface and altering light intensity. This protocol provides light switchable, reversible and tunable control of bacteria adhesion with high spatial and temporal resolution, which enables us to pattern bacteria on substrates with great flexibility.
Collapse
Affiliation(s)
- Fei Chen
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Seraphine V Wegner
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| |
Collapse
|
13
|
Rosales AM, Rodell CB, Chen MH, Morrow MG, Anseth KS, Burdick JA. Reversible Control of Network Properties in Azobenzene-Containing Hyaluronic Acid-Based Hydrogels. Bioconjug Chem 2018; 29:905-913. [PMID: 29406696 DOI: 10.1021/acs.bioconjchem.7b00802] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Biomimetic hydrogels fabricated from biologically derived polymers, such as hyaluronic acid (HA), are useful for numerous biomedical applications. Due to the dynamic nature of biological processes, it is of great interest to synthesize hydrogels with dynamically tunable network properties where various functions (e.g., cargo delivery, mechanical signaling) can be changed over time. Among the various stimuli developed to control hydrogel properties, light stands out for its exquisite spatiotemporal control; however, most light-based chemistries are unidirectional in their ability to manipulate network changes. Here, we report a strategy to reversibly modulate HA hydrogel properties with light, using supramolecular cross-links formed via azobenzene bound to β-cyclodextrin. Upon isomerization with 365 nm or 400-500 nm light, the binding affinity between azobenzene and β-cyclodextrin changed and altered the network connectivity. The hydrogel mechanical properties depended on both the azobenzene modification and isomeric state (lower for cis state), with up to a 60% change in storage modulus with light exposure. Furthermore, the release of a fluorescently labeled protein was accelerated with light exposure under conditions that were cytocompatible to encapsulated cells. These results indicate that the developed hydrogels may be suitable for applications in which temporal regulation of material properties is important, such as drug delivery or mechanobiology studies.
Collapse
Affiliation(s)
- Adrianne M Rosales
- Department of Chemical and Biological Engineering & BioFrontiers Institute , University of Colorado Boulder , Boulder , Colorado 80303 , United States
| | - Christopher B Rodell
- Department of Bioengineering , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| | - Minna H Chen
- Department of Bioengineering , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| | - Matthew G Morrow
- Department of Bioengineering , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| | - Kristi S Anseth
- Department of Chemical and Biological Engineering & BioFrontiers Institute , University of Colorado Boulder , Boulder , Colorado 80303 , United States
| | - Jason A Burdick
- Department of Bioengineering , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| |
Collapse
|
14
|
Wiemann M, Niebuhr R, Juan A, Cavatorta E, Ravoo BJ, Jonkheijm P. Photo-responsive Bioactive Surfaces Based on Cucurbit[8]uril-Mediated Host-Guest Interactions of Arylazopyrazoles. Chemistry 2017; 24:813-817. [PMID: 29283194 PMCID: PMC5814888 DOI: 10.1002/chem.201705426] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Indexed: 11/13/2022]
Abstract
A photoswitchable arylazopyrazole (AAP) derivative binds with cucurbit[8]uril (CB[8]) and methylviologen (MV2+) to form a 1:1:1 heteroternary host–guest complex with a binding constant of Ka=2×103
m−1. The excellent photoswitching properties of AAP are preserved in the inclusion complex. Irradiation with light of a wavelength of 365 and 520 nm leads to quantitative E‐ to Z‐ isomerization and vice versa, respectively. Formation of the Z‐isomer leads to dissociation of the complex as evidenced using 1H NMR spectroscopy. AAP derivatives are then used to immobilize bioactive molecules and photorelease them on demand. When Arg‐Gly‐Asp‐AAP (AAP–RGD) peptides are attached to surface bound CB[8]/MV2+ complexes, cells adhere and can be released upon irradiation. The heteroternary host–guest system offers highly reversible binding properties due to efficient photoswitching and these properties are attractive for designing smart surfaces.
