1
|
Krajňák T, Stará V, Procházka P, Planer J, Skála T, Blatnik M, Čechal J. Robust Dipolar Layers between Organic Semiconductors and Silver for Energy-Level Alignment. ACS APPLIED MATERIALS & INTERFACES 2024; 16:18099-18111. [PMID: 38551398 PMCID: PMC11009919 DOI: 10.1021/acsami.3c18697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/13/2024] [Accepted: 03/13/2024] [Indexed: 04/12/2024]
Abstract
The interface between a metal electrode and an organic semiconductor (OS) layer has a defining role in the properties of the resulting device. To obtain the desired performance, interlayers are introduced to modify the adhesion and growth of OS and enhance the efficiency of charge transport through the interface. However, the employed interlayers face common challenges, including a lack of electric dipoles to tune the mutual position of energy levels, being too thick for efficient electronic transport, or being prone to intermixing with subsequently deposited OS layers. Here, we show that monolayers of 1,3,5-tris(4-carboxyphenyl)benzene (BTB) with fully deprotonated carboxyl groups on silver substrates form a compact layer resistant to intermixing while capable of mediating energy-level alignment and showing a large insensitivity to substrate termination. Employing a combination of surface-sensitive techniques, i.e., low-energy electron microscopy and diffraction, X-ray photoelectron spectroscopy, and scanning tunneling microscopy, we have comprehensively characterized the compact layer and proven its robustness against mixing with the subsequently deposited organic semiconductor layer. Density functional theory calculations show that the robustness arises from a strong interaction of carboxylate groups with the Ag surface, and thus, the BTB in the first layer is energetically favored. Synchrotron radiation photoelectron spectroscopy shows that this layer displays considerable electrical dipoles that can be utilized for work function engineering and electronic alignment of molecular frontier orbitals with respect to the substrate Fermi level. Our work thus provides a widely applicable molecular interlayer and general insights necessary for engineering of charge injection layers for efficient organic electronics.
Collapse
Affiliation(s)
- Tomáš Krajňák
- CEITEC—Central
European Institute of Technology, Brno University
of Technology, Purkyňova 123, 612 00 Brno, Czech Republic
| | - Veronika Stará
- CEITEC—Central
European Institute of Technology, Brno University
of Technology, Purkyňova 123, 612 00 Brno, Czech Republic
| | - Pavel Procházka
- CEITEC—Central
European Institute of Technology, Brno University
of Technology, Purkyňova 123, 612 00 Brno, Czech Republic
| | - Jakub Planer
- CEITEC—Central
European Institute of Technology, Brno University
of Technology, Purkyňova 123, 612 00 Brno, Czech Republic
| | - Tomáš Skála
- Department
of Surface and Plasma Science, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, 180 00 Prague 8, Czech Republic
| | - Matthias Blatnik
- CEITEC—Central
European Institute of Technology, Brno University
of Technology, Purkyňova 123, 612 00 Brno, Czech Republic
| | - Jan Čechal
- CEITEC—Central
European Institute of Technology, Brno University
of Technology, Purkyňova 123, 612 00 Brno, Czech Republic
- Institute
of Physical Engineering, Brno University of Technology, Technická 2896/2, 616 69 Brno, Czech Republic
| |
Collapse
|
2
|
Belser A, Greulich K, Sättele MS, Fingerle M, Ovsyannikov R, Giangrisostomi E, Chassé T, Peisert H. Interface Properties of CoPc on Nanographene-Covered Au(111) and the Influence of Annealing. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:10750-10761. [PMID: 34464137 DOI: 10.1021/acs.langmuir.1c01438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Organic bilayer systems and heterostructures are of enormous importance for optoelectronic devices. We study interface properties and the structural ordering of cobalt phthalocyanine (CoPc) on a highly ordered monolayer hexa-peri-hexabenzocoronene (HBC), grown on Au(111), using photoemission, X-ray absorption, scanning tunneling microscopy, and low-energy electron diffraction. A charge transfer between CoPc and the gold substrate is almost completely prevented by the HBC intermediate layer. We show that HBC acts as a template for the initial growth of CoPc molecules. After annealing to 630 K, a molecular exchange takes place, resulting in a coexistence of domains of both CoPc and HBC molecules on the surface.
