1
|
He HX, Wu F, Zhang X, Feng JJ. Ring Expansion toward Fused Diazabicyclo[3.1.1]heptanes through Lewis Acid Catalyzed Highly Selective C-C/C-N Bond Cross-Exchange Reaction between Bicyclobutanes and Diaziridines. Angew Chem Int Ed Engl 2025; 64:e202416741. [PMID: 39532666 DOI: 10.1002/anie.202416741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 11/16/2024]
Abstract
The synthesis of bicyclic scaffolds has garnered considerable interest in drug discovery because of their ability to mimic benzene bioisosteres. Herein, we introduce a new approach that utilizes a Lewis acid (Sc(OTf)3)-catalyzed σ-bond cross-exchange reaction between the C-C bond of bicyclobutanes and the C-N bond of diaziridines to produce multifunctionalized and medicinally interesting azabicyclo[3.1.1]heptane derivatives. The reaction proceeds well with different bicyclobutanes and a broad range of aryl- as well as alkenyl-, but also alkyl-substituted diaziridines (up to 98 % yield). Conducting a scale-up experiment and exploring the synthetic transformations of the cycloadducts emphasized the practical application of the synthesis. Furthermore, a zinc-based chiral Lewis acid catalytic system was developed for the enantioselective version of this reaction (up to 96 % ee).
Collapse
Affiliation(s)
- Heng-Xian He
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, 410082, Changsha, Hunan, P. R. China
| | - Feng Wu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, 410082, Changsha, Hunan, P. R. China
| | - Xu Zhang
- School of Chemistry & Chemical Engineering, Yangzhou University, 225002, Yangzhou, P. R. China
| | - Jian-Jun Feng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, 410082, Changsha, Hunan, P. R. China
| |
Collapse
|
2
|
Coto D, Mata S, López LA, Vicente R. Regiodivergent formal [4+2] cycloaddition of nitrosoarenes with furanyl cyclopropane derivatives as 4π components. Chem Commun (Camb) 2025; 61:1411-1414. [PMID: 39711365 DOI: 10.1039/d4cc05662k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Cyclopropanes are commonly used as valuable 3-carbon building blocks. Herein, we disclose a different reactivity pattern of furanyl cyclopropanes, which serve as a 4-carbon component in Lewis acid-promoted [4+2] cycloadditions with nitrosoarenes to afford 1,2-oxazine derivatives. Importantly, the regioselectivity of the cycloaddition reaction can be controlled by the appropriate choice of the Lewis acid.
Collapse
Affiliation(s)
- Darío Coto
- Departamento de Química Orgánica e Inorgánica, Universidad de Oviedo, Julián Clavería 8, 33006-Oviedo, Spain.
- Instituto Universitario de Química Organometálica "Enrique Moles", Universidad de Oviedo, 33006-Oviedo, Spain
- Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Oviedo, 33006-Oviedo, Spain
| | - Sergio Mata
- Departamento de Química Orgánica e Inorgánica, Universidad de Oviedo, Julián Clavería 8, 33006-Oviedo, Spain.
| | - Luis A López
- Departamento de Química Orgánica e Inorgánica, Universidad de Oviedo, Julián Clavería 8, 33006-Oviedo, Spain.
- Instituto Universitario de Química Organometálica "Enrique Moles", Universidad de Oviedo, 33006-Oviedo, Spain
- Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Oviedo, 33006-Oviedo, Spain
| | - Rúben Vicente
- Departamento de Química Orgánica e Inorgánica, Universidad de Oviedo, Julián Clavería 8, 33006-Oviedo, Spain.
- Instituto Universitario de Química Organometálica "Enrique Moles", Universidad de Oviedo, 33006-Oviedo, Spain
- Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Oviedo, 33006-Oviedo, Spain
| |
Collapse
|
3
|
Li PJ, Kuang XK, Zhu J, Tang Y, Wang L. A Facile Approach to Tetracyclic Indolines: Highly Diastereoselective [4+2] Annulation of Indoles with Bicyclic N-Substituted Cyclobutanes. J Org Chem 2025; 90:899-907. [PMID: 39791131 DOI: 10.1021/acs.joc.4c02509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
A new stereoselective [4+2] annulation method for constructing tetracyclic indolines by reacting indoles with bicyclic N-substituted cyclobutanes has been developed. Using Sc(OTf)3 as a catalyst, a series of tetracyclic indolines with four continued stereogenic carbon centers have been obtained in ≤86% yields as single diastereomers. This reaction offers an accessible way for the rapid construction of the core structures of biologically active natural products like paucidirinine, deethylibophyllidine, and ibophyllidine.
Collapse
Affiliation(s)
- Peng-Juan Li
- Chang-Kung Chuang Institute, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, College of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Xiao-Kang Kuang
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - Jun Zhu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Yong Tang
- Chang-Kung Chuang Institute, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, College of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - Lijia Wang
- Chang-Kung Chuang Institute, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, College of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| |
Collapse
|
4
|
Lan S, Cui Q, Luo D, Shi S, He C, Huang S, Xu C, Zhao L, Liu J, Gu CZ, Yang S, Fang X. Copper-Catalyzed Asymmetric Nucleophilic Opening of 1,1,2,2-Tetrasubstituted Donor-Acceptor Cyclopropanes for the Synthesis of α-Tertiary Amines. J Am Chem Soc 2025; 147:1172-1185. [PMID: 39723834 DOI: 10.1021/jacs.4c14944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Catalytic asymmetric transformation of donor-acceptor cyclopropanes (DACs) has been proven to be a highly valuable and robust strategy to construct diverse types of enantioenriched molecules. However, the use of 1,1,2,2-tetrasubstituted DACs to form products bearing quaternary stereocenters remains a long-term unsolved challenge. Here, we report the copper-catalyzed asymmetric aminative ring opening of tetrasubstituted alkynyl DACs that delivers a myriad of α-tertiary amines with high levels of enantioselectivities. The alkyne, amine, and ester moieties within the products enable diverse further applications, including the asymmetric synthesis of bioactive molecules. Mechanistic studies indicate that the zwitterionic intermediate bearing a copper-acetylide unit plays a key role in the process, which represents a new mode for achieving catalytic asymmetric transformation of DACs.
Collapse
Affiliation(s)
- Shouang Lan
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Qinqin Cui
- School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832000, China
| | - Defu Luo
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Siyu Shi
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, China
- Fujian Normal University, Fuzhou 350108, China
| | - Chengyang He
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Shengyu Huang
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Chao Xu
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Lili Zhao
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, China
- Fujian Normal University, Fuzhou 350108, China
| | - Jinggong Liu
- Orthopedics Department, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou 510120, China
| | - Cheng-Zhi Gu
- School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832000, China
| | - Shuang Yang
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Xinqiang Fang
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, China
| |
Collapse
|
5
|
Yang XC, Wu F, Wu WB, Zhang X, Feng JJ. Enantioselective dearomative formal (3+3) cycloadditions of bicyclobutanes with aromatic azomethine imines: access to fused 2,3-diazabicyclo[3.1.1]heptanes. Chem Sci 2024; 15:19488-19495. [PMID: 39568897 PMCID: PMC11575549 DOI: 10.1039/d4sc06334a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 10/31/2024] [Indexed: 11/22/2024] Open
Abstract
Although cycloadditions of bicyclobutanes (BCBs) have emerged as a reliable approach for producing bicyclo[n.1.1]alkanes such as azabicyclo[3.1.1]heptanes (aza-BCHeps), serving as saturated bioisosteres of arenes, the catalytic asymmetric variant remains underdeveloped and presents challenges. Herein, we developed several Lewis acid-catalyzed systems for the challenging dearomative (3+3) cycloaddition of BCBs and aromatic azomethine imines. This resulted in fused 2,3-diazabicyclo[3.1.1]heptanes, introducing a novel chemical space for the caged hydrocarbons. Moreover, an asymmetric Lewis acid catalysis strategy was devised for the (3+3) cycloadditions of BCBs and N-iminoisoquinolinium ylides, forming chiral diaza-BCHeps with up to 99% yield and 97% ee. This study showcases a unique instance of asymmetric (3+3) cycloaddition facilitated by the creation of a chiral environment via the activation of BCBs.
Collapse
Affiliation(s)
- Xue-Chun Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University Changsha Hunan 410082 P. R. China
| | - Feng Wu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University Changsha Hunan 410082 P. R. China
| | - Wen-Biao Wu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University Changsha Hunan 410082 P. R. China
| | - Xu Zhang
- School of Chemistry & Chemical Engineering, Yangzhou University Yangzhou 225002 P. R. China
| | - Jian-Jun Feng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University Changsha Hunan 410082 P. R. China
| |
Collapse
|
6
|
Devaraj T, Srinivasan K. Ytterbium Triflate-Catalyzed Intramolecular Arylative Ring Opening of Arylaminomethyl-Substituted Donor-Acceptor Cyclopropanes: Access to Tetrahydroquinolines. J Org Chem 2024; 89:13886-13893. [PMID: 39303150 DOI: 10.1021/acs.joc.4c00924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
The treatment of arylaminomethyl-substituted donor-acceptor cyclopropanes with a catalytic amount of Yb(OTf)3 provides expedient access to tetrahydroquinoline derivatives. The transformation proceeds through an intramolecular SN2-type attack of the aminomethyl-containing aryl ring on the cyclopropane ring, leading to the formation of the products as single diastereomers.
