1
|
Rokni M, Rohani Bastami T, Meshkat Z, Reza Rahimi H, Zibaee S, Meshkat M, Fotouhi F, Serki E, Khoshakhlagh M, Dabirifar Z. Rapid and sensitive detection of SARS-CoV-2 virus in human saliva samples using glycan based nanozyme: a clinical study. Mikrochim Acta 2023; 191:36. [PMID: 38108890 DOI: 10.1007/s00604-023-06120-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 11/25/2023] [Indexed: 12/19/2023]
Abstract
A highly sensitive colorimetric method (glycan-based nano(e)zyme) was developed for sensitive and rapid detection of the SARS-CoV-2 virus based on N-acetyl neuraminic acid (sialic acid)-functionalized gold nanoparticles (SA-Au NZs). A number of techniques were used to characterize the prepared nanomaterials including XRD, FT-IR, UV-vis, DLS, and TEM. DLS analysis indicates an average hydrodynamic size of 34 nm, whereas TEM analysis indicates an average particle size of 15.78 nm. This observation confirms that water interacts with nanoparticle surfaces, resulting in a large hydrodynamic diameter. The peroxidase-like activity of SA-Au NZs was examined with SARS-CoV-2 and influenza viruses (influenza A (H1N1), influenza A (H3N2), and influenza B). UV-visible spectroscopy was used to monitor and record the results, as well as naked eye detection (photographs). SA-Au NZs exhibit a change in color from light red to purple when SARS-CoV-2 is present, and they exhibit a redshift in their spectrum. N-acetyl neuraminic acid interacts with SARS-CoV-2 spike glycoprotein, confirming its ability to bind glycans. As a result, SA-Au NZs can detect COVID-19 with sensitivity and specificity of over 95% and 98%, respectively. This method was approved by testing saliva samples from 533 suspected individuals at Ghaem Hospital of Mashhad, Mashhad, Iran. Sensitivity and specificity were calculated by comparing the results with the definitive results. The positive results were accompanied by a color change from bright red to purple within five minutes. Statistical analysis was performed based on variables such as age, gender, smoking, diabetes, hypertension, and lung involvement. In clinical trials, it was demonstrated that this method can be used to diagnose SARS-CoV-2 in a variety of places, such as medical centers, hospitals, airports, universities, and schools.
Collapse
Affiliation(s)
- Mehrdad Rokni
- Department of Chemical Engineering and Energy, Quchan University of Technology, Quchan, 94771-67335, Iran
| | - Tahereh Rohani Bastami
- Department of Chemical Engineering and Energy, Quchan University of Technology, Quchan, 94771-67335, Iran.
- Industrial Biotechnology Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Zahra Meshkat
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Hamid Reza Rahimi
- Department of Medical Genetics and Molecular Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saeed Zibaee
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Mashhad, Iran
| | - Mojtaba Meshkat
- Department of Community Medicine, Faculty of Medicine, Mashhad Medical Sciences, Islamic Azad University, Mashhad, Iran
| | - Fatemeh Fotouhi
- Department of Influenza and Other Respiratory Viruses, Pasteur Institute of Iran, Tehran, Iran
| | - Elham Serki
- Department of Clinical Biochemistry, Mashhad University of Medical Science, Mashhad, Iran Department of Medical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahdieh Khoshakhlagh
- Department of Clinical Biochemistry, Mashhad University of Medical Science, Mashhad, Iran Department of Medical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zeynab Dabirifar
- Department of Chemical Engineering and Energy, Quchan University of Technology, Quchan, 94771-67335, Iran
| |
Collapse
|
2
|