Collapse
Affiliation(s)
- Maike Wiemann
- Bioinspired Molecular Engineering Laboratory of the MIRA Institute for, Biomedical Technology and Technical Medicine and of the MESA and Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE, Enschede, The Netherlands
| | - Rebecca Niebuhr
- Organic Chemistry Institute and Center for Soft Nanoscience, Westfälische Wilhelms-University Münster, Corrensstrasse 40, 48149, Münster, Germany
| | - Alberto Juan
- Bioinspired Molecular Engineering Laboratory of the MIRA Institute for, Biomedical Technology and Technical Medicine and of the MESA and Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE, Enschede, The Netherlands
| | - Emanuela Cavatorta
- Bioinspired Molecular Engineering Laboratory of the MIRA Institute for, Biomedical Technology and Technical Medicine and of the MESA and Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE, Enschede, The Netherlands
| | - Bart Jan Ravoo
- Organic Chemistry Institute and Center for Soft Nanoscience, Westfälische Wilhelms-University Münster, Corrensstrasse 40, 48149, Münster, Germany
| | - Pascal Jonkheijm
- Bioinspired Molecular Engineering Laboratory of the MIRA Institute for, Biomedical Technology and Technical Medicine and of the MESA and Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE, Enschede, The Netherlands
| |
Collapse
|
15
|
Chen F, Wegner SV. Blue Light Switchable Bacterial Adhesion as a Key Step toward the Design of Biofilms. ACS Synth Biol 2017; 6:2170-2174. [PMID: 28803472 DOI: 10.1021/acssynbio.7b00197] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The control of where and when bacteria adhere to a substrate is a key step toward controlling the formation and organization in biofilms. This study shows how we engineer bacteria to adhere specifically to substrates with high spatial and temporal control under blue light, but not in the dark, by using photoswitchable interaction between nMag and pMag proteins. For this, we express pMag proteins on the surface of E. coli so that the bacteria can adhere to substrates with immobilized nMag protein under blue light. These adhesions are reversible in the dark and can be repeatedly turned on and off. Further, the number of bacteria that can adhere to the substrate as well as the attachment and detachment dynamics are adjustable by using different point mutants of pMag and altering light intensity. Overall, the blue light switchable bacteria adhesions offer reversible, tunable and bioorthogonal control with exceptional spatial and temporal resolution. This enables us to pattern bacteria on substrates with great flexibility.
Collapse
Affiliation(s)
- Fei Chen
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Seraphine V. Wegner
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| |
Collapse
|
16
|
Wei T, Zhan W, Yu Q, Chen H. Smart Biointerface with Photoswitched Functions between Bactericidal Activity and Bacteria-Releasing Ability. ACS APPLIED MATERIALS & INTERFACES 2017; 9:25767-25774. [PMID: 28726386 DOI: 10.1021/acsami.7b06483] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Smart biointerfaces with capability to regulate cell-surface interactions in response to external stimuli are of great interest for both fundamental research and practical applications. Smart surfaces with "ON/OFF" switchability for a single function such as cell attachment/detachment are well-known and useful, but the ability to switch between two different functions may be seen as the next level of "smart". In this work reported, a smart supramolecular surface capable of switching functions reversibly between bactericidal activity and bacteria-releasing ability in response to UV-visible light is developed. This platform is composed of surface-containing azobenzene (Azo) groups and a biocidal β-cyclodextrin derivative conjugated with seven quaternary ammonium salt groups (CD-QAS). The surface-immobilized Azo groups in trans form can specially incorporate CD-QAS to achieve a strongly bactericidal surface that kill more than 90% attached bacteria. On irradiation with UV light, the Azo groups switch to cis form, resulting in the dissociation of the Azo/CD-QAS inclusion complex and release of dead bacteria from the surface. After the kill-and-release cycle, the surface can be easily regenerated for reuse by irradiation with visible light and reincorporation of fresh CD-QAS. The use of supramolecular chemistry represents a promising approach to the realization of smart, multifunctional surfaces, and has the potential to be applied to diverse materials and devices in the biomedical field.
Collapse
Affiliation(s)
- Ting Wei
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , 199 Ren'ai Road, Suzhou 215123, P.R. China
| | - Wenjun Zhan
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , 199 Ren'ai Road, Suzhou 215123, P.R. China
| | - Qian Yu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , 199 Ren'ai Road, Suzhou 215123, P.R. China
| | - Hong Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , 199 Ren'ai Road, Suzhou 215123, P.R. China
| |
Collapse
|
17
|
Ondrusek B, Chung H. Modified N-Heterocyclic Carbene Ligand for the Recovery of Olefin Metathesis Catalysts via Noncovalent Host-Guest Interactions. ACS OMEGA 2017; 2:3951-3957. [PMID: 31457699 PMCID: PMC6641285 DOI: 10.1021/acsomega.7b00635] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 07/03/2017] [Indexed: 05/12/2023]
Abstract
A general method, focusing upon olefin metathesis, was developed for the recovery of homogeneous olefin metathesis catalysts from crude reaction solutions. This method utilizes the supramolecular host-guest interaction between an azobenzene-modified N-heterocyclic carbene ligand and a silica-grafted β-cyclodextrin to remove homogeneous catalyst in a heterogeneous manner, allowing for the recovery of more than 97% of ruthenium in solution. The robust and simple nature of the guest molecule allows for the application of this method to a wide range of homogeneous catalysts. This study reports the synthesis and characterization of the said precatalyst and host compound as well as proof-of-concept recovery trials for a number of common substrates, with the residual ruthenium content of reaction mixtures evaluated by inductively coupled plasma mass spectrometry.