Collapse
Affiliation(s)
- Axel Belser
- Institute of Physical and Theoretical Chemistry, University of Tübingen, Auf der Morgenstelle 18, Tübingen 72076, Germany
| | - Katharina Greulich
- Institute of Physical and Theoretical Chemistry, University of Tübingen, Auf der Morgenstelle 18, Tübingen 72076, Germany
| | - Marie S Sättele
- Institute of Physical and Theoretical Chemistry, University of Tübingen, Auf der Morgenstelle 18, Tübingen 72076, Germany
- Institute of Organic Chemistry, University of Tübingen, Auf der Morgenstelle 18, Tübingen 72076, Germany
| | - Michael Fingerle
- Institute of Organic Chemistry, University of Tübingen, Auf der Morgenstelle 18, Tübingen 72076, Germany
| | - Ruslan Ovsyannikov
- Institute for Methods and Instrumentation in Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Straße 15, Berlin 12489, Germany
| | - Erika Giangrisostomi
- Institute for Methods and Instrumentation in Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Straße 15, Berlin 12489, Germany
| | - Thomas Chassé
- Institute of Physical and Theoretical Chemistry, University of Tübingen, Auf der Morgenstelle 18, Tübingen 72076, Germany
- Center for Light-Matter Interaction, Sensors & Analytics (LISA+) at the University of Tübingen, Auf der Morgenstelle 18, Tübingen 72076, Germany
| | - Heiko Peisert
- Institute of Physical and Theoretical Chemistry, University of Tübingen, Auf der Morgenstelle 18, Tübingen 72076, Germany
| |
Collapse
|
3
|
Wang Q, Yang J, Franco-Cañellas A, Bürker C, Niederhausen J, Dombrowski P, Widdascheck F, Breuer T, Witte G, Gerlach A, Duhm S, Schreiber F. Pentacene/perfluoropentacene bilayers on Au(111) and Cu(111): impact of organic-metal coupling strength on molecular structure formation. NANOSCALE ADVANCES 2021; 3:2598-2606. [PMID: 36134152 PMCID: PMC9419101 DOI: 10.1039/d1na00040c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 03/08/2021] [Indexed: 05/12/2023]
Abstract
As crucial element in organic opto-electronic devices, heterostructures are of pivotal importance. In this context, a comprehensive study of the properties on a simplified model system of a donor-acceptor (D-A) bilayer structure is presented, using ultraviolet photoelectron spectroscopy (UPS), X-ray photoelectron spectroscopy (XPS), low-energy electron diffraction (LEED) and normal-incidence X-ray standing wave (NIXSW) measurements. Pentacene (PEN) as donor and perfluoropentacene (PFP) as acceptor material are chosen to produce bilayer structures on Au(111) and Cu(111) by sequential monolayer deposition of the two materials. By comparing the adsorption behavior of PEN/PFP bilayers on such weakly and strongly interacting substrates, it is found that: (i) the adsorption distance of the first layer (PEN or PFP) indicates physisorption on Au(111), (ii) the characteristics of the bilayer structure on Au(111) are (almost) independent of the deposition sequence, and hence, (iii) in both cases a mixed bilayer is formed on the Au substrate. This is in striking contrast to PFP/PEN bilayers on Cu(111), where strong chemisorption pins PEN molecules to the metal surface and no intermixing is induced by subsequent PFP deposition. The results illustrate the strong tendency of PEN and PFP molecules to mix, which has important implications for the fabrication of PEN/PFP heterojunctions.