Liu J, Ha W, Alibekovna EK, Ma R, Shi YP. Ruptured organosilica nanocapsules immobilized acetylcholinesterase coupled with MnO 2 nanozyme for screening inhibitors from Inula macrophylla. NANOSCALE 2023; 15:17464-17472. [PMID: 37860933 DOI: 10.1039/d3nr04025a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Abnormal expression of acetylcholinesterase (AChE) causes Alzheimer's disease (AD). Inhibiting AChE is a common strategy for reducing the degradation of neurotransmitter acetylcholine, in order to treat early-stage AD. Therefore, it is crucial to screen and explore AChE inhibitors which are safer and cause fewer side effects. Our research is focused on establishing a platform of ruptured organosilica nanocapsules (RONs) immobilized AChE coupled with an MnO2-OPD colorimetric assay, which could monitor AChE activity and screen AChE inhibitors. The fabricated RONs immobilized AChE possessed excellent pH and thermal stability. Huperzine A was introduced into the established platform to evaluate the inhibition kinetics of the immobilized AChE, which promoted its application in the screening of AChE inhibitors. The satisfactory results of enzyme inhibition kinetics proved the feasibility and applicability of the established method. Thus, the proposed platform was applied to screen AChE inhibitors from 14 compounds isolated from Inula macrophylla, and β-cyclocostunolide (compound 4) demonstrated the best AChE inhibitory activity among these compounds. This work confirms the existence of chemical components that inhibit AChE activity in Inula macrophylla, and provides a new idea for the application of immobilized enzyme-nanozyme in the field of enzyme inhibitor screening.
Collapse
Affiliation(s)
- Jia Liu
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicines of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Wei Ha
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicines of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, P. R. China.
| | - Eshbakova Komila Alibekovna
- S. Yu. Yunusov Institute of the Chemistry of Plant Substances, Academy of Sciences of the Republic of Uzbekistan, Uzbekistan
| | - Rui Ma
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicines of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, P. R. China.
| | - Yan-Ping Shi
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicines of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, P. R. China.
| |
Collapse
|
3
|
Wang Z, Zhou X, Wang W. Amorphous mixed-valent Mn-containing nanozyme with cocklebur-like morphology for specific colorimetric detection of cancer cells via Velcro effects. Biosens Bioelectron 2023; 236:115419. [PMID: 37269753 DOI: 10.1016/j.bios.2023.115419] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/13/2023] [Accepted: 05/22/2023] [Indexed: 06/05/2023]
Abstract
Designing nanozymes with excellent catalytic activity through valence state engineering and defect engineering is a widely applicable strategy. However, their development is hindered by the complexity of the design strategies. In this work, we employed a simple calcination method to regulate the valence of manganese and crystalline states in manganese oxide nanozymes. The oxidase-like activity of the nanozymes was found to benefit from a mixed valence state dominated by Mn (III). And the amorphous structure with more active defect sites significantly enhanced the catalytic efficiency. Moreover, we demonstrated that amorphous mixed-valent Mn-containing (amvMn) nanozymes with unique cocklebur-like biomimetic morphology achieved specific binding to cancer cells through the Velcro effects. Subsequently, the nanozymes mediated TMB coloration through their oxidase-like activity, enabling the colorimetric detection of cancer cells. This work not only provides guidance for optimizing nanozyme performance, but also inspire the development of equipment-free visual detection methods for cancer cells.
Collapse
Affiliation(s)
- Zhiqiang Wang
- Lab of Functional and Biomedical Nanomaterials, College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, Shandong, China
| | - Xiaoqian Zhou
- Lab of Functional and Biomedical Nanomaterials, College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, Shandong, China
| | - Wei Wang
- Lab of Functional and Biomedical Nanomaterials, College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, Shandong, China; School of Rehabilitation Science and Engineering, Qingdao Municiple Hospital, University of Health and Rehabilitation Sciences, No. 17 Shandong Road, Qingdao, Shandong, China.