Collapse
|
18
|
Koçer G, Ter Schiphorst J, Hendrikx M, Kassa HG, Leclère P, Schenning APHJ, Jonkheijm P. Light-Responsive Hierarchically Structured Liquid Crystal Polymer Networks for Harnessing Cell Adhesion and Migration. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29. [PMID: 28474746 DOI: 10.1002/adma.201606407] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Revised: 03/20/2017] [Indexed: 05/12/2023]
Abstract
Extracellular microenvironment is highly dynamic where spatiotemporal regulation of cell-instructive cues such as matrix topography tightly regulates cellular behavior. Recapitulating dynamic changes in stimuli-responsive materials has become an important strategy in regenerative medicine to generate biomaterials which closely mimic the natural microenvironment. Here, light responsive liquid crystal polymer networks are used for their adaptive and programmable nature to form hybrid surfaces presenting micrometer scale topographical cues and changes in nanoscale roughness at the same time to direct cell migration. This study shows that the cell speed and migration patterns are strongly dependent on the height of the (light-responsive) micrometer scale topographies and differences in surface nanoroughness. Furthermore, switching cell migration patterns upon in situ temporal changes in surface nanoroughness, points out the ability to dynamically control cell behavior on these surfaces. Finally, the possibility is shown to form photoswitchable topographies, appealing for future studies where topographies can be rendered reversible on demand.
Collapse
Affiliation(s)
- Gülistan Koçer
- Bioinspired Molecular Engineering Laboratory, MIRA Institute for Biomedical Technology and Technical Medicine and Molecular Nanofabrication Group, MESA+ Institute for Nanotechnology, Department of Science and Technology, University of Twente, 7500, AE, Enschede, The Netherlands
| | - Jeroen Ter Schiphorst
- Functional Organic Materials and Devices, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, 5612, AE, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600, MB, Eindhoven, The Netherlands
| | - Matthew Hendrikx
- Functional Organic Materials and Devices, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, 5612, AE, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600, MB, Eindhoven, The Netherlands
| | - Hailu G Kassa
- University of Mons (UMONS), Laboratory for Chemistry of Novel Materials, Center for Innovation and Research in Materials and Polymers (CIRMAP), Research Institute for Materials Science and Engineering, Place du Parc, 20, B-7000, Mons, Belgium
| | - Philippe Leclère
- Functional Organic Materials and Devices, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, 5612, AE, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600, MB, Eindhoven, The Netherlands
- University of Mons (UMONS), Laboratory for Chemistry of Novel Materials, Center for Innovation and Research in Materials and Polymers (CIRMAP), Research Institute for Materials Science and Engineering, Place du Parc, 20, B-7000, Mons, Belgium
| | - Albertus P H J Schenning
- Functional Organic Materials and Devices, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, 5612, AE, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600, MB, Eindhoven, The Netherlands
| | - Pascal Jonkheijm
- Bioinspired Molecular Engineering Laboratory, MIRA Institute for Biomedical Technology and Technical Medicine and Molecular Nanofabrication Group, MESA+ Institute for Nanotechnology, Department of Science and Technology, University of Twente, 7500, AE, Enschede, The Netherlands
| |
Collapse
|
19
|
Zhan W, Wei T, Cao L, Hu C, Qu Y, Yu Q, Chen H. Supramolecular Platform with Switchable Multivalent Affinity: Photo-Reversible Capture and Release of Bacteria. ACS APPLIED MATERIALS & INTERFACES 2017; 9:3505-3513. [PMID: 28071051 DOI: 10.1021/acsami.6b15446] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Surfaces having dynamic control of interactions at the biological system-material interface are of great scientific and technological interest. In this work, a supramolecular platform with switchable multivalent affinity was developed to efficiently capture bacteria and on-demand release captured bacteria in response to irradiation with light of different wavelengths. The system consists of a photoresponsive self-assembled monolayer containing azobenzene (Azo) groups as guest and β-cyclodextrin (β-CD)-mannose (CD-M) conjugates as host with each CD-M containing seven mannose units to display localized multivalent carbohydrates. Taking the advantage of multivalent effect of CD-M, this system exhibited high capacity and specificity for the capture of mannose-specific type 1-fimbriated bacteria. Moreover, ultraviolet (UV) light irradiation caused isomerization of the Azo groups from trans-form to cis-form, resulting in the dissociation of the host-guest Azo/CD-M inclusion complexes and localized release of the captured bacteria. The capture and release process could be repeated for multiple cycles, suggesting good reproducibility. This platform provides the basis for development of reusable biosensors and diagnostic devices for the detection and measurement of bacteria and exhibits great potential for use as a standard protocol for the on-demand switching of surface functionalities.
Collapse
Affiliation(s)
- Wenjun Zhan
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , 199 Ren'ai Road, Suzhou, 215123, People's Republic of China
| | - Ting Wei
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , 199 Ren'ai Road, Suzhou, 215123, People's Republic of China
| | - Limin Cao
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , 199 Ren'ai Road, Suzhou, 215123, People's Republic of China
| | - Changming Hu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , 199 Ren'ai Road, Suzhou, 215123, People's Republic of China
| | - Yangcui Qu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , 199 Ren'ai Road, Suzhou, 215123, People's Republic of China
| | - Qian Yu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , 199 Ren'ai Road, Suzhou, 215123, People's Republic of China
| | - Hong Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , 199 Ren'ai Road, Suzhou, 215123, People's Republic of China
| |
Collapse
|
20
|
Kaneta M, Honda T, Onda K, Han M. Repeated photoswitching performance of azobenzenes adsorbed on gold surfaces: a balance between space, intermolecular interactions, and phase separation. NEW J CHEM 2017. [DOI: 10.1039/c6nj03121h] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A delicate balance between space, intermolecular interactions, and phase separation plays an important role in forming repeatedly photoswitchable monolayers.