Collapse
Affiliation(s)
- Thangaraj Devaraj
- School of Chemistry, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu, India
| | - Kannupal Srinivasan
- School of Chemistry, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu, India
| |
Collapse
|
7
|
Borisov DD, Platonov DN, Sokolov NA, Novikov RA, Tomilov YV. Formal High-Order Cycloadditions of Donor-Acceptor Cyclopropanes with Cycloheptatrienes. Angew Chem Int Ed Engl 2024; 63:e202410081. [PMID: 38923229 DOI: 10.1002/anie.202410081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/19/2024] [Accepted: 06/21/2024] [Indexed: 06/28/2024]
Abstract
The design of various cycloaddition/annulation processes is one of the most intriguing challenges in the development of donor-acceptor (D-A) cyclopropane chemistry. In this work, a new class of formal high-order [6+n]-cycloaddition and annulation processes of D-A cyclopropanes with cycloheptatriene systems has been designed and reported, to fill a significant gap in the chemistry of D-A cyclopropanes. The reactivity of methylated cycloheptatrienes from Me1 to Me5 as well as unsubstituted cycloheptatriene was studied in detail under GaCl3 activation conditions, which makes it possible to efficiently generate gallium 1,2-zwitterionic complexes or 1,3-zwitterionic intermediates starting from D-A cyclopropanes, while other Lewis acids are ineffective and non-selective. New examples of formal [6+2]-, [6+3]-, [6+4]-, [6+1]-, and [4+2]-cycloaddition and annulation reactions with cycloheptatrienes along with more complex processes were discovered. Cycloheptatriene itself can also successfully act as a hydride anion donor, which allows the ionic hydrogenation of D-A cyclopropanes to be performed under mild conditions. As a result, a number of efficient and highly diastereoselective protocols for the synthesis of seven-membered carbocycles has been developed.
Collapse
Affiliation(s)
- Denis D Borisov
- Russian Academy of Sciences, N. D. Zelinsky Institute of Organic Chemistry, 47 Leninsky prosp., 119991, Moscow, Russian Federation
| | - Dmitry N Platonov
- Russian Academy of Sciences, N. D. Zelinsky Institute of Organic Chemistry, 47 Leninsky prosp., 119991, Moscow, Russian Federation
| | - Nikita A Sokolov
- Russian Academy of Sciences, N. D. Zelinsky Institute of Organic Chemistry, 47 Leninsky prosp., 119991, Moscow, Russian Federation
| | - Roman A Novikov
- Russian Academy of Sciences, N. D. Zelinsky Institute of Organic Chemistry, 47 Leninsky prosp., 119991, Moscow, Russian Federation
| | - Yury V Tomilov
- Russian Academy of Sciences, N. D. Zelinsky Institute of Organic Chemistry, 47 Leninsky prosp., 119991, Moscow, Russian Federation
| |
Collapse
|
8
|
Ratzenböck A, Kobras M, Rustler A, Reiser O. Lewis Acid Catalyzed Cyclopropane Ring-Opening-Cyclization Cascade Using Thioureas as a N,N-bisnucleophile: Synthesis of Bicyclic Furo-, Pyrano-, and Pyrrololactams via a Formal [4+1]-Addition. Chemistry 2024; 30:e202401332. [PMID: 38897923 DOI: 10.1002/chem.202401332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 06/21/2024]
Abstract
Fused bicyclic cyclopropanes were converted by Lewis acid-catalysis with thioureas to furo-, pyrano, and pyrrololactams with yields of up to 99 % and high diastereoselectivity. The formation of the title compounds, representing a formal [4+1]-cycloaddition to a donor-acceptor substituted cyclopropane, follows a cascade reaction involving SN1-type ring-opening addition and cyclization. Thiourea, being a cost-effective and odorless reagent, acts as an N,N-bis-nucleophile to generate bicyclic compounds containing an N-substituted γ-lactam moiety.
Collapse
Affiliation(s)
- Andreas Ratzenböck
- University of Regensburg, Institute of Organic Chemistry, Universitätsstr. 31, 93053, Regensburg, Germany
| | - Manuel Kobras
- University of Regensburg, Institute of Organic Chemistry, Universitätsstr. 31, 93053, Regensburg, Germany
| | - Anna Rustler
- University of Regensburg, Institute of Organic Chemistry, Universitätsstr. 31, 93053, Regensburg, Germany
| | - Oliver Reiser
- University of Regensburg, Institute of Organic Chemistry, Universitätsstr. 31, 93053, Regensburg, Germany
| |
Collapse
|
9
|
Guin A, Deswal S, Harariya MS, Biju AT. Lewis acid-catalyzed diastereoselective formal ene reaction of thioindolinones/thiolactams with bicyclobutanes. Chem Sci 2024; 15:12473-12479. [PMID: 39118603 PMCID: PMC11304820 DOI: 10.1039/d4sc02194k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/25/2024] [Indexed: 08/10/2024] Open
Abstract
Bicyclo[1.1.0]butanes (BCBs), featuring two fused cyclopropane rings, have found widespread application in organic synthesis. Their versatile reactivity towards radicals, nucleophiles, cations, and carbenes makes them suitable for various reactions, including ring-opening and annulation strategies. Despite this versatility, their potential as enophiles in an ene reaction remains underexplored. Considering this and given the challenges of achieving diastereoselectivity in ring-opening reactions of BCBs, herein, we present a unique method utilizing BCBs as enophiles in a mild and diastereoselective Sc(OTf)3-catalyzed formal ene reaction with thioindolinones/thiolactams, delivering 1,3-disubstituted cyclobutane derivatives in high yields and excellent regio- and diastereoselectivity. Notably, structurally different thiolactam derivatives underwent diastereoselective addition to BCBs, affording the corresponding cyclobutanes. The synthesized thioindole-substituted cyclobutanes could serve as a versatile tool for subsequent functional group manipulations.
Collapse
Affiliation(s)
- Avishek Guin
- Department of Organic Chemistry, Indian Institute of Science Bangalore 560012 India https://atbiju.in/
| | - Shiksha Deswal
- Department of Organic Chemistry, Indian Institute of Science Bangalore 560012 India https://atbiju.in/
| | - Mahesh Singh Harariya
- Department of Organic Chemistry, Indian Institute of Science Bangalore 560012 India https://atbiju.in/
| | - Akkattu T Biju
- Department of Organic Chemistry, Indian Institute of Science Bangalore 560012 India https://atbiju.in/
| |
Collapse
|
10
|
Reyes E, Uria U, Prieto L, Carrillo L, Vicario JL. Organocatalysis as an enabling tool for enantioselective ring-opening reactions of cyclopropanes. Chem Commun (Camb) 2024; 60:7288-7298. [PMID: 38938176 DOI: 10.1039/d4cc01933d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
The rich reactivity profile of cyclopropanes has been extensively explored to trigger new organic transformations that enable unusual disconnective approaches to synthesize molecular motifs that are not easily reached through conventional reactions. In particular, the chemistry of cyclopropanes has received special attention in the last decade, with multiple new approaches that capitalize on the use of organocatalysis for the activation of the cyclopropane scaffold. This situation has also opened the possibility of developing enantioselective variants of many reactions that until now were only carried out in an enantiospecific or diastereoselective manner. Our group has been particularly active in this field, focusing more specifically on the use of aminocatalysis and Brønsted acid catalysis as major organocatalytic activation manifolds to trigger new unprecedented transformations involving cyclopropanes that add to the current toolbox of general methodologies available to organic chemists for the enantioselective synthesis of chiral compounds.
Collapse
Affiliation(s)
- Efraim Reyes
- Department of Organic and Inorganic Chemistry, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080 Bilbao, Spain.
| | - Uxue Uria
- Department of Organic and Inorganic Chemistry, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080 Bilbao, Spain.
| | - Liher Prieto
- Department of Organic and Inorganic Chemistry, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080 Bilbao, Spain.
| | - Luisa Carrillo
- Department of Organic and Inorganic Chemistry, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080 Bilbao, Spain.
| | - Jose L Vicario
- Department of Organic and Inorganic Chemistry, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080 Bilbao, Spain.
| |
Collapse
|
11
|
Zosim TP, Kadikova RN, Novikov RA, Korlyukov AA, Mozgovoj OS, Ramazanov IR. The TaCl 5-Mediated Reaction of Dimethyl 2-Phenylcyclopropane-1,1-dicarboxylate with Aromatic Aldehydes as a Route to Substituted Tetrahydronaphthalenes. Molecules 2024; 29:2715. [PMID: 38930781 PMCID: PMC11205635 DOI: 10.3390/molecules29122715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 05/31/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
It is found that the reaction of dimethyl 2-phenylcyclopropane-1,1-dicarboxylate with 2 equivalents each of aromatic aldehydes and TaCl5 in 1,2-dichloroethane at 23 °C for 24 h after hydrolysis gives substituted 4-phenyl-3,4-dihydronaphtalene-2,2(1H)-dicarboxylates in good yield. This represents a new type of reactions between 2-arylcyclopropane-1,1-dicarboxylates and aromatic aldehydes, yielding chlorinated tetrahydronaphthalenes with a cis arrangement of the aryl and chlorine substituents in the cyclohexene moiety. A plausible reaction mechanism is proposed.