| |
Collapse
|
4
|
Sindhu RK, Najda A, Kaur P, Shah M, Singh H, Kaur P, Cavalu S, Jaroszuk-Sierocińska M, Rahman MH. Potentiality of Nanoenzymes for Cancer Treatment and Other Diseases: Current Status and Future Challenges. MATERIALS (BASEL, SWITZERLAND) 2021; 14:5965. [PMID: 34683560 PMCID: PMC8539628 DOI: 10.3390/ma14205965] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/23/2021] [Accepted: 09/30/2021] [Indexed: 01/08/2023]
Abstract
Studies from past years have observed various enzymes that are artificial, which are issued to mimic naturally occurring enzymes based on their function and structure. The nanozymes possess nanomaterials that resemble natural enzymes and are considered an innovative class. This innovative class has achieved a brilliant response from various developments and researchers owing to this unique property. In this regard, numerous nanomaterials are inspected as natural enzyme mimics for multiple types of applications, such as imaging, water treatment, therapeutics, and sensing. Nanozymes have nanomaterial properties occurring with an inheritance that provides a single substitute and multiple platforms. Nanozymes can be controlled remotely via stimuli including heat, light, magnetic field, and ultrasound. Collectively, these all can be used to increase the therapeutic as well as diagnostic efficacies. These nanozymes have major biomedical applications including cancer therapy and diagnosis, medical diagnostics, and bio sensing. We summarized and emphasized the latest progress of nanozymes, including their biomedical mechanisms and applications involving synergistic and remote control nanozymes. Finally, we cover the challenges and limitations of further improving therapeutic applications and provide a future direction for using engineered nanozymes with enhanced biomedical and diagnostic applications.
Collapse
Affiliation(s)
- Rakesh K. Sindhu
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India; (R.K.S.); (P.K.); (H.S.); (P.K.)
| | - Agnieszka Najda
- Department of Vegetable Crops and Medicinal Plants, University of Life Sciences in Lublin, 50A Doświadczalna St., 20-280 Lublin, Poland
| | - Prabhjot Kaur
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India; (R.K.S.); (P.K.); (H.S.); (P.K.)
| | - Muddaser Shah
- Department of Botany, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Harmanpreet Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India; (R.K.S.); (P.K.); (H.S.); (P.K.)
| | - Parneet Kaur
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India; (R.K.S.); (P.K.); (H.S.); (P.K.)
| | - Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, 410087 Oradea, Romania;
| | - Monika Jaroszuk-Sierocińska
- Institute of Soil Science and Environment Shaping, University of Life Sciences in Lublin, 7 Leszczyńskiego St., 20-069 Lublin, Poland;
| | - Md. Habibur Rahman
- Department of Pharmacy, Southeast University, Banani, Dhaka 1213, Bangladesh
- Department of Global Medical Science, Wonju College of Medicine, Yonsei University, Wonju 26426, Gangwon-do, Korea
| |
Collapse
|
5
|
Ye ML, Zhu Y, Lu Y, Gan L, Zhang Y, Zhao YG. Magnetic nanomaterials with unique nanozymes-like characteristics for colorimetric sensors: A review. Talanta 2021; 230:122299. [PMID: 33934768 DOI: 10.1016/j.talanta.2021.122299] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 02/20/2021] [Accepted: 02/22/2021] [Indexed: 12/21/2022]
Abstract
Colorimetric sensors for the rapid detection of numerous analytes have been widely applied in many fields such as biomedicine, food industry and environmental science due to their highly sensitive and selective response, easy operation and visual identification by naked eyes. In this review, the recent progress of the colorimetric sensors based on the magnetic nanomaterials with unique nanozymes-like catalytic activity (magnetic nanozyme) and their colorimetric sensing applications are presented. Emerging magnetic nanozyme-based colorimetric sensors, such as metal oxide/sulfides-based, metal-based, carbon-based, and aptamer-conjugated magnetic nanomaterials, offer many desirable features for target analytes detection. And due to the unique nanoscale physical-chemical properties, magnetic nanozymes have been used to mimic the catalytic activity of natural enzymes such as peroxidases, oxidases and catalases. This review also highlights the catalytic mechanisms of enzyme-like reactions, and promising colorimetric sensing system for the detection of chemical compounds like H2O2, pesticide, ascorbic acid, dopamine, tetracyclines, perfluorooctane sulfonate, phenolic compounds, heavy metal ion and sulfite have been deeply discussed. In addition, the remaining challenges and future directions in utilizing magnetic nanozyme for colorimetric sensors are addressed.