Collapse
Affiliation(s)
- Mitsuyuki Kaneta
- Department of Chemistry and Department of Electronic Chemistry
- Tokyo Institute of Technology
- Yokohama 226-8502
- Japan
| | - Takumu Honda
- Department of Chemistry and Department of Electronic Chemistry
- Tokyo Institute of Technology
- Yokohama 226-8502
- Japan
| | - Ken Onda
- School of Science
- Tokyo Institute of Technology
- Yokohama 226-8502
- Japan
- JST
| | - Mina Han
- Department of Chemistry and Department of Electronic Chemistry
- Tokyo Institute of Technology
- Yokohama 226-8502
- Japan
- Department of Chemistry and Biotechnology
| |
Collapse
|
21
|
Weineisen NL, Hommersom CA, Voskuhl J, Sankaran S, Depauw AMA, Katsonis N, Jonkheijm P, Cornelissen JJLM. Photoresponsive, reversible immobilization of virus particles on supramolecular platforms. Chem Commun (Camb) 2017; 53:1896-1899. [DOI: 10.1039/c6cc09576c] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Covalently attached azobenzene moieties to cowpea chlorotic mottle virus (CCMV) allow for photoresponsive immobilization on cucurbit[8]uril bearing surfaces.
Collapse
Affiliation(s)
- N. L. Weineisen
- Laboratory for Biomolecular Nanotechnology
- MESA+ Institute for Nanotechnology, University of Twente
- 7500 AE Enschede
- The Netherlands
| | - C. A. Hommersom
- Laboratory for Biomolecular Nanotechnology
- MESA+ Institute for Nanotechnology, University of Twente
- 7500 AE Enschede
- The Netherlands
| | - J. Voskuhl
- Laboratory for Molecular nanoFabrication
- MESA+ Institute for Nanotechnology
- University of Twente
- 7500 AE Enschede
- The Netherlands
| | - S. Sankaran
- Laboratory for Molecular nanoFabrication
- MESA+ Institute for Nanotechnology
- University of Twente
- 7500 AE Enschede
- The Netherlands
| | - A. M. A. Depauw
- Laboratory for Biomolecular Nanotechnology
- MESA+ Institute for Nanotechnology, University of Twente
- 7500 AE Enschede
- The Netherlands
| | - N. Katsonis
- Laboratory for Biomolecular Nanotechnology
- MESA+ Institute for Nanotechnology, University of Twente
- 7500 AE Enschede
- The Netherlands
| | - P. Jonkheijm
- Laboratory for Molecular nanoFabrication
- MESA+ Institute for Nanotechnology
- University of Twente
- 7500 AE Enschede
- The Netherlands
| | - J. J. L. M. Cornelissen
- Laboratory for Biomolecular Nanotechnology
- MESA+ Institute for Nanotechnology, University of Twente
- 7500 AE Enschede
- The Netherlands
| |
Collapse
|
22
|
Möller N, Hellwig T, Stricker L, Engel S, Fallnich C, Ravoo BJ. Near-infrared photoswitching of cyclodextrin–guest complexes using lanthanide-doped LiYF4 upconversion nanoparticles. Chem Commun (Camb) 2017; 53:240-243. [DOI: 10.1039/c6cc08321h] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This communication reports a new type of supramolecular cyclodextrin–guest complexes using cyclodextrin coated upconversion nanoparticles as hosts and monovalent and divalent azobenzenes and arylazopyrazoles as guests.