Collapse
Affiliation(s)
- Tat’yana P. Zosim
- Institute of Petrochemistry and Catalysis of Russian Academy of Sciences, Prospekt Oktyabrya 141, 450075 Ufa, Russia; (T.P.Z.); (O.S.M.)
| | - Rita N. Kadikova
- Institute of Petrochemistry and Catalysis of Russian Academy of Sciences, Prospekt Oktyabrya 141, 450075 Ufa, Russia; (T.P.Z.); (O.S.M.)
| | - Roman A. Novikov
- N.D. Zelinsky Institute of Organic Chemistry of Russian Academy of Sciences, Leninsky prospect 47, 119991 Moscow, Russia;
| | - Alexander A. Korlyukov
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Vavilova St., 28 bld. 1, 119334 Moscow, Russia;
| | - Oleg S. Mozgovoj
- Institute of Petrochemistry and Catalysis of Russian Academy of Sciences, Prospekt Oktyabrya 141, 450075 Ufa, Russia; (T.P.Z.); (O.S.M.)
| | - Ilfir R. Ramazanov
- Institute of Petrochemistry and Catalysis of Russian Academy of Sciences, Prospekt Oktyabrya 141, 450075 Ufa, Russia; (T.P.Z.); (O.S.M.)
| |
Collapse
|
12
|
Sreedharan R, Gandhi T. Masters of Mediation: MN(SiMe 3) 2 in Functionalization of C(sp 3)-H Latent Nucleophiles. Chemistry 2024; 30:e202400435. [PMID: 38497321 DOI: 10.1002/chem.202400435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/16/2024] [Accepted: 03/18/2024] [Indexed: 03/19/2024]
Abstract
Organoalkali compounds have undergone a far-reaching transformation being a coupling partner to a mediator in unusual organic conversions which finds its spot in the field of sustainable synthesis. Transition-metal catalysis has always been the priority in C(sp3)-H bond functionalization, however alternatively, in recent times this has been seriously challenged by earth-abundant alkali metals and their complexes arriving at new sustainable organometallic reagents. In this line, the importance of MN(SiMe3)2 (M=Li, Na, K & Cs) reagent revived in C(sp3)-H bond functionalization over recent years in organic synthesis is showcased in this minireview. MN(SiMe3)2 reagent with higher reactivity, enhanced stability, and bespoke cation-π interaction have shown eye-opening mediated processes such as C(sp3)-C(sp3) cross-coupling, radical-radical cross-coupling, aminobenzylation, annulation, aroylation, and other transformations to utilize readily available petrochemical feedstocks. This article also emphasizes the unusual reactivity of MN(SiMe3)2 reagent in unreactive and robust C-X (X=O, N, F, C) bond cleavage reactions that occurred alongside the C(sp3)-H bond functionalization. Overall, this review encourages the community to exploit the untapped potential of MN(SiMe3)2 reagent and also inspires them to take up this subject to even greater heights.
Collapse
Affiliation(s)
- Ramdas Sreedharan
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - Thirumanavelan Gandhi
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| |
Collapse
|
13
|
Borisov DD, Novikov RA, Tomilov YV. Three-Component Synthesis of Substituted Perhydropyrans from β-Styrylmalonates, Aldehydes, and Alkoxyaluminum Dichlorides. Org Lett 2024; 26:1022-1027. [PMID: 38284999 DOI: 10.1021/acs.orglett.3c04097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
A three-component synthesis of substituted dimethyl dihydro-2H-pyran-3,3(4H)-dicarboxylates in up to 80% yields by the reaction of β-styrylmalonates with aromatic or aliphatic aldehydes in the presence of ROAlCl2 prepared in advance either by exposure of EtAlCl2 with air access or by mixing equimolar amounts of AlCl3 with a primary or secondary alcohol has been developed. If EtAlCl2, itself, is used, dihydro-2H-pyran-3,3(4H)-diesters are not formed at all, while dimerization of styrylmalonates by (4 + 2)-annulation-type to give substituted tetrahydronaphthalenes is the main process. The possibility of using the CH-O-Al fragment of alkoxyaluminum dichlorides in cycloaddition reactions with α-CH-functionalization has been shown for the first time.
Collapse
Affiliation(s)
- Denis D Borisov
- Russian Academy of Sciences, N. D. Zelinsky Institute of Organic Chemistry, 47 Leninsky prosp., 119991 Moscow, Russian Federation
| | - Roman A Novikov
- Russian Academy of Sciences, N. D. Zelinsky Institute of Organic Chemistry, 47 Leninsky prosp., 119991 Moscow, Russian Federation
- Engelhardt Institute of Molecular Biology RAS, 32 Vavilov St., Moscow 119991, Russian Federation
| | - Yury V Tomilov
- Russian Academy of Sciences, N. D. Zelinsky Institute of Organic Chemistry, 47 Leninsky prosp., 119991 Moscow, Russian Federation
| |
Collapse
|
14
|
Plodukhin AY, Boichenko MA, Andreev IA, Tarasenko EA, Anisovich KV, Ratmanova NK, Zhokhov SS, Trushkov IV, Ivanova OA. Concise approach to γ-(het)aryl- and γ-alkenyl-γ-aminobutyric acids. Synthesis of vigabatrin. Org Biomol Chem 2024; 22:1027-1033. [PMID: 38193622 DOI: 10.1039/d3ob01769a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
γ-Aminobutyric acid (GABA) and GABA derivatives have attracted increased attention over the years in the fields of medicinal chemistry and chemical biology due to their interesting biological properties and synthetic relevance. Here, we report a short synthetic route to γ-(het)aryl- and γ-alkenyl-γ-aminobutyric acids, including the antiepileptic drug vigabatrin, from readily available donor-acceptor cyclopropanes and ammonia or methylamine. This protocol includes a facile synthesis of 2-oxopyrrolidine-3-carboxamides and their acid hydrolysis to γ-aryl- or γ-alkenyl-substituted GABAs, which can serve as perspective building blocks for the synthesis of various GABA-based N-heterocycles and bioactive compounds.
Collapse
Affiliation(s)
- Andrey Yu Plodukhin
- Department of Chemistry, M. V. Lomonosov Moscow State University, Leninskie gory 1-3, Moscow 119991, Russia.
| | - Maksim A Boichenko
- Department of Chemistry, M. V. Lomonosov Moscow State University, Leninskie gory 1-3, Moscow 119991, Russia.
| | - Ivan A Andreev
- N. D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences, Leninsky pr. 47, Moscow 119991, Russia.
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Samory Mashela 1, Moscow 117997, Russia
| | - Elena A Tarasenko
- Department of Chemistry, M. V. Lomonosov Moscow State University, Leninskie gory 1-3, Moscow 119991, Russia.
| | - Kanstantsin V Anisovich
- Department of Chemistry, M. V. Lomonosov Moscow State University, Leninskie gory 1-3, Moscow 119991, Russia.
| | - Nina K Ratmanova
- N. D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences, Leninsky pr. 47, Moscow 119991, Russia.
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Samory Mashela 1, Moscow 117997, Russia
| | - Sergey S Zhokhov
- Department of Chemistry, M. V. Lomonosov Moscow State University, Leninskie gory 1-3, Moscow 119991, Russia.
| | - Igor V Trushkov
- N. D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences, Leninsky pr. 47, Moscow 119991, Russia.
| | - Olga A Ivanova
- Department of Chemistry, M. V. Lomonosov Moscow State University, Leninskie gory 1-3, Moscow 119991, Russia.
| |
Collapse
|
15
|
Ni D, Hu S, Tan X, Yu Y, Li Z, Deng L. Intermolecular Formal Cycloaddition of Indoles with Bicyclo[1.1.0]butanes by Lewis Acid Catalysis. Angew Chem Int Ed Engl 2023; 62:e202308606. [PMID: 37583090 DOI: 10.1002/anie.202308606] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 08/11/2023] [Accepted: 08/15/2023] [Indexed: 08/17/2023]
Abstract
Herein, we develop a new approach to directly access architecturally complex polycyclic indolines from readily available indoles and bicyclo[1.1.0]butanes (BCBs) through formal cycloaddition promoted by commercially available Lewis acids. The reaction proceeded through a stepwise pathway involving a nucleophilic addition of indoles to BCBs followed by an intramolecular Mannich reaction to form rigid indoline-fused polycyclic structures, which resemble polycyclic indole alkaloids. This new reaction tolerated a wide range of indoles and BCBs, thereby allowing the one-step construction of various rigid indoline polycycles containing up to four contiguous quaternary carbon centers.