Collapse
Affiliation(s)
- Ming-Li Ye
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou, 310015, China; Department of Environmental Engineering, Wuchang University of Technology, Wuhan, 430223, China
| | - Yan Zhu
- Department of Environmental Engineering, Wuchang University of Technology, Wuhan, 430223, China
| | - Yin Lu
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou, 310015, China
| | - Lu Gan
- Zhejiang University Hospital, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Yun Zhang
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, China.
| | - Yong-Gang Zhao
- Ningbo Municipal Center for Disease Control and Prevention, Ningbo, Zhejiang, 315010, China.
| |
Collapse
|
6
|
Melman A, Bou-Abdallah F. Iron mineralization and core dissociation in mammalian homopolymeric H-ferritin: Current understanding and future perspectives. Biochim Biophys Acta Gen Subj 2020; 1864:129700. [DOI: 10.1016/j.bbagen.2020.129700] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/30/2020] [Accepted: 07/31/2020] [Indexed: 01/13/2023]
|
7
|
Han J, Yoon J. Supramolecular Nanozyme-Based Cancer Catalytic Therapy. ACS APPLIED BIO MATERIALS 2020; 3:7344-7351. [DOI: 10.1021/acsabm.0c01127] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jingjing Han
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea
| |
Collapse
|
8
|
Gold-Based Nanoparticles on Amino-Functionalized Mesoporous Silica Supports as Nanozymes for Glucose Oxidation. Catalysts 2020. [DOI: 10.3390/catal10030333] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The transformation of glucose represents a topic of great interest at different levels. In the first place, glucose is currently conceived as a green feedstock for the sustainable production of chemicals. Secondly, the depletion of glucose at the cellular level is currently envisioned as a promising strategy to treat and alter the erratic metabolism of tumoral cells. The use of natural enzymes offers multiple advantages in terms of specificity towards the glucose substrate but may lack sufficient robustness and recyclability beyond the optimal operating conditions of these natural systems. In the present work, we have evaluated the potential use of an inorganic based nanohybrid containing gold nanoparticles supported onto ordered mesoporous supports. We have performed different assays that corroborate the enzyme-mimicking response of these inorganic surrogates towards the selective conversion of glucose into gluconic acid and hydrogen peroxide. Moreover, we conclude that these enzyme-like mimicking surrogates can operate at different pH ranges and under mild reaction conditions, can be recycled multiple times and maintain excellent catalytic response in comparison with other gold-based catalysts.
Collapse
|
9
|
Jin T, Li Y, Jing W, Li Y, Fan L, Li X. Cobalt-based metal organic frameworks: a highly active oxidase-mimicking nanozyme for fluorescence “turn-on” assays of biothiol. Chem Commun (Camb) 2020; 56:659-662. [DOI: 10.1039/c9cc06840f] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
With Co-MOFs as an oxidase-mimicking nanozyme, the AR oxidized product, non-fluorescent resazurin could be reduced to fluorescent resorufin by l-cysteine, which is specifically applied for fluorescence “turn-on” detection of l-cysteine.