Collapse
Affiliation(s)
- Nadja Möller
- Organic Chemistry Institute
- Westfälische Wilhelms-Universität Münster
- 48149 Münster
- Germany
| | - Tim Hellwig
- Institute of Applied Physics
- Westfälische Wilhelms-Universität Münster
- 48149 Münster
- Germany
| | - Lucas Stricker
- Organic Chemistry Institute
- Westfälische Wilhelms-Universität Münster
- 48149 Münster
- Germany
| | - Sabrina Engel
- Organic Chemistry Institute
- Westfälische Wilhelms-Universität Münster
- 48149 Münster
- Germany
| | - Carsten Fallnich
- Institute of Applied Physics
- Westfälische Wilhelms-Universität Münster
- 48149 Münster
- Germany
| | - Bart Jan Ravoo
- Organic Chemistry Institute
- Westfälische Wilhelms-Universität Münster
- 48149 Münster
- Germany
| |
Collapse
|
23
|
|
24
|
Ren J, Tian K, Jia L, Han X, Zhao M. Rapid Covalent Immobilization of Proteins by Phenol-Based Photochemical Cross-Linking. Bioconjug Chem 2016; 27:2266-2270. [DOI: 10.1021/acs.bioconjchem.6b00413] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jun Ren
- School of Life Science and Biotechnology and ‡School of Physics and Optoelectronic
Engineering, Dalian University of Technology, Dalian, 116023, P. R. China
| | - Kaikai Tian
- School of Life Science and Biotechnology and ‡School of Physics and Optoelectronic
Engineering, Dalian University of Technology, Dalian, 116023, P. R. China
| | - Lingyun Jia
- School of Life Science and Biotechnology and ‡School of Physics and Optoelectronic
Engineering, Dalian University of Technology, Dalian, 116023, P. R. China
| | - Xiuyou Han
- School of Life Science and Biotechnology and ‡School of Physics and Optoelectronic
Engineering, Dalian University of Technology, Dalian, 116023, P. R. China
| | - Mingshan Zhao
- School of Life Science and Biotechnology and ‡School of Physics and Optoelectronic
Engineering, Dalian University of Technology, Dalian, 116023, P. R. China
| |
Collapse
|
25
|
Schmidt B, Sankaran S, Stegemann L, Strassert CA, Jonkheijm P, Voskuhl J. Agglutination of bacteria using polyvalent nanoparticles of aggregation-induced emissive thiophthalonitrile dyes. J Mater Chem B 2016; 4:4732-4738. [PMID: 32263246 DOI: 10.1039/c6tb01210h] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel class of aggregation-induced emissive bis(phenylthio)phthalonitrile dyes were synthesized. These dyes assembled into nanoparticles that were equipped with mannose units. The nanoparticles underwent selective interactions with lectins and bacteria. The bright fluorescent aggregates aid in the visualization of the agglutination of bacteria.
Collapse
Affiliation(s)
- Bettina Schmidt
- Bioinspired Molecular Engineering Laboratory of the MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, P.O. Box 217, 7500 AE Enschede, Netherlands
| | | | | | | | | | | |
Collapse
|
26
|
Cavatorta E, Verheijden ML, van Roosmalen W, Voskuhl J, Huskens J, Jonkheijm P. Functionalizing the glycocalyx of living cells with supramolecular guest ligands for cucurbit[8]uril-mediated assembly. Chem Commun (Camb) 2016; 52:7146-9. [PMID: 27169698 DOI: 10.1039/c6cc01693f] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Multiple naphthol ligands were installed on the glycocalyx of white blood cells via metabolic labeling and subsequent strain promoted azide-alkyne cycloaddition. Only when cucurbit[8]uril was present to drive the formation of ternary complexes, cells specifically assembled on a methylviologen functionalized supported lipid bilayer through multivalent interactions.
Collapse
Affiliation(s)
- Emanuela Cavatorta
- Molecular Nanofabrication Group, MESA+ Institute for Nanotechnology, Department of Science and Technology, University of Twente, P. O. Box 217, 7500 AE, Enschede, The Netherlands.
| | | | | | | | | | | |
Collapse
|
27
|
Stricker L, Fritz EC, Peterlechner M, Doltsinis NL, Ravoo BJ. Arylazopyrazoles as Light-Responsive Molecular Switches in Cyclodextrin-Based Supramolecular Systems. J Am Chem Soc 2016; 138:4547-54. [PMID: 26972671 DOI: 10.1021/jacs.6b00484] [Citation(s) in RCA: 212] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A simple and high yield synthesis of water-soluble arylazopyrazoles (AAPs) featuring superior photophysical properties is reported. The introduction of a carboxylic acid allows the diverse functionalization of AAPs. Based on structural modifications of the switching unit the photophysical properties of the AAPs could be tuned to obtain molecular switches with favorable photostationary states. Furthermore, AAPs form stable and light-responsive host-guest complexes with β-cyclodextrin (β-CD). Our most efficient AAP shows binding affinities comparable to azobenzenes, but more effective switching and higher thermal stability of the Z-isomer. As a proof-of-principle, we investigated two CD-based supramolecular systems, containing either cyclodextrin vesicles (CDVs) or cyclodextrin-functionalized gold nanoparticles (CDAuNPs), which revealed excellent reversible, light-responsive aggregation and dispersion behavior. To conclude, AAPs have great potential to be incorporated as molecular switches in highly demanding and multivalent photoresponsive systems.
Collapse
Affiliation(s)
- Lucas Stricker
- Organic Chemistry Institute and Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster , Corrensstrasse 40, 48149 Münster, Germany
| | - Eva-Corinna Fritz
- Organic Chemistry Institute and Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster , Corrensstrasse 40, 48149 Münster, Germany
| | - Martin Peterlechner
- Institute of Materials Physics, Westfälische Wilhelms-Universität Münster , Wilhelm-Klemm-Strasse 10, 48149 Münster, Germany
| | - Nikos L Doltsinis
- Institute for Solid State Theory and Center for Multiscale Theory & Computation, Westfälische Wilhelms-Universität Münster , Wilhelm-Klemm-Str. 10, 48149 Münster, Germany
| | - Bart Jan Ravoo
- Organic Chemistry Institute and Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster , Corrensstrasse 40, 48149 Münster, Germany
| |
Collapse
|
28
|
Zhu YY, Wang ML, Ma MX, Sun ZG, Jiao CQ, Ma C, Li HY. Transition metal phosphonates with supramolecular structures: syntheses, structures, surface photovoltage and luminescence properties. NEW J CHEM 2016. [DOI: 10.1039/c5nj02417j] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Four new transition metal phosphonates with 2D and 3D supramolecular structures have been hydrothermally synthesized. The surface photovoltage and luminescence properties of the title compounds have also been studied.