Collapse
Affiliation(s)
- Dongshun Ni
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science, Westlake University, 600 Dunyu Road, Hangzhou, 310030, Zhejiang Province, China
| | - Sai Hu
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science, Westlake University, 600 Dunyu Road, Hangzhou, 310030, Zhejiang Province, China
| | - Xiangyu Tan
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science, Westlake University, 600 Dunyu Road, Hangzhou, 310030, Zhejiang Province, China
| | - Yang Yu
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science, Westlake University, 600 Dunyu Road, Hangzhou, 310030, Zhejiang Province, China
| | - Zhenghua Li
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science, Westlake University, 600 Dunyu Road, Hangzhou, 310030, Zhejiang Province, China
| | - Li Deng
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science, Westlake University, 600 Dunyu Road, Hangzhou, 310030, Zhejiang Province, China
- Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou, 310030, Zhejiang Province, China
| |
Collapse
|
16
|
Xu Y, Gao HX, Pan C, Shi Y, Zhang C, Huang G, Feng C. Stereoselective Photoredox Catalyzed (3+3) Dipolar Cycloaddition of Nitrone with Aryl Cyclopropane. Angew Chem Int Ed Engl 2023; 62:e202310671. [PMID: 37700683 DOI: 10.1002/anie.202310671] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 09/14/2023]
Abstract
By resorting to the principle of remote activation, we herein demonstrate the first photoredox catalyzed (3+3) dipolar cycloaddition of nitrones with aryl cyclopropanes. Key to the fidelity of the reaction resides in a facile manner of substrate activation by single-electron transfer (SET) oxidation with photoredox catalysis, and the reaction takes place through a stepwise cascade encompassing a three-electron-type nucleophilic substitution triggered cyclopropane ring-opening and a diastereoselective 6-endo-trig radical cyclization manifold. The reaction proceeds under mild conditions with excellent regio- and stereoselectivity, nicely complementing the well-developed Lewis acid catalyzed cycloaddition of donor-acceptor cyclopropanes. Other merits of the protocol include wide scope of aryl cyclopropanes with diversified substitution patterns and good functional-group compatibility. A mechanism involving an aryl radical cation promoted remote activation mode was also proposed and supported by mechanistic experiments.
Collapse
Affiliation(s)
- Yao Xu
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis (IAS), State Key Laboratory of Material-Oriented Chemical Engineering, School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Hai-Xiang Gao
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis (IAS), State Key Laboratory of Material-Oriented Chemical Engineering, School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Chengkai Pan
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis (IAS), State Key Laboratory of Material-Oriented Chemical Engineering, School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Yue Shi
- Department of chemistry, School of science and Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin, 300072, P. R. China
| | - Chi Zhang
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis (IAS), State Key Laboratory of Material-Oriented Chemical Engineering, School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Genping Huang
- Department of chemistry, School of science and Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin, 300072, P. R. China
| | - Chao Feng
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis (IAS), State Key Laboratory of Material-Oriented Chemical Engineering, School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, P. R. China
| |
Collapse
|
17
|
Zheng D, Zhang R, Chen W, Yang P, Yang G, Chai Z. Lewis Acid-Catalyzed Annulations of Geminally Disubstituted Cyclopropanes with Aldehydes or 1,3,5-Triazinanes. Org Lett 2023; 25:2577-2581. [PMID: 37052381 DOI: 10.1021/acs.orglett.3c00511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Under the catalysis of simple Lewis acid catalysts, 2-(1-aroylcyclopropyl)malonates demonstrated unique reactivities in annulation reactions with aryl/alkyl aldehydes, paraformaldehyde, and 1,3,5-triazinanes. Three types of structurally diverse cyclic products that are otherwise not easy to obtain were generated in moderate to good yields and excellent diastereoselectivities. Possible reaction pathways leading to these products were proposed on the basis of the results of control experiments.
Collapse
Affiliation(s)
- Dongcheng Zheng
- MOE Key Laboratory of Functional Molecular Solids, Anhui Laboratory of Molecule-Based Materials, Institute of Organic Chemistry, College of Chemistry and Materials Science, Anhui Normal University, 189 South Jiuhua Road, Wuhu, Anhui 241002, China
| | - Rui Zhang
- MOE Key Laboratory of Functional Molecular Solids, Anhui Laboratory of Molecule-Based Materials, Institute of Organic Chemistry, College of Chemistry and Materials Science, Anhui Normal University, 189 South Jiuhua Road, Wuhu, Anhui 241002, China
| | - Wenlong Chen
- MOE Key Laboratory of Functional Molecular Solids, Anhui Laboratory of Molecule-Based Materials, Institute of Organic Chemistry, College of Chemistry and Materials Science, Anhui Normal University, 189 South Jiuhua Road, Wuhu, Anhui 241002, China
| | - Pengfei Yang
- MOE Key Laboratory of Functional Molecular Solids, Anhui Laboratory of Molecule-Based Materials, Institute of Organic Chemistry, College of Chemistry and Materials Science, Anhui Normal University, 189 South Jiuhua Road, Wuhu, Anhui 241002, China
| | - Gaosheng Yang
- MOE Key Laboratory of Functional Molecular Solids, Anhui Laboratory of Molecule-Based Materials, Institute of Organic Chemistry, College of Chemistry and Materials Science, Anhui Normal University, 189 South Jiuhua Road, Wuhu, Anhui 241002, China
| | - Zhuo Chai
- MOE Key Laboratory of Functional Molecular Solids, Anhui Laboratory of Molecule-Based Materials, Institute of Organic Chemistry, College of Chemistry and Materials Science, Anhui Normal University, 189 South Jiuhua Road, Wuhu, Anhui 241002, China
| |
Collapse
|
18
|
Dimerization/Elimination of β-Styrylmalonates under Action of TiCl 4. Molecules 2022; 28:molecules28010270. [PMID: 36615464 PMCID: PMC9822291 DOI: 10.3390/molecules28010270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/26/2022] [Accepted: 12/27/2022] [Indexed: 12/30/2022] Open
Abstract
A new type of dimerization of dimethyl (β-styryl)malonates in the presence of TiCl4 accompanied by elimination of a methanol molecule was discovered. Selective methods for the synthesis of substituted trimethyl 4-hydroxy-[1,1'-biaryl]-3,3,5(2H)-tricarboxylates and trimethyl 7-hydroxy-9,10-dihydro-5,9-methanobenzo[8]annulene-6,8,8(5H)-tricarboxylates were developed. The regularities of the occurring processes were determined and a similar reaction of β-styrylmalonate with benzylidenemalonate in the presence of TiCl4 was performed in the scope of the suggested mechanism.
Collapse
|
19
|
Ring expansion of donor—acceptor cyclopropanes bearing arylcarbamoyl group into 1,5-diarylpyrrolidin-2-ones. Russ Chem Bull 2022. [DOI: 10.1007/s11172-022-3671-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
20
|
Vartanova AE, Levina II, Ratmanova NK, Andreev IA, Ivanova OA, Trushkov IV. Ambident reactivity of 5-aminopyrazoles towards donor-acceptor cyclopropanes. Org Biomol Chem 2022; 20:7795-7802. [PMID: 36148530 DOI: 10.1039/d2ob01490d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Lewis acid-catalysed reactions of donor-acceptor cyclopropanes with 1,3-disubstituted 5-aminopyrazoles were investigated. Under catalysis with gallium(III) chloride, products of the three-membered ring opening via a nucleophilic attack of the exocyclic amino group were obtained in a chemoselective manner. Oppositely, in the presence of scandium(III) triflate, products of either N-alkylation or C(4)-alkylation, or a mixture of both were formed. The products of the C(4) alkylation were transformed in one step into tetrahydropyrazolo[3,4-b]azepines that are attractive for medicinal chemistry and pharmacology.
Collapse
Affiliation(s)
- Anna E Vartanova
- N. D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences, Leninsky pr. 47, Moscow 119334, Russian Federation.
| | - Irina I Levina
- N. M. Emanuel Institute of Biochemical Physics Russian Academy of Sciences, Kosygina 4, Moscow 119334, Russian Federation
| | - Nina K Ratmanova
- N. D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences, Leninsky pr. 47, Moscow 119334, Russian Federation. .,Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Samory Mashela 1, Moscow 117997, Russian Federation
| | - Ivan A Andreev
- N. D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences, Leninsky pr. 47, Moscow 119334, Russian Federation. .,Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Samory Mashela 1, Moscow 117997, Russian Federation
| | - Olga A Ivanova
- N. D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences, Leninsky pr. 47, Moscow 119334, Russian Federation. .,Department of Chemistry, M. V. Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow, 119991, Russian Federation
| | - Igor V Trushkov
- N. D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences, Leninsky pr. 47, Moscow 119334, Russian Federation.
| |
Collapse
|
21
|
Brookhart's Acid‐Catalyzed Switchable Regioselective
N
‐Alkylation of Arylamines/Heterocyclic Amines with Cyclopropylcarbinols by Temperature Regulation. Chemistry 2022; 28:e202201938. [DOI: 10.1002/chem.202201938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Indexed: 11/07/2022]
|
22
|
Coinage metal-catalyzed carbo- and heterocyclizations involving alkenyl carbene intermediates as C3 synthons. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
23
|
Wang MM, Nguyen TVT, Waser J. Activation of aminocyclopropanes via radical intermediates. Chem Soc Rev 2022; 51:7344-7357. [PMID: 35938356 DOI: 10.1039/d2cs00090c] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aminocyclopropanes are versatile building blocks for accessing high value-added nitrogen-containing products. To control ring-opening promoted by ring strain, the Lewis acid activation of donor-acceptor substituted systems is now well established. Over the last decade, alternative approaches have emerged proceeding via the formation of radical intermediates, alleviating the need for double activation of the cyclopropanes. This tutorial review summarizes key concepts and recent progress in ring-opening transformations of aminocyclopropanes via radical intermediates, divided into formal cycloadditions and 1,3-difunctionalizations.