Collapse
Affiliation(s)
- Tian Jin
- Key Laboratory of Theoretical and Computational Photochemistry
- Ministry of Education
- College of Chemistry
- Beijing Normal University
- Beijing
| | - Yilei Li
- Key Laboratory of Theoretical and Computational Photochemistry
- Ministry of Education
- College of Chemistry
- Beijing Normal University
- Beijing
| | - Wenjie Jing
- Key Laboratory of Theoretical and Computational Photochemistry
- Ministry of Education
- College of Chemistry
- Beijing Normal University
- Beijing
| | - Yunchao Li
- Key Laboratory of Theoretical and Computational Photochemistry
- Ministry of Education
- College of Chemistry
- Beijing Normal University
- Beijing
| | - Louzhen Fan
- Key Laboratory of Theoretical and Computational Photochemistry
- Ministry of Education
- College of Chemistry
- Beijing Normal University
- Beijing
| | - Xiaohong Li
- Key Laboratory of Theoretical and Computational Photochemistry
- Ministry of Education
- College of Chemistry
- Beijing Normal University
- Beijing
| |
Collapse
|
10
|
Jiang B, Fang L, Wu K, Yan X, Fan K. Ferritins as natural and artificial nanozymes for theranostics. Am J Cancer Res 2020; 10:687-706. [PMID: 31903145 PMCID: PMC6929972 DOI: 10.7150/thno.39827] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 09/23/2019] [Indexed: 01/05/2023] Open
Abstract
Nanozymes are a class of nanomaterials with intrinsic enzyme-like characteristics which overcome the limitations of natural enzymes such as high cost, low stability and difficulty to large scale preparation. Nanozymes combine the advantages of chemical catalysts and natural enzymes together, and have exhibited great potential in biomedical applications. However, the size controllable synthesis and targeting modifications of nanozymes are still challenging. Here, we introduce ferritin nanozymes to solve these problems. Ferritins are natural nanozymes which exhibit intrinsic enzyme-like activities (e.g. ferroxidase, peroxidase). In addition, by biomimetically synthesizing nanozymes inside the ferritin protein shells, artificial ferritin nanozymes are introduced, which possess the advantages of versatile self-assembly ferritin nanocage and enzymatic activity of nanozymes. Ferritin nanozymes provide a new horizon for the development of nanozyme in disease targeted theranostics research. The emergence of ferritin nanozyme also inspires us to learn from the natural nanostructures to optimize or rationally design nanozymes. In this review, the intrinsic enzyme-like activities of ferritin and bioengineered synthesis of ferritin nanozyme were summarized. After that, the applications of ferritin nanozymes were covered. Finally, the advantages, challenges and future research directions of advanced ferritin nanozymes for biomedical research were discussed.
Collapse
|
11
|
Benavides BS, Valandro S, Kurtz DM. Preparation of platinum nanoparticles using iron( ii) as reductant and photosensitized H 2 generation on an iron storage protein scaffold. RSC Adv 2020; 10:5551-5559. [PMID: 35497424 PMCID: PMC9049210 DOI: 10.1039/d0ra00341g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 01/27/2020] [Indexed: 12/31/2022] Open
Abstract
The quest for efficient solar-to-fuel conversion has led to the development of numerous homogeneous and heterogeneous systems for photochemical stimulation of 2H+ + 2e− → H2. Many such systems consist of a photosensitizer, an H2-evolving catalyst (HEC), and sacrificial electron donor often with an electron relay between photosensitizer and HEC. Colloidal platinum remains a popular HEC. We report here a novel, simple, and high yield synthesis of Pt nanoparticles (Pt NPs) associated with human heavy chain ferritin (Hfn). The formation of the Pt NPs capitalizes on Hfn's native catalysis of autoxidation of Fe(ii)(aq) (ferroxidase activity). Fe(ii) reduces Pt(ii) to Pt(0) and the rapid ferroxidase reaction