Collapse
Affiliation(s)
- Yan-Yu Zhu
- School of Chemistry and Chemical Engineering
- Liaoning Normal University
- Dalian 116029
- P. R. China
| | - Mei-Ling Wang
- School of Chemistry and Chemical Engineering
- Liaoning Normal University
- Dalian 116029
- P. R. China
| | - Ming-Xue Ma
- School of Chemistry and Chemical Engineering
- Liaoning Normal University
- Dalian 116029
- P. R. China
| | - Zhen-Gang Sun
- School of Chemistry and Chemical Engineering
- Liaoning Normal University
- Dalian 116029
- P. R. China
| | - Cheng-Qi Jiao
- School of Chemistry and Chemical Engineering
- Liaoning Normal University
- Dalian 116029
- P. R. China
| | - Chao Ma
- School of Chemistry and Chemical Engineering
- Liaoning Normal University
- Dalian 116029
- P. R. China
| | - Huan-Yu Li
- School of Chemistry and Chemical Engineering
- Liaoning Normal University
- Dalian 116029
- P. R. China
| |
Collapse
|
29
|
Roling O, Stricker L, Voskuhl J, Lamping S, Ravoo BJ. Supramolecular surface adhesion mediated by azobenzene polymer brushes. Chem Commun (Camb) 2016; 52:1964-6. [DOI: 10.1039/c5cc08968a] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Surface immobilised polymer brushes containing azobenzenes were prepared using microcontact chemistry and surface-initiated atom transfer radical polymerisation. Two surfaces bearing brushes can be glued together in the presence of a β-cyclodextrin polymer.
Collapse
Affiliation(s)
- Oliver Roling
- Organic Chemistry Institute and Center for Soft Nanoscience
- Westfälische Wilhelms-Universität Münster
- 48149 Münster
- Germany
| | - Lucas Stricker
- Organic Chemistry Institute and Center for Soft Nanoscience
- Westfälische Wilhelms-Universität Münster
- 48149 Münster
- Germany
| | - Jens Voskuhl
- Organic Chemistry Institute and Center for Soft Nanoscience
- Westfälische Wilhelms-Universität Münster
- 48149 Münster
- Germany
| | - Sebastian Lamping
- Organic Chemistry Institute and Center for Soft Nanoscience
- Westfälische Wilhelms-Universität Münster
- 48149 Münster
- Germany
| | - Bart Jan Ravoo
- Organic Chemistry Institute and Center for Soft Nanoscience
- Westfälische Wilhelms-Universität Münster
- 48149 Münster
- Germany
| |
Collapse
|
30
|
Delbianco M, Bharate P, Varela-Aramburu S, Seeberger PH. Carbohydrates in Supramolecular Chemistry. Chem Rev 2015; 116:1693-752. [PMID: 26702928 DOI: 10.1021/acs.chemrev.5b00516] [Citation(s) in RCA: 177] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Carbohydrates are involved in a variety of biological processes. The ability of sugars to form a large number of hydrogen bonds has made them important components for supramolecular chemistry. We discuss recent advances in the use of carbohydrates in supramolecular chemistry and reveal that carbohydrates are useful building blocks for the stabilization of complex architectures. Systems are presented according to the scaffold that supports the glyco-conjugate: organic macrocycles, dendrimers, nanomaterials, and polymers are considered. Glyco-conjugates can form host-guest complexes, and can self-assemble by using carbohydrate-carbohydrate interactions and other weak interactions such as π-π interactions. Finally, complex supramolecular architectures based on carbohydrate-protein interactions are discussed.