Collapse
Affiliation(s)
- Qi Wang
- Institut für Angewandte Physik, Universität Tübingen 72076 Tübingen Germany
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices and Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University Suzhou 215123 People's Republic of China
| | - Jiacheng Yang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices and Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University Suzhou 215123 People's Republic of China
| | | | - Christoph Bürker
- Institut für Angewandte Physik, Universität Tübingen 72076 Tübingen Germany
| | - Jens Niederhausen
- Helmholtz Zentrum Berlin für Materialien und Energie GmbH 14109 Berlin Germany
| | - Pierre Dombrowski
- Fachbereich Physik, Philipps-Universität Marburg 35032 Marburg Germany
| | - Felix Widdascheck
- Fachbereich Physik, Philipps-Universität Marburg 35032 Marburg Germany
| | - Tobias Breuer
- Fachbereich Physik, Philipps-Universität Marburg 35032 Marburg Germany
| | - Gregor Witte
- Fachbereich Physik, Philipps-Universität Marburg 35032 Marburg Germany
| | - Alexander Gerlach
- Institut für Angewandte Physik, Universität Tübingen 72076 Tübingen Germany
| | - Steffen Duhm
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices and Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University Suzhou 215123 People's Republic of China
| | - Frank Schreiber
- Institut für Angewandte Physik, Universität Tübingen 72076 Tübingen Germany
| |
Collapse
|
4
|
Lexow M, Massicot S, Maier F, Steinrück HP. Stability and Exchange Processes in Ionic Liquid/Porphyrin Composite Films on Metal Surfaces. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2019; 123:29708-29721. [PMID: 31867088 PMCID: PMC6913898 DOI: 10.1021/acs.jpcc.9b08531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 11/12/2019] [Indexed: 06/10/2023]
Abstract
In light of increasing interest in the development of organic-organic multicomponent heterostructures on metals, this molecular-scale study investigates prototypical composite systems of ultrathin porphyrin and ionic liquid (IL) films on metallic supports under well-defined ultrahigh vacuum conditions. By means of angle-resolved X-ray photoelectron spectroscopy, we investigated the adsorption, stability, and thermal exchange of the resulting films after sequential physical vapor deposition of the free-base porphyrin 5,10,15,20-tetraphenylporphyrin, 2H-TPP, and the IL 1-methyl-3-octylimidazolium hexafluorophosphate, [C8C1Im][PF6], on Ag(111) and Au(111). 2H-TPP shows two-dimensional growth of up to two closed molecular layers on Ag(111) and Au(111) and three-dimensional island growth for thicker films. IL films on top of a monolayer of 2H-TPP exhibit Stranski-Krastanov-like growth and are stable up to 385 K. The 2H-TPP layer leads to destabilization of the IL films, compared to the IL in direct contact with the bare metals, by inhibiting the specific adsorption of the ions on the metal surfaces. When the porphyrin is deposited on top of [C8C1Im][PF6] at low temperature, the 2H-TPP molecules adsorb on top of the IL film at first but replace the IL at the IL/metal interfaces upon heating above 240 K. This exchange process is most likely driven by the higher adsorption energy of 2H-TPP on Ag(111) and Au(111) surfaces, as compared to the IL. The behavior observed on Ag(111) and Au(111) is identical. The results are highly relevant for the stability of porphyrin/IL-based thin film catalyst systems and molecular devices, and more generally, stacked organic multilayer architectures.
Collapse
|
5
|
Li Y, Chen C, Burton J, Park K, Heflin JR, Tao C. Self-assembled PCBM bilayers on graphene and HOPG examined by AFM and STM. NANOTECHNOLOGY 2018; 29:185703. [PMID: 29451137 DOI: 10.1088/1361-6528/aab00a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In this work we report fabrication and characterization of phenyl-C61-butyric acid methyl ester (PCBM) bilayer structures on graphene and highly oriented pyrolytic graphite (HOPG). Through careful control of the PCBM solution concentration (from 0.1 to 2 mg ml-1) and the deposition conditions, we demonstrate that PCBM molecules self-assemble into bilayer structures on graphene and HOPG substrates. Interestingly, the PCBM bilayers are formed with two distinct heights on HOPG, but only one unique representative height on graphene. At elevated annealing temperatures, edge diffusion allows neighboring vacancies to merge into a more ordered structure. This is, to the best of our knowledge, the first experimental realization of PCBM bilayer structures on graphene. This work could provide valuable insight into fabrication of new hybrid, ordered structures for applications to organic solar cells.