produces FeO(OH), which associates with and stabilizes the incipient Pt NPs. This Pt/Fe-Hfn efficiently catalyzes photosensitized H2 production when combined with Eosin Y (EY) as photosensitizer and triethanolamine (TEOA) as sacrificial electron donor. With white light irradiation turnover numbers of 300H2 per Pt, 250H2 per EY were achieved. A quantum yield of 18% for H2 production was obtained with 550 nm irradiation. The fluorescence emission of EY is quenched by TEOA but not by Pt/Fe-Hfn. We propose that the photosensitized H2 production from aqueous TEOA, EY, Pt/Fe-Hfn solution occurs via a reductive quenching pathway in which both the singlet and triplet excited states of EY are reduced by TEOA to the anion radical, EY−˙, which in turn transfers electrons to the Pt/Fe-Hfn HEC. Hfn is known to be a remarkably versatile scaffold for incorporation and stabilization of noble metal and semiconductor nanoparticles. Since both EY and Hfn are amenable to scale-up, we envision further refinements to and applications of this photosensitized H2-generating system. An assembly of platinum nanoparticles produced by Fe(ii) reduction of Pt(ii) and stabilized by human heavy chain ferritin's native catalysis of Fe(ii)(aq) autoxidation functions as an efficient photosensitized H2 evolution catalyst.![]()
Collapse
Affiliation(s)
| | - Silvano Valandro
- Department of Chemistry
- University of Texas at San Antonio
- San Antonio
- USA
| | - Donald M. Kurtz
- Department of Chemistry
- University of Texas at San Antonio
- San Antonio
- USA
| |
Collapse
|
12
|
Chaibakhsh N, Moradi-Shoeili Z. Enzyme mimetic activities of spinel substituted nanoferrites (MFe 2O 4): A review of synthesis, mechanism and potential applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 99:1424-1447. [PMID: 30889678 DOI: 10.1016/j.msec.2019.02.086] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 02/19/2019] [Accepted: 02/21/2019] [Indexed: 02/07/2023]
Abstract
Recently, the intrinsic enzyme-like activities of some nanoscale materials known as "nanozymes" have become a growing area of interest. Nanosized spinel substituted ferrites (SFs) with general formula of MFe2O4, where M represents a transition metal, are among a group of magnetic nanomaterials attracting researchers' enormous attention because of their excellent catalytic performance, biomedical applications and capability for environmental remediation. Due to their unique nanoscale physical-chemical properties, they have been used to mimic the catalytic activity of natural enzymes such as peroxidases, oxidases and catalases. In addition, various nanocomposite materials based on SFs have been introduced as novel artificial enzymes. This review mainly highlights the synthetic approaches for newly developed SF-nanozymes and also the structural/experimental factors that are effective on the kinetics and catalytic mechanisms of enzyme-like reactions. SF-nanozymes have been found potentially capable of being applied in various fields such as enzyme-free immunoassays and biosensors for colorimetric detection of biological molecules. Therefore, the application of SF nanoparticles, as efficient enzyme mimetics have been detailed discussed.
Collapse
Affiliation(s)
- Naz Chaibakhsh
- Department of Chemistry, Faculty of Sciences, University of Guilan, Rasht 41996-13776, Iran.
| | - Zeinab Moradi-Shoeili
- Department of Chemistry, Faculty of Sciences, University of Guilan, Rasht 41996-13776, Iran.
| |
Collapse
|
13
|
Wu J, Wang X, Wang Q, Lou Z, Li S, Zhu Y, Qin L, Wei H. Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes (II). Chem Soc Rev 2019; 48:1004-1076. [DOI: 10.1039/c8cs00457a] [Citation(s) in RCA: 1628] [Impact Index Per Article: 325.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
An updated comprehensive review to help researchers understand nanozymes better and in turn to advance the field.
