1
|
Fansher D, Besna JN, Fendri A, Pelletier JN. Choose Your Own Adventure: A Comprehensive Database of Reactions Catalyzed by Cytochrome P450 BM3 Variants. ACS Catal 2024; 14:5560-5592. [PMID: 38660610 PMCID: PMC11036407 DOI: 10.1021/acscatal.4c00086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 04/26/2024]
Abstract
Cytochrome P450 BM3 monooxygenase is the topic of extensive research as many researchers have evolved this enzyme to generate a variety of products. However, the abundance of information on increasingly diversified variants of P450 BM3 that catalyze a broad array of chemistry is not in a format that enables easy extraction and interpretation. We present a database that categorizes variants by their catalyzed reactions and includes details about substrates to provide reaction context. This database of >1500 P450 BM3 variants is downloadable and machine-readable and includes instructions to maximize ease of gathering information. The database allows rapid identification of commonly reported substitutions, aiding researchers who are unfamiliar with the enzyme in identifying starting points for enzyme engineering. For those actively engaged in engineering P450 BM3, the database, along with this review, provides a powerful and user-friendly platform to understand, predict, and identify the attributes of P450 BM3 variants, encouraging the further engineering of this enzyme.
Collapse
Affiliation(s)
- Douglas
J. Fansher
- Chemistry
Department, Université de Montréal, Montreal, QC, Canada H2V 0B3
- PROTEO,
The Québec Network for Research on Protein Function, Engineering,
and Applications, 201
Av. du Président-Kennedy, Montréal, QC, Canada H2X 3Y7
- CGCC,
Center in Green Chemistry and Catalysis, Montreal, QC, Canada H2V 0B3
| | - Jonathan N. Besna
- PROTEO,
The Québec Network for Research on Protein Function, Engineering,
and Applications, 201
Av. du Président-Kennedy, Montréal, QC, Canada H2X 3Y7
- CGCC,
Center in Green Chemistry and Catalysis, Montreal, QC, Canada H2V 0B3
- Department
of Biochemistry and Molecular Medicine, Université de Montréal, Montreal, QC, Canada H3T 1J4
| | - Ali Fendri
- Chemistry
Department, Université de Montréal, Montreal, QC, Canada H2V 0B3
- PROTEO,
The Québec Network for Research on Protein Function, Engineering,
and Applications, 201
Av. du Président-Kennedy, Montréal, QC, Canada H2X 3Y7
- CGCC,
Center in Green Chemistry and Catalysis, Montreal, QC, Canada H2V 0B3
| | - Joelle N. Pelletier
- Chemistry
Department, Université de Montréal, Montreal, QC, Canada H2V 0B3
- PROTEO,
The Québec Network for Research on Protein Function, Engineering,
and Applications, 201
Av. du Président-Kennedy, Montréal, QC, Canada H2X 3Y7
- CGCC,
Center in Green Chemistry and Catalysis, Montreal, QC, Canada H2V 0B3
- Department
of Biochemistry and Molecular Medicine, Université de Montréal, Montreal, QC, Canada H3T 1J4
| |
Collapse
|
2
|
Petrillo A, Hoffmann A, Becker J, Herres‐Pawlis S, Schindler S. Copper Mediated Intramolecular vs. Intermolecular Oxygenations: The Spacer makes the Difference! Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202100970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Alexander Petrillo
- Institute of Inorganic and Analytical Chemistry Justus-Liebig-University Giessen Heinrich-Buff-Ring 17 35392 Giessen Germany
| | - Alexander Hoffmann
- Institute of Inorganic Chemistry RWTH Aachen University Landoltweg 1a 52074 Aachen Germany
| | - Jonathan Becker
- Institute of Inorganic and Analytical Chemistry Justus-Liebig-University Giessen Heinrich-Buff-Ring 17 35392 Giessen Germany
| | - Sonja Herres‐Pawlis
- Institute of Inorganic Chemistry RWTH Aachen University Landoltweg 1a 52074 Aachen Germany
| | - Siegfried Schindler
- Institute of Inorganic and Analytical Chemistry Justus-Liebig-University Giessen Heinrich-Buff-Ring 17 35392 Giessen Germany
| |
Collapse
|
3
|
Wan NW, Cui HB, Zhao L, Shan J, Chen K, Wang ZQ, Zhou XJ, Cui BD, Han WY, Chen YZ. Directed evolution of cytochrome P450DA hydroxylase activity for stereoselective biohydroxylation. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00164k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A colorimetric high throughput screening method was developed based on a dual-enzyme cascade and used for the directed evolution of cytochrome P450 hydroxylase activity.