Collapse
Affiliation(s)
- Yanlong Li
- Department of Physics, Virginia Tech, Blacksburg, VA 24061, United States of America
| | | | | | | | | | | |
Collapse
|
6
|
He Y, Kröger J, Wang Y. Organic Multilayer Films Studied by Scanning Tunneling Microscopy. Chemphyschem 2017; 18:429-450. [PMID: 27973695 DOI: 10.1002/cphc.201600979] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 11/04/2016] [Indexed: 11/11/2022]
Abstract
This Minireview focuses exclusively on work with scanning tunneling microscopy to study the self-assembled multilayer films (SAMTs) of organic molecules. The π-conjugated organic molecules form different structures within different monolayers on various substrates. The interplay between molecule-substrate and intermolecular interactions plays a key role in determining the stacking mode of organic multilayer films. Different substrates strongly influence the organic-film growth and electronic properties of the organic molecules. Geometric and electronic structures of SAMTs are important factors that may determine device performance. In addition to the inorganic interface, this Minireview addresses the organic-organic interface. Homo- and hetero-SAMTs of organic molecules are also considered. The subtle interplay between structural and electronic characteristics, on one hand, and functionality and reactivity, on the other hand, are highlighted.
Collapse
Affiliation(s)
- Yang He
- Key Laboratory for the Physics and Chemistry of Nanodevices, Department of Electronics, Peking University, Beijing, 100871, P.R. China
| | - Jörg Kröger
- Institut für Physik, Technische Universität Ilmenau, 98693, Ilmenau, Germany
| | - Yongfeng Wang
- Key Laboratory for the Physics and Chemistry of Nanodevices, Department of Electronics, Peking University, Beijing, 100871, P.R. China.,Peking University Information Technology Institute (Tianjin Binhai), Tianjin, 300457, P.R. China
| |
Collapse
|
7
|
|
8
|
Goiri E, Borghetti P, El-Sayed A, Ortega JE, de Oteyza DG. Multi-Component Organic Layers on Metal Substrates. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:1340-1368. [PMID: 26662076 DOI: 10.1002/adma.201503570] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 08/31/2015] [Indexed: 05/28/2023]
Abstract
Increasingly high hopes are being placed on organic semiconductors for a variety of applications. Progress along these lines, however, requires the design and growth of increasingly complex systems with well-defined structural and electronic properties. These issues have been studied and reviewed extensively in single-component layers, but the focus is gradually shifting towards more complex and functional multi-component assemblies such as donor-acceptor networks. These blends show different properties from those of the corresponding single-component layers, and the understanding on how these properties depend on the different supramolecular environment of multi-component assemblies is crucial for the advancement of organic devices. Here, our understanding of two-dimensional multi-component layers on solid substrates is reviewed. Regarding the structure, the driving forces behind the self-assembly of these systems are described. Regarding the electronic properties, recent insights into how these are affected as the molecule's supramolecular environment changes are explained. Key information for the design and controlled growth of complex, functional multicomponent structures by self-assembly is summarized.
Collapse
Affiliation(s)
- Elizabeth Goiri
- Donostia International Physics Center, E-20018, Paseo Manuel Lardizabal 4, Donostia-San Sebastián, Spain
- Centro de Fisica de Materiales CSIC/UPV-EHU-Materials Physics Center, E-20018, Donostia-San Sebastián, Spain
| | - Patrizia Borghetti
- Donostia International Physics Center, E-20018, Paseo Manuel Lardizabal 4, Donostia-San Sebastián, Spain
- Centro de Fisica de Materiales CSIC/UPV-EHU-Materials Physics Center, E-20018, Donostia-San Sebastián, Spain
- Institut des NanoSciences de Paris, CNRS, UMR 7588, 4 Place Jussieu, Paris, 75005, France
| | - Afaf El-Sayed
- Centro de Fisica de Materiales CSIC/UPV-EHU-Materials Physics Center, E-20018, Donostia-San Sebastián, Spain
- Physics Dept., Faculty of Science, Al-Azhar University, 11754, Cairo, Egypt
| | - J Enrique Ortega
- Donostia International Physics Center, E-20018, Paseo Manuel Lardizabal 4, Donostia-San Sebastián, Spain
- Centro de Fisica de Materiales CSIC/UPV-EHU-Materials Physics Center, E-20018, Donostia-San Sebastián, Spain
- Universidad del Pais Vasco, Dpto. de Física Aplicada I, E-20018, Donostia-San Sebastián, Spain
| | - Dimas G de Oteyza
- Donostia International Physics Center, E-20018, Paseo Manuel Lardizabal 4, Donostia-San Sebastián, Spain
- Centro de Fisica de Materiales CSIC/UPV-EHU-Materials Physics Center, E-20018, Donostia-San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, E-48011, Bilbao, Spain
| |
Collapse
|