Collapse
Affiliation(s)
- Martina Delbianco
- Department of Biomolecular Systems, Max-Planck-Institute of Colloids and Interfaces , Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Priya Bharate
- Department of Biomolecular Systems, Max-Planck-Institute of Colloids and Interfaces , Am Mühlenberg 1, 14476 Potsdam, Germany.,Institute of Chemistry and Biochemistry, Freie Universität Berlin , Arnimallee 22, 14195 Berlin, Germany
| | - Silvia Varela-Aramburu
- Department of Biomolecular Systems, Max-Planck-Institute of Colloids and Interfaces , Am Mühlenberg 1, 14476 Potsdam, Germany.,Institute of Chemistry and Biochemistry, Freie Universität Berlin , Arnimallee 22, 14195 Berlin, Germany
| | - Peter H Seeberger
- Department of Biomolecular Systems, Max-Planck-Institute of Colloids and Interfaces , Am Mühlenberg 1, 14476 Potsdam, Germany.,Institute of Chemistry and Biochemistry, Freie Universität Berlin , Arnimallee 22, 14195 Berlin, Germany
| |
Collapse
|
31
|
Ennen F, Fenner P, Boye S, Lederer A, Komber H, Voit B, Appelhans D. Sphere-Like Protein–Glycopolymer Nanostructures Tailored by Polyassociation. Biomacromolecules 2015; 17:32-45. [DOI: 10.1021/acs.biomac.5b00975] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Franka Ennen
- Leibniz-Institut für Polymerforschunng Dresden e.V., Hohe Straße 6, D-01069 Dresden, Germany
- Technische Universität Dresden, 01062 Dresden, Germany
| | - Philipp Fenner
- Leibniz-Institut für Polymerforschunng Dresden e.V., Hohe Straße 6, D-01069 Dresden, Germany
- Technische Universität Dresden, 01062 Dresden, Germany
| | - Susanne Boye
- Leibniz-Institut für Polymerforschunng Dresden e.V., Hohe Straße 6, D-01069 Dresden, Germany
| | - Albena Lederer
- Leibniz-Institut für Polymerforschunng Dresden e.V., Hohe Straße 6, D-01069 Dresden, Germany
- Technische Universität Dresden, 01062 Dresden, Germany
| | - Hartmut Komber
- Leibniz-Institut für Polymerforschunng Dresden e.V., Hohe Straße 6, D-01069 Dresden, Germany
| | - Brigitte Voit
- Leibniz-Institut für Polymerforschunng Dresden e.V., Hohe Straße 6, D-01069 Dresden, Germany
- Technische Universität Dresden, 01062 Dresden, Germany
| | - Dietmar Appelhans
- Leibniz-Institut für Polymerforschunng Dresden e.V., Hohe Straße 6, D-01069 Dresden, Germany
| |
Collapse
|
32
|
Sankaran S, van Weerd J, Voskuhl J, Karperien M, Jonkheijm P. Photoresponsive Cucurbit[8]uril-Mediated Adhesion of Bacteria on Supported Lipid Bilayers. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2015; 11:6187-96. [PMID: 26469773 DOI: 10.1002/smll.201502471] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Indexed: 05/16/2023]
Abstract
In this work, the development of a photoresponsive platform for the presentation of bioactive ligands to study receptor-ligand interactions has been described. For this purpose, supramolecular host-guest chemistry and supported lipid bilayers (SLBs) have been combined in a microfluidic device. Quartz crystal microbalance with dissipation monitoring (QCM-D) studies on methyl viologen (MV)-functionalized oligo ethylene glycol-based self-assembled monolayers, gel and liquid-state SLBs have been compared for their nonfouling properties in the case of ConA and bacteria. In combination with bacterial adhesion test, negligible nonspecific bacterial adhesion is observed only in the case of methyl-viologen-modified liquid-state SLBs. Therefore, liquid-state SLBs have been identified as most suitable for studying specific cell interactions when MV is incorporated as a guest on the surface. The photoswitchable supramolecular ternary complex is formed by assembling cucurbit[8]uril (CB[8]) and an azobenzene-mannose conjugate (Azo-Man) onto MV-functionalized liquid-state SLBs and the assembly process has been characterized using QCM-D and fluorescence techniques. Mannose has been found to enable binding of E. coli via cell-surface receptors on the nonfouling supramolecular SLBs. Optical switching of the azobenzene moiety allows us to "erase" the bioactive surface after bacterial binding, providing the potential to develop reusable sensors. Localized photorelease of bacterial cells has also been shown indicating the possibility of optically guiding cellular growth, migration, and intercellular interactions.