Collapse
Affiliation(s)
- Ming-Ming Wang
- Laboratory of Catalysis and Organic Synthesis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland. .,Department of Chemical Biology, Max Planck Institute for Medical Research, 69120, Heidelberg, Germany
| | - Tin V T Nguyen
- Laboratory of Catalysis and Organic Synthesis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| | - Jerome Waser
- Laboratory of Catalysis and Organic Synthesis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| |
Collapse
|
24
|
Wang H, Zhang M, Xie M, Guo H. Lewis Acid Catalyzed (3+2)‐Cycloadditions of Chiral Pyrimidinyl‐Substituted Cyclopropanes with Nitrosoarenes or Silyl Enol Ethers. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Hai‐Xia Wang
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug Key Laboratory of Green Chemical Media and Reactions Ministry of Education Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals School of Chemistry and Chemical Engineering Henan Normal University Xinxiang Henan 453007 China
| | - Mi‐Mi Zhang
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug Key Laboratory of Green Chemical Media and Reactions Ministry of Education Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals School of Chemistry and Chemical Engineering Henan Normal University Xinxiang Henan 453007 China
| | - Ming‐Sheng Xie
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug Key Laboratory of Green Chemical Media and Reactions Ministry of Education Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals School of Chemistry and Chemical Engineering Henan Normal University Xinxiang Henan 453007 China
| | - Hai‐Ming Guo
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug Key Laboratory of Green Chemical Media and Reactions Ministry of Education Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals School of Chemistry and Chemical Engineering Henan Normal University Xinxiang Henan 453007 China
| |
Collapse
|
25
|
Kar S, Sarkar T, Maharana PK, Guha AK, Punniyamurthy T. Bi-Catalyzed 1,2-Reactivity of Spirocyclopropyl Oxindoles with Dithianediol: Access to Spiroheterocycles. Org Lett 2022; 24:4965-4970. [PMID: 35770789 DOI: 10.1021/acs.orglett.2c01928] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The efficient Bi-catalyzed 1,2-reactivity of spirocyclopropyl oxindoles has been disclosed with dithianediols as the sulfur surrogate to furnish spiroheterocycles at moderate temperature. The procedure provides a potential approach for the construction of spirotetrahydrothiophene scaffolds with functional group diversity. The catalytic 1,2-reactivity of cyclopropanes, mechanistic studies using density functional theory studies, diastereoselectivity, and additive-free mild conditions are the important practical features.
Collapse
Affiliation(s)
- Subhradeep Kar
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Tanumay Sarkar
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Prabhat K Maharana
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Ankur K Guha
- Advanced Computational Chemistry Centre, Cotton University, Panbazar, Guwahati 781001, India
| | | |
Collapse
|
26
|
Singh PR, Gopal B, Kumar M, Goswami A. A metal-free BF 3·OEt 2 mediated chemoselective protocol for the synthesis of propargylic cyclic imines. Org Biomol Chem 2022; 20:4933-4941. [PMID: 35648486 DOI: 10.1039/d2ob00530a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A chemoselective and metal/additive-free protocol for the synthesis of propargylic cyclic imine derivatives via (3 + 2)-cycloaddition of donor-acceptor cyclopropanes and alkynylnitriles in the presence of BF3·OEt2 has been established. The newly developed methodology provided access to a variety of propargylic cyclic imines in good to excellent yields. In addition, the synthesis of propargylic amines and the corresponding very stable enol derivatives from the title compound is also explored.
Collapse
Affiliation(s)
- Prasoon Raj Singh
- Department of Chemistry, Indian Institute of Technology Ropar, SS Bhatnagar Block, Main Campus, Rupnagar, Punjab-140001, India.
| | - Braj Gopal
- Department of Chemistry, Indian Institute of Technology Ropar, SS Bhatnagar Block, Main Campus, Rupnagar, Punjab-140001, India.
| | - Madan Kumar
- Department of Chemistry, Indian Institute of Technology Ropar, SS Bhatnagar Block, Main Campus, Rupnagar, Punjab-140001, India.
| | - Avijit Goswami
- Department of Chemistry, Indian Institute of Technology Ropar, SS Bhatnagar Block, Main Campus, Rupnagar, Punjab-140001, India.
| |
Collapse
|
27
|
Yadav N, Khan J, Tyagi A, Singh S, Hazra CK. Rapid Access to Arylated and Allylated Cyclopropanes via Brønsted Acid-Catalyzed Dehydrative Coupling of Cyclopropylcarbinols. J Org Chem 2022; 87:6886-6901. [PMID: 35535956 DOI: 10.1021/acs.joc.2c00690] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A regioselective protocol for the synthesis of cyclopropyl derivatives that relies on Brookhart acid-catalyzed dehydrative coupling over substituted cyclopropylcarbinols without rearrangement is reported herein. The reactions proceed promptly at 25 °C with only 2.0 mol % catalyst loading and produce the cyclopropyl derivatives in excellent yields. This method is well tolerated with a vast range of cyclopropylcarbinols including aliphatic cyclopropylcarbinols, where no elimination product was obtained, demonstrating the protocol's utility. Further, the Hammett correlation suggested the formation of a cyclopropylcarbinyl cation followed by a coupling reaction. An extremely effective gram-scale reaction has also been demonstrated with a high turnover number.
Collapse
Affiliation(s)
- Naveen Yadav
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Jabir Khan
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Aparna Tyagi
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Sanjay Singh
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Chinmoy Kumar Hazra
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
28
|
Kumar M, Verma S, Mishra V, Reiser O, Verma AK. Visible-Light-Accelerated Copper-Catalyzed [3 + 2] Cycloaddition of N-Tosylcyclopropylamines with Alkynes/Alkenes. J Org Chem 2022; 87:6263-6272. [PMID: 35476544 DOI: 10.1021/acs.joc.2c00491] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Copper-catalyzed [3 + 2] cycloadditions of N-tosylcyclopropylamine with alkynes and alkenes have been accomplished under visible light irradiation. The developed approach is compatible with a range of functionalities and allows the synthesis of diversified aminated cyclopentene and cyclopentane derivatives being relevant for drug synthesis. The protocol is operationally simple and economically affordable as it does not require any ligand, base, or additives. As the key step, the one-electron oxidation of the N-tosyl moiety by visible light-induced homolysis of a transient Cu(II)-tosylamide complex is proposed, providing a facile entry for N-centered radicals.
Collapse
Affiliation(s)
- Manoj Kumar
- Department of Chemistry, University of Delhi, Delhi 110007, India.,Institut für Organische Chemie, Universität Regensburg, Universitätsstr, 93053 Regensburg, Germany
| | - Shalini Verma
- Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Vivek Mishra
- Amity Institute of Click-Chemistry Research and Studies, Amity University, Noida 201313, India
| | - Oliver Reiser
- Institut für Organische Chemie, Universität Regensburg, Universitätsstr, 93053 Regensburg, Germany
| | - Akhilesh K Verma
- Department of Chemistry, University of Delhi, Delhi 110007, India
| |
Collapse
|
29
|
Thangamalar S, Thangamani M, Srinivasan K. The Cloke-Wilson rearrangement of aroyl-substituted donor-acceptor cylopropanes containing arylethyl donors. Org Biomol Chem 2022; 20:3145-3153. [PMID: 35343561 DOI: 10.1039/d2ob00292b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The chemistry of donor-acceptor (D-A) cyclopropanes containing alkyl donors has been scantily investigated. In the present work, we have synthesized new D-A cyclopropanes containing arylethyl donors and explored their reactivity in the presence of Lewis acids. Upon treatment with SnCl4, these cyclopropanes underwent the Cloke-Wilson rearrangement to yield 3,4,5-trisubstituted γ-butyrolactones in good yields with high diastereoselectivity.