Collapse
Affiliation(s)
- Jiangjiexing Wu
- Department of Biomedical Engineering, College of Engineering and Applied Sciences
- Nanjing National Laboratory of Microstructures
- Jiangsu Key Laboratory of Artificial Functional Materials
- Nanjing University
- Nanjing
| | - Xiaoyu Wang
- Department of Biomedical Engineering, College of Engineering and Applied Sciences
- Nanjing National Laboratory of Microstructures
- Jiangsu Key Laboratory of Artificial Functional Materials
- Nanjing University
- Nanjing
| | - Quan Wang
- Department of Biomedical Engineering, College of Engineering and Applied Sciences
- Nanjing National Laboratory of Microstructures
- Jiangsu Key Laboratory of Artificial Functional Materials
- Nanjing University
- Nanjing
| | - Zhangping Lou
- Department of Biomedical Engineering, College of Engineering and Applied Sciences
- Nanjing National Laboratory of Microstructures
- Jiangsu Key Laboratory of Artificial Functional Materials
- Nanjing University
- Nanjing
| | - Sirong Li
- Department of Biomedical Engineering, College of Engineering and Applied Sciences
- Nanjing National Laboratory of Microstructures
- Jiangsu Key Laboratory of Artificial Functional Materials
- Nanjing University
- Nanjing
| | - Yunyao Zhu
- Department of Biomedical Engineering, College of Engineering and Applied Sciences
- Nanjing National Laboratory of Microstructures
- Jiangsu Key Laboratory of Artificial Functional Materials
- Nanjing University
- Nanjing
| | - Li Qin
- Department of Biomedical Engineering, College of Engineering and Applied Sciences
- Nanjing National Laboratory of Microstructures
- Jiangsu Key Laboratory of Artificial Functional Materials
- Nanjing University
- Nanjing
| | - Hui Wei
- Department of Biomedical Engineering, College of Engineering and Applied Sciences
- Nanjing National Laboratory of Microstructures
- Jiangsu Key Laboratory of Artificial Functional Materials
- Nanjing University
- Nanjing
| |
Collapse
|
14
|
Oh S, Kim J, Tran VT, Lee DK, Ahmed SR, Hong JC, Lee J, Park EY, Lee J. Magnetic Nanozyme-Linked Immunosorbent Assay for Ultrasensitive Influenza A Virus Detection. ACS APPLIED MATERIALS & INTERFACES 2018; 10:12534-12543. [PMID: 29595253 DOI: 10.1021/acsami.8b02735] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Rapid and sensitive detection of influenza virus is of soaring importance to prevent further spread of infections and adequate clinical treatment. Herein, an ultrasensitive colorimetric assay called magnetic nano(e)zyme-linked immunosorbent assay (MagLISA) is suggested, in which silica-shelled magnetic nanobeads (MagNBs) and gold nanoparticles are combined to monitor influenza A virus up to femtogram per milliliter concentration. Two essential strategies for ultrasensitive sensing are designed, i.e., facile target separation by MagNBs and signal amplification by the enzymelike activity of gold nanozymes (AuNZs). The enzymelike activity was experimentally and computationally evaluated, where the catalyticity of AuNZ was tremendously stronger than that of normal biological enzymes. In the spiked test, a straightforward linearity was presented in the range of 5.0 × 10-15-5.0 × 10-6g·mL-1 in detecting the influenza virus A (New Caledonia/20/1999) (H1N1). The detection limit is up to 5.0 × 10-12 g·mL-1 only by human eyes, as well as up to 44.2 × 10-15 g·mL-1 by a microplate reader, which is the lowest record to monitor influenza virus using enzyme-linked immunosorbent assay-based technology as far as we know. Clinically isolated human serum samples were successfully observed at the detection limit of 2.6 PFU·mL-1. This novel MagLISA demonstrates, therefore, a robust sensing platform possessing the advances of fathomable sample separation, enrichment, ultrasensitive readout, and anti-interference ability may reduce the spread of influenza virus and provide immediate clinical treatment.