Collapse
Affiliation(s)
- Shrikrishnan Sankaran
- Molecular Nanofabrication Group of the MESA+ Institute for Nanotechnology, Bioinspired Molecular Engineering Laboratory of the MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, P.O. Box 217, 7500, AE Enschede, The Netherlands
| | - Jasper van Weerd
- Molecular Nanofabrication Group of the MESA+ Institute for Nanotechnology, Bioinspired Molecular Engineering Laboratory of the MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, P.O. Box 217, 7500, AE Enschede, The Netherlands
- Department of Developmental Bioengineering of the MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, P.O. Box 217, 7500, AE Enschede, The Netherlands
| | - Jens Voskuhl
- Molecular Nanofabrication Group of the MESA+ Institute for Nanotechnology, Bioinspired Molecular Engineering Laboratory of the MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, P.O. Box 217, 7500, AE Enschede, The Netherlands
| | - Marcel Karperien
- Department of Developmental Bioengineering of the MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, P.O. Box 217, 7500, AE Enschede, The Netherlands
| | - Pascal Jonkheijm
- Molecular Nanofabrication Group of the MESA+ Institute for Nanotechnology, Bioinspired Molecular Engineering Laboratory of the MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, P.O. Box 217, 7500, AE Enschede, The Netherlands
| |
Collapse
|
33
|
Sankaran S, de Ruiter M, Cornelissen JJLM, Jonkheijm P. Supramolecular Surface Immobilization of Knottin Derivatives for Dynamic Display of High Affinity Binders. Bioconjug Chem 2015; 26:1972-80. [PMID: 26270829 DOI: 10.1021/acs.bioconjchem.5b00419] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Knottins are known as a robust and versatile class of miniprotein scaffolds for the presentation of high-affinity binding peptides; however, to date their application in biomaterials, biological coatings, and surface applications have not been explored. We have developed a strategy to recombinantly synthesize a β-trypsin inhibitory knottin with supramolecular guest tags that enable it to adhere to self-assembled monolayers of the supramolecular host cucurbit[8]uril (CB[8]). We have described a strategy to easily express knottins in E. coli by conjugating them to a fluorescent protein after which they are cleaved and purified. Knottin constructs that varied in the number and position of the supramolecular tag at either the N- or C-termini or at both ends have been verified for their trypsin inhibitory function and CB[8]-binding properties in solution and on surfaces. All of the knottin constructs showed strong inhibition of trypsin with inhibition constants between 10 and 30 nM. Using microscale thermophoresis, we determined that the supramolecular guest tags on the knottins bind CB[8] with a Kd of ∼6 μM in solution. At the surface, strong divalent binding has been determined with a Kd of 0.75 μM in the case of the knottin with two supramolecular guest tags, whereas only weak monovalent binding occurred when only one guest tag was present. We also show successful supramolecular surface immobilization of the knottin using CB[8] and prove that they can be used to immobilize β-trypsin at the surface.
Collapse
Affiliation(s)
- Shrikrishnan Sankaran
- Bioinspired Molecular Engineering Laboratory of the MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente , 7500 AE Enschede, The Netherlands
| | | | | | - Pascal Jonkheijm
- Bioinspired Molecular Engineering Laboratory of the MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente , 7500 AE Enschede, The Netherlands
| |
Collapse
|
34
|
Vaselli E, Fedele C, Cavalli S, Netti PA. “On-Off” RGD Signaling Using Azobenzene Photoswitch-Modified Surfaces. Chempluschem 2015; 80:1547-1555. [DOI: 10.1002/cplu.201500179] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 06/09/2015] [Indexed: 11/07/2022]
Affiliation(s)
- Elisa Vaselli
- Center for Advanced Biomaterials for Healthcare IIT@CRIB; Istituto Italiano di Tecnologia; Largo Barsanti e Matteucci, 53 80125 Naples Italy
| | - Chiara Fedele
- Center for Advanced Biomaterials for Healthcare IIT@CRIB; Istituto Italiano di Tecnologia; Largo Barsanti e Matteucci, 53 80125 Naples Italy
| | - Silvia Cavalli
- Center for Advanced Biomaterials for Healthcare IIT@CRIB; Istituto Italiano di Tecnologia; Largo Barsanti e Matteucci, 53 80125 Naples Italy
| | - Paolo A. Netti
- Center for Advanced Biomaterials for Healthcare IIT@CRIB; Istituto Italiano di Tecnologia; Largo Barsanti e Matteucci, 53 80125 Naples Italy
| |
Collapse
|
35
|
Blass J, Bozna BL, Albrecht M, Krings JA, Ravoo BJ, Wenz G, Bennewitz R. Switching adhesion and friction by light using photosensitive guest–host interactions. Chem Commun (Camb) 2015; 51:1830-3. [DOI: 10.1039/c4cc09204j] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Friction and adhesion between two β-cyclodextrin functionalized surfaces can be switched reversibly by external light stimuli. The interaction is mediated by complexation with ditopic azobenzene guest molecules.
Collapse
Affiliation(s)
- Johanna Blass
- INM - Leibniz-Institute for New Materials
- Saarland University
- 66123 Saarbrücken
- Germany
- Physics Department
| | - Bianca L. Bozna
- INM - Leibniz-Institute for New Materials
- Saarland University
- 66123 Saarbrücken
- Germany
| | - Marcel Albrecht
- Organic Macromolecular Chemistry
- Saarland University
- 66123 Saarbrücken
- Germany
| | | | - Bart Jan Ravoo
- Organic Chemistry Institute
- University of Münster
- 48149 Münster
- Germany
| | - Gerhard Wenz
- Organic Macromolecular Chemistry
- Saarland University
- 66123 Saarbrücken
- Germany
| | - Roland Bennewitz
- INM - Leibniz-Institute for New Materials
- Saarland University
- 66123 Saarbrücken
- Germany
- Physics Department
| |
Collapse
|
36
|
Hu Y, Tabor RF, Wilkinson BL. Sweetness and light: design and applications of photo-responsive glycoconjugates. Org Biomol Chem 2015; 13:2216-25. [DOI: 10.1039/c4ob02296c] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photoswitchable glycoconjugates are promising tools for studying biomolecular interactions and for the development of stimuli-responsive materials.
Collapse
Affiliation(s)
- Yingxue Hu
- School of Chemistry
- Monash University
- Australia
| | | | | |
Collapse
|