Collapse
Affiliation(s)
| | - Murugesan Thangamani
- School of Chemistry, Bharathidasan University, Tiruchirappalli-620024, Tamil Nadu, India.
| | - Kannupal Srinivasan
- School of Chemistry, Bharathidasan University, Tiruchirappalli-620024, Tamil Nadu, India.
| |
Collapse
|
30
|
Kurose T, Itoga M, Nanjo T, Takemoto Y, Tsukano C. Total Synthesis of Lyconesidine B: Approach to a Three-Dimensional Tetracyclic Skeleton of Amine-Type Fawcettimine Core and Studies of Asymmetric Synthesis. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2022. [DOI: 10.1246/bcsj.20220049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Tomohiro Kurose
- Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501
| | - Moeko Itoga
- Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501
| | - Takeshi Nanjo
- Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501
| | - Yoshiji Takemoto
- Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501
| | - Chihiro Tsukano
- Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502
| |
Collapse
|
31
|
Liu H, Tian L, Wang H, Li ZQ, Zhang C, Xue F, Feng C. A novel type of donor-acceptor cyclopropane with fluorine as the donor: (3 + 2)-cycloadditions with carbonyls. Chem Sci 2022; 13:2686-2691. [PMID: 35340862 PMCID: PMC8890111 DOI: 10.1039/d2sc00302c] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 01/26/2022] [Indexed: 12/16/2022] Open
Abstract
gem-Difluorocyclopropane diester is disclosed as a new type of donor–acceptor cyclopropane, which smoothly participates in (3 + 2)-cycloadditions with various aldehydes and ketones. This work represents the first application of gem-difluorine substituents as an unconventional donor group for activating cyclopropane substrates in catalytic cycloaddition reactions. With this method, a wide variety of densely functionalized gem-difluorotetrahydrofuran skeletons, which are otherwise difficult to prepare, could be readily assembled in high yields under mild reaction conditions. Computational studies show that the cleavage of the C–C bond between the difluorine and diester moieties occurs upon a SN2-type attack of the carbonyl oxygen. A new type of donor–acceptor cyclopropane with gem-difluorine as an unconventional donor group undergoes (3 + 2)-cycloadditions with various aldehydes/ketones, affording densely functionalized gem-difluorotetrahydrofurans.![]()
Collapse
Affiliation(s)
- Haidong Liu
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis (IAS), School of Chemistry and Molecular Engineering, Nanjing Tech University Nanjing 211816 P. R. China
| | - Lifang Tian
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis (IAS), School of Chemistry and Molecular Engineering, Nanjing Tech University Nanjing 211816 P. R. China
| | - Hui Wang
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis (IAS), School of Chemistry and Molecular Engineering, Nanjing Tech University Nanjing 211816 P. R. China
| | - Zhi-Qiang Li
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis (IAS), School of Chemistry and Molecular Engineering, Nanjing Tech University Nanjing 211816 P. R. China
| | - Chi Zhang
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis (IAS), School of Chemistry and Molecular Engineering, Nanjing Tech University Nanjing 211816 P. R. China
| | - Fei Xue
- Institute of Material Physics & Chemistry, College of Science, Nanjing Forestry University Nanjing 210037 China
| | - Chao Feng
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis (IAS), School of Chemistry and Molecular Engineering, Nanjing Tech University Nanjing 211816 P. R. China
| |
Collapse
|
32
|
Wang J, Xie J, Lee WCC, Wang DS, Zhang XP. Radical differentiation of two ester groups in unsymmetrical diazomalonates for highly asymmetric olefin cyclopropanation. CHEM CATALYSIS 2022; 2:330-344. [PMID: 35494099 PMCID: PMC9049825 DOI: 10.1016/j.checat.2021.11.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Diazomalonates have been demonstrated as effective metalloradicophiles for asymmetric radical olefin cyclopropanation via Co(II)-metalloradical catalysis (MRC). Supported by D 2-symmetric chiral amidoporphyrin ligand, Co(II)-based metalloradical system can efficiently activate unsymmetrical methyl phenyl diazomalonate (MPDM) with effective differentiation of the two ester groups for asymmetric cyclopropanation, enabling stereoselective construction of 1,1-cyclopropanediesters bearing two contiguous chiral centers, including all-carbon quaternary stereogenic center. The Co(II)-catalyzed asymmetric cyclopropanation, which operates at room temperature without slow addition of the diazo compound, is generally applicable to broad-ranging olefins and tolerates various functionalities, providing a streamlined synthesis of chiral 1,1-cyclopropanediesters in high yields with both high diastereoselectivity and enantioselectivity. Combined computational and experimental studies support the underlying stepwise radical mechanism for Co(II)-catalyzed cyclopropanation. In addition to functioning as 1,3-dipoles for forming five-membered structures, enantioenriched (E)-1,1-cyclopropanediesters serve as useful building blocks for stereoselective synthesis of different cyclopropane derivatives. In addition, the enantioenriched (E)-1,1-cyclopropanediesters can be stereoselectively converted to (Z)-diastereomers.
Collapse
Affiliation(s)
- Jingyi Wang
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA 02467, USA
| | - Jingjing Xie
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA 02467, USA
| | - Wan-Chen Cindy Lee
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA 02467, USA
| | - Duo-Sheng Wang
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA 02467, USA
| | - X. Peter Zhang
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA 02467, USA
- Lead contact
- Correspondence:
| |
Collapse
|
33
|
Zheng L, Wang L, Tang Y. Intramolecular Ring-opening of Indole-cyclopropanes ※. ACTA CHIMICA SINICA 2022. [DOI: 10.6023/a22010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
34
|
Hou M, Li J, Rao F, Chen Z, Wei Y. Diastereoselective Synthesis of Tetrahydrobenzo[b]azocines by Lu(OTf)3 Catalyzed [4 + 4] Cycloaddition of Donor–Acceptor Cyclobutanes with Anthranils. Chem Commun (Camb) 2022; 58:5865-5868. [DOI: 10.1039/d2cc00829g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The construction of N-heterocyclic eight-membered rings remains a challenging due to unfavorable transannular strain. Herein, we report a Lu(OTf)3 catalyzed formal [4 +4] cycloaddition reaction of cyclobutane 1,1-diesters with anthranils...
Collapse
|
35
|
Chen Z, Yan K, Luo H, Yan J, Zeng Y. Lewis acid-catalyzed [4 + 2] cycloaddition of donor–acceptor cyclobutanes with iminooxindoles: access to spiro[piperidine-3,2′-oxindoles]. RSC Adv 2022; 12:32097-32101. [DOI: 10.1039/d2ra04730f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/27/2022] [Indexed: 11/10/2022] Open
Abstract
A Lewis acid-catalyzed [4 + 2] cycloaddition reaction from D–A cyclobutanes and iminooxindoles, providing the corresponding spiro[piperidine-3,2′-oxindoles] under mild conditions.
Collapse
Affiliation(s)
- Zuliang Chen
- College of Chemistry and Bio-engineering, Yichun University, Yichun 336000, P. R. China
- Key Laboratory of Jiangxi University for Applied Chenistry and Chemical Biology, Yichun University, 336000, P. R. China
| | - Keyi Yan
- College of Chemistry and Bio-engineering, Yichun University, Yichun 336000, P. R. China
| | - Hui Luo
- College of Chemistry and Bio-engineering, Yichun University, Yichun 336000, P. R. China
| | - Jun Yan
- College of Chemistry and Bio-engineering, Yichun University, Yichun 336000, P. R. China
| | - Yang Zeng
- College of Chemistry and Bio-engineering, Yichun University, Yichun 336000, P. R. China
| |
Collapse
|
36
|
Kumar D, Chaudhary D, Ishu K, Yadav S, Maurya NK, Kant R, Kuram MR. Copper-catalyzed cascade reaction of tryptamines with diazo compounds to access hexahydropyrroloindoline derivatives. Org Biomol Chem 2022; 20:8610-8614. [DOI: 10.1039/d2ob01635d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
A Cu-catalyzed cyclopropanation/ring-opening/iminium cyclization of tryptamine derivatives with donor–acceptor diazo compounds is developed to furnish pyrroloindolines, creating three consecutive stereogenic centers.
Collapse
Affiliation(s)
- Dharmendra Kumar
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Dhananjay Chaudhary
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Km Ishu
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Suman Yadav
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Naveen Kumar Maurya
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Ruchir Kant
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Malleswara Rao Kuram
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
37
|
Harmata AS, Spiller TE, Sowden MJ, Stephenson CRJ. Photochemical Formal (4 + 2)-Cycloaddition of Imine-Substituted Bicyclo[1.1.1]pentanes and Alkenes. J Am Chem Soc 2021; 143:21223-21228. [PMID: 34902245 PMCID: PMC9241356 DOI: 10.1021/jacs.1c10541] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Amines containing bridged bicyclic carbon skeletons are desirable building blocks for medicinal chemistry. Herein, we report the conversion of bicyclo[1.1.1]pentan-1-amines to a wide range of polysubstituted bicyclo[3.1.1]heptan-1-amines through a photochemical, formal (4 + 2)-cycloaddition of an intermediate imine diradical. To our knowledge, this is the first reported method to convert the bicyclo[1.1.1]pentane skeleton to the bicyclo[3.1.1]heptane skeleton. Hydrolysis of the imine products gives complex, sp3-rich primary amine building blocks.
Collapse
Affiliation(s)
| | | | | | - Corey R. J. Stephenson
- Corresponding Author Corey R. J. Stephenson – Department of Chemistry, University of Michigan, 940 North University Avenue, Ann Arbor, Michigan 48109, United States;
| |
Collapse
|
38
|
Wei L, Wang M, Zhao Y, Fang Y, Zhao Z, Xia B, Yu W, Chang J. Synthesis of 1,4-Dihydropyridines and Related Heterocycles by Iodine-Mediated Annulation Reactions of N-Cyclopropyl Enamines. Org Lett 2021; 23:9625-9630. [PMID: 34846145 DOI: 10.1021/acs.orglett.1c03859] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The annulation of N-cyclopropyl enamines to produce 1,4-dihydropyridine (1,4-DHP) derivatives is described. In the presence of molecular iodine (I2), an N-cyclopropyl enamine substrate undergoes iodination, opening of the cyclopropyl ring, and annulation with a second molecule of the substrate to form the 1,4-DHP product. This reaction is amenable to gram-scale operations under mild reaction conditions with no transition metals being required. Further transformations of the 1,4-DHPs leads to related pyridine and bicyclic frameworks.