Collapse
Affiliation(s)
- Nan-Wei Wan
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education, and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, China
| | - Hai-Bo Cui
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education, and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, China
| | - Ling Zhao
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education, and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, China
| | - Jing Shan
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education, and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, China
| | - Ke Chen
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education, and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, China
| | - Zhong-Qiang Wang
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education, and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, China
| | - Xiao-Jian Zhou
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education, and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, China
| | - Bao-Dong Cui
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education, and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, China
| | - Wen-Yong Han
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education, and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, China
| | - Yong-Zheng Chen
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education, and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, China
| |
Collapse
|
4
|
Hall M. Enzymatic strategies for asymmetric synthesis. RSC Chem Biol 2021; 2:958-989. [PMID: 34458820 PMCID: PMC8341948 DOI: 10.1039/d1cb00080b] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 05/28/2021] [Indexed: 12/13/2022] Open
Abstract
Enzymes, at the turn of the 21st century, are gaining a momentum. Especially in the field of synthetic organic chemistry, a broad variety of biocatalysts are being applied in an increasing number of processes running at up to industrial scale. In addition to the advantages of employing enzymes under environmentally friendly reaction conditions, synthetic chemists are recognizing the value of enzymes connected to the exquisite selectivity of these natural (or engineered) catalysts. The use of hydrolases in enantioselective protocols paved the way to the application of enzymes in asymmetric synthesis, in particular in the context of biocatalytic (dynamic) kinetic resolutions. After two decades of impressive development, the field is now mature to propose a panel of catalytically diverse enzymes for (i) stereoselective reactions with prochiral compounds, such as double bond reduction and bond forming reactions, (ii) formal enantioselective replacement of one of two enantiotopic groups of prochiral substrates, as well as (iii) atroposelective reactions with noncentrally chiral compounds. In this review, the major enzymatic strategies broadly applicable in the asymmetric synthesis of optically pure chiral compounds are presented, with a focus on the reactions developed within the past decade.
Collapse
Affiliation(s)
- Mélanie Hall
- Institute of Chemistry, University of Graz Heinrichstrasse 28 8010 Graz Austria
- Field of Excellence BioHealth - University of Graz Austria
| |
Collapse
|
5
|
Qin L, Wu L, Nie Y, Xu Y. Biosynthesis of chiral cyclic and heterocyclic alcohols via CO/C–H/C–O asymmetric reactions. Catal Sci Technol 2021. [DOI: 10.1039/d1cy00113b] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This review covers the recent progress in various biological approaches applied to the synthesis of enantiomerically pure cyclic and heterocyclic alcohols through CO/C–H/C–O asymmetric reactions.
Collapse
Affiliation(s)
- Lei Qin
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education
- Jiangnan University
- Wuxi 214122
- China
| | - Lunjie Wu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education
- Jiangnan University
- Wuxi 214122
- China
| | - Yao Nie
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education
- Jiangnan University
- Wuxi 214122
- China
- International Joint Research Laboratory for Brewing Microbiology and Applied Enzymology at Jiangnan University
| | - Yan Xu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education
- Jiangnan University
- Wuxi 214122
- China
- International Joint Research Laboratory for Brewing Microbiology and Applied Enzymology at Jiangnan University
| |
Collapse
|
6
|
Chakrabarty S, Wang Y, Perkins JC, Narayan ARH. Scalable biocatalytic C-H oxyfunctionalization reactions. Chem Soc Rev 2020; 49:8137-8155. [PMID: 32701110 PMCID: PMC8177087 DOI: 10.1039/d0cs00440e] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Catalytic C-H oxyfunctionalization reactions have garnered significant attention in recent years with their ability to streamline synthetic routes toward complex molecules. Consequently, there have been significant strides in the design and development of catalysts that enable diversification through C-H functionalization reactions. Enzymatic C-H oxygenation reactions are often complementary to small molecule based synthetic approaches, providing a powerful tool when deployable on preparative-scale. This review highlights key advances in scalable biocatalytic C-H oxyfunctionalization reactions developed within the past decade.