Collapse
Affiliation(s)
- Sangjin Oh
- Department of Cogno-Mechatronics Engineering , Pusan National University , Busan 46241 , Republic of Korea
| | - Jeonghyo Kim
- Department of Cogno-Mechatronics Engineering , Pusan National University , Busan 46241 , Republic of Korea
| | - Van Tan Tran
- Department of Cogno-Mechatronics Engineering , Pusan National University , Busan 46241 , Republic of Korea
| | - Dong Kyu Lee
- Department of Cogno-Mechatronics Engineering , Pusan National University , Busan 46241 , Republic of Korea
| | - Syed Rahin Ahmed
- BioNano Laboratory, School of Engineering , University of Guelph , Gulph , Ontario N1G 2W1 , Canada
| | - Jong Chul Hong
- Department of Otolaryngology, Head and Neck Surgery, College of Medicine , Dong-A University , Busan 49201 , Republic of Korea
| | - Jaewook Lee
- Research Institute of Green Science and Technology , Shizuoka University , 836 Ohya , Suruga-ku, Shizuoka 422-8529 , Japan
| | - Enoch Y Park
- Research Institute of Green Science and Technology , Shizuoka University , 836 Ohya , Suruga-ku, Shizuoka 422-8529 , Japan
| | - Jaebeom Lee
- Department of Cogno-Mechatronics Engineering , Pusan National University , Busan 46241 , Republic of Korea
| |
Collapse
|
15
|
|
16
|
Li L, Muñoz-Culla M, Carmona U, Lopez MP, Yang F, Trigueros C, Otaegui D, Zhang L, Knez M. Ferritin-mediated siRNA delivery and gene silencing in human tumor and primary cells. Biomaterials 2016; 98:143-51. [DOI: 10.1016/j.biomaterials.2016.05.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 04/28/2016] [Accepted: 05/01/2016] [Indexed: 01/04/2023]
|
17
|
Li L, Zhang L, Knez M. Comparison of two endogenous delivery agents in cancer therapy: Exosomes and ferritin. Pharmacol Res 2016; 110:1-9. [DOI: 10.1016/j.phrs.2016.05.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 04/07/2016] [Accepted: 05/03/2016] [Indexed: 12/21/2022]
|
18
|
Wang X, Hu Y, Wei H. Nanozymes in bionanotechnology: from sensing to therapeutics and beyond. Inorg Chem Front 2016. [DOI: 10.1039/c5qi00240k] [Citation(s) in RCA: 430] [Impact Index Per Article: 53.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nanozymes are nanomaterials with enzyme-like characteristics, which have found broad applications in various areas including bionanotechnology and beyond.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Department of Biomedical Engineering
- College of Engineering and Applied Sciences
- Collaborative Innovation Center of Chemistry for Life Sciences
- Nanjing National Laboratory of Microstructures
- Nanjing University
| | - Yihui Hu
- Department of Biomedical Engineering
- College of Engineering and Applied Sciences
- Collaborative Innovation Center of Chemistry for Life Sciences
- Nanjing National Laboratory of Microstructures
- Nanjing University
| | - Hui Wei
- Department of Biomedical Engineering
- College of Engineering and Applied Sciences
- Collaborative Innovation Center of Chemistry for Life Sciences
- Nanjing National Laboratory of Microstructures
- Nanjing University
| |
Collapse
|
19
|
Carmona U, Li L, Zhang L, Knez M. Ferritin light-chain subunits: key elements for the electron transfer across the protein cage. Chem Commun (Camb) 2014; 50:15358-61. [DOI: 10.1039/c4cc07996e] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Using an external electron acceptor and donor and Pt nanoparticles as the enzyme-mimetic electron source, the electron transfer across the protein cage was identified as the first specific functionality of the light-chain subunit of ferritin.
Collapse
Affiliation(s)
| | - Le Li
- CIC nanoGUNE
- 20018 Donostia-San Sebastian, Spain
| | | | - Mato Knez
- CIC nanoGUNE
- 20018 Donostia-San Sebastian, Spain
- IKERBASQUE
- Basque Foundation for Science
- 48013 Bilbao, Spain
| |
Collapse
|