Collapse
Affiliation(s)
- Lanlan Wei
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, Henan Province 450001, People's Republic of China
| | - Manman Wang
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, Henan Province 450001, People's Republic of China
| | - Yifei Zhao
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, Henan Province 450001, People's Republic of China
| | - Yingchao Fang
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, Henan Province 450001, People's Republic of China
| | - Zongxiang Zhao
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, Henan Province 450001, People's Republic of China
| | - Biao Xia
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, Henan Province 450001, People's Republic of China
| | - Wenquan Yu
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, Henan Province 450001, People's Republic of China
| | - Junbiao Chang
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, Henan Province 450001, People's Republic of China
| |
Collapse
|
39
|
Sergeev PG, Novikov RA, Tomilov YV. Lewis Acid‐Catalyzed Formal (4+2)‐ and (2+2+2)‐Cycloaddition Between 1‐Azadienes and Styrylmalonates as Analogues of Donor‐Acceptor Cyclopropanes. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Pavel G. Sergeev
- N. D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences 47 Leninsky prosp. 119991 Moscow Russian Federation
| | - Roman A. Novikov
- N. D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences 47 Leninsky prosp. 119991 Moscow Russian Federation
| | - Yury V. Tomilov
- N. D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences 47 Leninsky prosp. 119991 Moscow Russian Federation
| |
Collapse
|
40
|
Donor-acceptor bicyclopropyl configuration-fixed by an additional trimethylene bridge: synthesis and Lewis acid-catalyzed tandem three-membered rings opening. Russ Chem Bull 2021. [DOI: 10.1007/s11172-021-3253-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
41
|
Vartanova AE, Levina II, Rybakov VB, Ivanova OA, Trushkov IV. Donor-Acceptor Cyclopropane Ring Opening with 6-Amino-1,3-dimethyluracil and Its Use in Pyrimido[4,5- b]azepines Synthesis. J Org Chem 2021; 86:12300-12308. [PMID: 34382810 DOI: 10.1021/acs.joc.1c01064] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A scandium trifluoromethanesulfonate-catalyzed reaction of donor-acceptor cyclopropanes with 6-amino-1,3-dimethyluracil was found to proceed as three-membered ring opening via nucleophilic attack of the C(5) atom of an ambident nucleophile serving as an enamine equivalent. It was shown that, under basic conditions, the obtained products underwent cyclization to 6,7-dihydro-1H-pyrimido[4,5-b]azepine-2,4,8-triones, an interesting subclass of nucleobase analogues.
Collapse
Affiliation(s)
- Anna E Vartanova
- N. D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences, Leninsky pr. 47, Moscow 119334, Russian Federation.,Faculty of Science, RUDN University, Miklukho-Maklaya 6, Moscow 117198, Russian Federation
| | - Irina I Levina
- N. M. Emanuel Institute of Biochemical Physics Russian Academy of Sciences, Kosygina 4, Moscow 119334, Russian Federation
| | - Victor B Rybakov
- Department of Chemistry, M. V. Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russian Federation
| | - Olga A Ivanova
- N. D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences, Leninsky pr. 47, Moscow 119334, Russian Federation.,Department of Chemistry, M. V. Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russian Federation
| | - Igor V Trushkov
- N. D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences, Leninsky pr. 47, Moscow 119334, Russian Federation.,Laboratory of Chemical Synthesis, Dmitry Rogachev National Research Center of Pediatric Hematology, Oncology and Immunology, Samory Mashela 1, Moscow 117997, Russian Federation
| |
Collapse
|
42
|
Nambu H, Yakura T. Ring-Opening Cyclizations of Spirocyclopropanes with Nucleophiles and their Applications. J SYN ORG CHEM JPN 2021. [DOI: 10.5059/yukigoseikyokaishi.79.777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Hisanori Nambu
- Faculty of Pharmaceutical Sciences, University of Toyama
| | | |
Collapse
|
43
|
Pirenne V, Robert EGL, Waser J. Catalytic (3 + 2) annulation of donor-acceptor aminocyclopropane monoesters and indoles. Chem Sci 2021; 12:8706-8712. [PMID: 34257869 PMCID: PMC8246098 DOI: 10.1039/d1sc01127h] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 05/04/2021] [Indexed: 12/16/2022] Open
Abstract
The efficient catalytic activation of donor-acceptor aminocyclopropanes lacking the commonly used diester acceptor is reported here in a (3 + 2) dearomative annulation with indoles. Bench-stable tosyl-protected aminocyclopropyl esters were converted into cycloadducts in 46-95% yields and up to 95 : 5 diastereomeric ratio using catalytic amounts of triethylsilyl triflimide. Tricyclic indoline frameworks containing four stereogenic centers including all-carbon quaternary centers were obtained.
Collapse
Affiliation(s)
- Vincent Pirenne
- Laboratory of Catalysis and Organic Synthesis, Institut des Sciences et Ingénierie Chimique, Ecole Polytechnique Fédérale de Lausanne Ch-1015 Lausanne Switzerland
| | - Emma G L Robert
- Laboratory of Catalysis and Organic Synthesis, Institut des Sciences et Ingénierie Chimique, Ecole Polytechnique Fédérale de Lausanne Ch-1015 Lausanne Switzerland
| | - Jerome Waser
- Laboratory of Catalysis and Organic Synthesis, Institut des Sciences et Ingénierie Chimique, Ecole Polytechnique Fédérale de Lausanne Ch-1015 Lausanne Switzerland
| |
Collapse
|
44
|
Zhong X, Tan J, Qiao J, Zhou Y, Lv C, Su Z, Dong S, Feng X. Catalytic asymmetric synthesis of spirocyclobutyl oxindoles and beyond via [2+2] cycloaddition and sequential transformations. Chem Sci 2021; 12:9991-9997. [PMID: 34377393 PMCID: PMC8317662 DOI: 10.1039/d1sc02681j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 06/22/2021] [Indexed: 02/05/2023] Open
Abstract
Efficient asymmetric synthesis of a collection of small molecules with structural diversity is highly important to drug discovery. Herein, three distinct types of chiral cyclic compounds were accessible by enantioselective catalysis and sequential transformations. Highly regio- and enantioselective [2+2] cycloaddition of (E)-alkenyloxindoles with the internal C[double bond, length as m-dash]C bond of N-allenamides was achieved with N,N'-dioxide/Ni(OTf)2 as the catalyst. Various optically active spirocyclobutyl oxindole derivatives were obtained under mild conditions. Moreover, formal [4+2] cycloaddition products occurring at the terminal C[double bond, length as m-dash]C bond of N-allenamides, dihydropyran-fused indoles, were afforded by a stereospecific sequential transformation with the assistance of a catalytic amount of Cu(OTf)2. In contrast, performing the conversion under air led to the formation of γ-lactones via the water-involved deprotection and rearrangement process. Experimental studies and DFT calculations were performed to probe the reaction mechanism.
Collapse
Affiliation(s)
- Xia Zhong
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China http://www.scu.edu.cn/chem_asl/
| | - Jiuqi Tan
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China http://www.scu.edu.cn/chem_asl/
| | - Jianglin Qiao
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China http://www.scu.edu.cn/chem_asl/
| | - Yuqiao Zhou
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China http://www.scu.edu.cn/chem_asl/
| | - Cidan Lv
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China http://www.scu.edu.cn/chem_asl/
| | - Zhishan Su
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China http://www.scu.edu.cn/chem_asl/
| | - Shunxi Dong
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China http://www.scu.edu.cn/chem_asl/
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China http://www.scu.edu.cn/chem_asl/
| |
Collapse
|
45
|
Koudelka J, Tobrman T. Synthesis of 2‐Substituted Cyclobutanones by a Suzuki Reaction and Dephosphorylation Sequence. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100464] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Jakub Koudelka
- Department of Organic Chemistry University of Chemistry and Technology, Prague Technická 5 166 28 Prague 6 Czech Republic
| | - Tomáš Tobrman
- Department of Organic Chemistry University of Chemistry and Technology, Prague Technická 5 166 28 Prague 6 Czech Republic
| |
Collapse
|
46
|
Belaya MA, Knyazev DA, Borisov DD, Novikov RA, Tomilov YV. GaCl 3-Mediated Cascade [2 + 4]-Cycloaddition/[4 + 2]-Annulation of Donor-Acceptor Cyclopropanes with Conjugated Dienes: Strategy for the Construction of Benzobicyclo[3.3.1]nonane Skeleton. J Org Chem 2021; 86:8089-8100. [PMID: 34047557 DOI: 10.1021/acs.joc.1c00564] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Structurally important benzobicyclo[3.3.1]nonane derivatives were synthesized by a gallium trichloride mediated reaction of readily available donor-acceptor cyclopropanes (DACs) with 1,3-dienes as a one-pot cascade ionic [2 + 4]-cycloaddition/Friedel-Crafts-type cyclization process. At the first stage, DACs act as sources of formal gallium 1,2-zwitterionic complexes to give 6-benzylcyclohex-3-ene-1,1-dicarboxylates that are converted under certain conditions in the presence of GaCl3 to give benzobicyclo[3.3.1]nonanes in 30-74% yields. The process is tolerant of varying substituents at different positions of the main framework. Further, potentially useful modifications of benzobicyclo[3.3.1]nonane derivatives are demonstrated. 2-Cyclopropylbutadiene reacts with DAC at higher temperature more deeply with cleavage of three-membered rings in both cyclopropane substrates, and twofold alkylation of the Ph-substituent at ortho- and meta-positions, that leads to a 1,2,7,8,9,10-hexahydro-6H-7,10a-methanocycloocta[cd]indene skeleton. Cyclopropane-1,1-diesters containing a bulky substituent in the ester group react with isoprene in a different way to give bicyclic lactones containing a 2-oxabicyclo[2.2.2]octan-3-one moiety.
Collapse
Affiliation(s)
- Maria A Belaya
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation
| | - Daniil A Knyazev
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation.,Higher Chemical College, D. Mendeleev University of Chemical Technology of Russia, Miusskaya sq. 9, Moscow 125047, Russian Federation
| | - Denis D Borisov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation
| | - Roman A Novikov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation
| | - Yury V Tomilov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation
| |
Collapse
|
47
|
Thangamani M, Thangamalar S, Srinivasan K. Tin(iv) chloride mediated (3 + 2) annulation of trans-2-aroyl-3-styrylcyclopropane-1,1-dicarboxylates with nitriles: diastereoselective access to 5-vinyl-1-pyrroline derivatives. RSC Adv 2021; 11:14980-14985. [PMID: 35424056 PMCID: PMC8697856 DOI: 10.1039/d1ra01194d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 04/15/2021] [Indexed: 12/19/2022] Open
Abstract
A tin(iv) chloride promoted (3 + 2) annulation of trans-2-aroyl-3-styrylcyclopropane-1,1-dicarboxylates with nitriles is reported. The transformation involves the Lewis acid assisted formation of 1,5-dipolar intermediates from the cyclopropane dicarboxylates and nitriles followed by cyclization. The reactions proceed in a highly diastereoselective manner and afford 5-vinyl-1-pyrroline derivatives in 60-88% yields.
Collapse
Affiliation(s)
- Murugesan Thangamani
- School of Chemistry, Bharathidasan University Tiruchirappalli-620024 Tamil Nadu India +91-431-2407043 +91-431-2407053
| | - Subaramaniam Thangamalar
- School of Chemistry, Bharathidasan University Tiruchirappalli-620024 Tamil Nadu India +91-431-2407043 +91-431-2407053
| | - Kannupal Srinivasan
- School of Chemistry, Bharathidasan University Tiruchirappalli-620024 Tamil Nadu India +91-431-2407043 +91-431-2407053
| |
Collapse
|
48
|
Andreev IA, Ratmanova NK, Augustin AU, Ivanova OA, Levina II, Khrustalev VN, Werz DB, Trushkov IV. Protic Ionic Liquid as Reagent, Catalyst, and Solvent: 1-Methylimidazolium Thiocyanate. Angew Chem Int Ed Engl 2021; 60:7927-7934. [PMID: 33433034 PMCID: PMC8048580 DOI: 10.1002/anie.202016593] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Indexed: 02/06/2023]
Abstract
We propose a new concept of the triple role of protic ionic liquids with nucleophilic anions: a) a regenerable solvent, b) a Brønsted acid inducing diverse transformations via general acid catalysis, and c) a source of a nucleophile. The efficiency of this strategy was demonstrated using thiocyanate-based protic ionic liquids for the ring-opening of donor-acceptor cyclopropanes. A wide variety of activated cyclopropanes were found to react with 1-methylimidazolium thiocyanate under mild metal-free conditions via unusual nitrogen attack of the ambident thiocyanate ion on the electrophilic center of the three-membered ring affording pyrrolidine-2-thiones bearing donor and acceptor substituents at the C(5) and C(3) atoms, respectively, in a single time-efficient step. The ability of 1-methylimidazolium thiocyanate to serve as a triplex reagent was exemplarily illustrated by (4+2)-annulation with 1-acyl-2-(2-hydroxyphenyl)cyclopropane, epoxide ring-opening and other organic transformations.
Collapse
Affiliation(s)
- Ivan A. Andreev
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and ImmunologySamory Mashela 1117997MoscowRussian Federation
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of SciencesLeninsky pr. 47119991MoscowRussian Federation
| | - Nina K. Ratmanova
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and ImmunologySamory Mashela 1117997MoscowRussian Federation
| | - André U. Augustin
- Technische Universität BraunschweigInstitute of Organic ChemistryHagenring 3038106BraunschweigGermany
| | - Olga A. Ivanova
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of SciencesLeninsky pr. 47119991MoscowRussian Federation
- Department of ChemistryLomonosov Moscow State UniversityLeninskie Gory 1–3119991MoscowRussian Federation
| | - Irina I. Levina
- Institute of Biochemical PhysicsRussian Academy of SciencesKosygina 4119334MoscowRussian Federation
| | - Victor N. Khrustalev
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of SciencesLeninsky pr. 47119991MoscowRussian Federation
- Faculty of ScienceRUDN UniversityMiklukho-Maklaya 6117198MoscowRussian Federation
| | - Daniel B. Werz
- Technische Universität BraunschweigInstitute of Organic ChemistryHagenring 3038106BraunschweigGermany
| | - Igor V. Trushkov
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and ImmunologySamory Mashela 1117997MoscowRussian Federation
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of SciencesLeninsky pr. 47119991MoscowRussian Federation
| |
Collapse
|
49
|
Borisova IA, Ratova DMV, Potapov KV, Tarasova AV, Novikov RA, Tomilov YV. "Cyclopropanation of Cyclopropanes": GaCl 3-Mediated Ionic Cyclopropanation of Donor-Acceptor Cyclopropanes with Diazo Esters as a Route to Tetrasubstituted Activated Cyclopropanes. J Org Chem 2021; 86:4567-4579. [PMID: 33661016 DOI: 10.1021/acs.joc.0c02983] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A new ionic cyclopropanation process involving the addition of diazo esters to donor-acceptor cyclopropanes (DAC) activated by GaCl3 has been developed. The reactions occur via 1,2-zwitterionic gallium complexes with elimination of nitrogen in all cases to give 1,1,2,3-tetrasubstituted cyclopropanes as the main products. Also, a number of related processes with the formation of various polysubstituted cyclopropanes, alkenes, and cyclobutanes, including products of multiple diazo ester addition, have been developed. Obtained by the developed method tetrasubstituted cyclopropanes are activated cyclopropanes such as DAC and can be used for further synthesis in this capacity. Their new reaction with benzaldehyde promoted by TiCl4 and involving one of the additional functional groups has been demonstrated, which leads to five-membered lactones. The mechanisms of the occurring processes, as well as the structures and stereochemistry of a rich range of products formed, are discussed in detail.
Collapse
Affiliation(s)
- Irina A Borisova
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp, Moscow 119991, Russian Federation
| | - Daria-Maria V Ratova
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp, Moscow 119991, Russian Federation
| | - Konstantin V Potapov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp, Moscow 119991, Russian Federation
| | - Anna V Tarasova
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp, Moscow 119991, Russian Federation
| | - Roman A Novikov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp, Moscow 119991, Russian Federation
| | - Yury V Tomilov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp, Moscow 119991, Russian Federation
| |
Collapse
|
50
|
Borisov DD, Novikov RA, Tomilov YV. Reactions of Styrylmalonates with Aromatic Aldehydes: Detailed Synthetic and Mechanistic Studies. J Org Chem 2021; 86:4457-4471. [PMID: 33656876 DOI: 10.1021/acs.joc.0c02891] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Reactions of styrylmalonates with aromatic aldehydes in the presence of Lewis and Brønsted acids and their regularities have been studied in detail. Approaches to the synthesis of various polysubstituted 5,6-dihydropyran-2-ones, indenes, aryl-containing dienes and trienes, cyclopentadienes, and polycyclic lactones have been developed with chemo-, regio-, stereo-, and diastereoselectivity control. The mechanisms of these reactions were studied in depth using multinuclear NMR experiments, monitoring the reactions in the NMR tube, and 18O isotope labeling.
Collapse
Affiliation(s)
- Denis D Borisov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences (RAS), 47 Leninsky Prospect, 119991 Moscow, Russian Federation
| | - Roman A Novikov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences (RAS), 47 Leninsky Prospect, 119991 Moscow, Russian Federation
| | - Yury V Tomilov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences (RAS), 47 Leninsky Prospect, 119991 Moscow, Russian Federation
| |
Collapse
|