Collapse
Affiliation(s)
- Suman Chakrabarty
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA.
| | | | | | | |
Collapse
|
7
|
Wang JB, Huang Q, Peng W, Wu P, Yu D, Chen B, Wang B, Reetz MT. P450-BM3-Catalyzed Sulfoxidation versus Hydroxylation: A Common or Two Different Catalytically Active Species? J Am Chem Soc 2020; 142:2068-2073. [PMID: 31927987 PMCID: PMC7307895 DOI: 10.1021/jacs.9b13061] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Indexed: 12/15/2022]
Abstract
While the mechanism of the P450-catalyzed oxidative hydroxylation of organic compounds has been studied in detail for many years, less is known about sulfoxidation. Depending upon the structure of the respective substrate, heme-Fe═O (Cpd I), heme-Fe(III)-OOH (Cpd 0), and heme-Fe(III)-H2O2 (protonated Cpd 0) have been proposed as reactive intermediates. In the present study, we consider the transformation of isosteric substrates via sulfoxidation and oxidative hydroxylation, respectively, catalyzed by regio- and enantioselective mutants of P450-BM3 which were constructed by directed evolution. 1-Thiochromanone and 1-tetralone were used as the isosteric substrates because, unlike previous studies involving fully flexible compounds such as thia-fatty acids and fatty acids, respectively, these compounds are rigid and cannot occur in a multitude of different conformations and binding modes in the large P450-BM3 binding pocket. The experimental results comprising activity and regio- and enantioselectivity, flanked by molecular dynamics computations within a time scale of 300 ns and QM/MM calculations of transition-state energies, unequivocally show that heme-Fe═O (Cpd I) is the common catalytically active intermediate in both sulfoxidation and oxidative hydroxylation.
Collapse
Affiliation(s)
- Jian-bo Wang
- Key Laboratory
of Phytochemistry R&D of Hunan Province, College of Chemistry
and Chemical Engineering and Key Laboratory of Chemical Biology and Traditional
Chinese Medicine Research (Ministry of Education), College of Chemistry
and Chemical Engineering, Hunan Normal University, 410081 Changsha, People’s Republic of China
| | - Qun Huang
- Key Laboratory
of Phytochemistry R&D of Hunan Province, College of Chemistry
and Chemical Engineering and Key Laboratory of Chemical Biology and Traditional
Chinese Medicine Research (Ministry of Education), College of Chemistry
and Chemical Engineering, Hunan Normal University, 410081 Changsha, People’s Republic of China
| | - Wei Peng
- State Key
Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial
Key Laboratory of Theoretical and Computational Chemistry, College
of Chemistry and Chemical Engineering, Xiamen
University, Xiamen 360015, P. R. China
| | - Peng Wu
- State Key
Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial
Key Laboratory of Theoretical and Computational Chemistry, College
of Chemistry and Chemical Engineering, Xiamen
University, Xiamen 360015, P. R. China
| | - Da Yu
- Key Laboratory
of Phytochemistry R&D of Hunan Province, College of Chemistry
and Chemical Engineering and Key Laboratory of Chemical Biology and Traditional
Chinese Medicine Research (Ministry of Education), College of Chemistry
and Chemical Engineering, Hunan Normal University, 410081 Changsha, People’s Republic of China
| | - Bo Chen
- Key Laboratory
of Phytochemistry R&D of Hunan Province, College of Chemistry
and Chemical Engineering and Key Laboratory of Chemical Biology and Traditional
Chinese Medicine Research (Ministry of Education), College of Chemistry
and Chemical Engineering, Hunan Normal University, 410081 Changsha, People’s Republic of China
| | - Binju Wang
- State Key
Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial
Key Laboratory of Theoretical and Computational Chemistry, College
of Chemistry and Chemical Engineering, Xiamen
University, Xiamen 360015, P. R. China
| | - Manfred T. Reetz
- Chemistry Department, Philipps-University, Hans-Meerwein-Strasse 4, 35032 Marburg, Germany
- Max-Planck Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim, Germany
| |
Collapse
|
8
|
Selmani A, Darses S. Enantioenriched 1-Tetralones via Rhodium-Catalyzed Arylative Cascade Desymmetrization/Acylation of Alkynylmalonates. Org Lett 2019; 21:8122-8126. [DOI: 10.1021/acs.orglett.9b03153] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Aymane Selmani
- PSL Université Paris, Chimie ParisTech-CNRS, Institute of
Chemistry for Life and Health Sciences (i-CLeHS), 11 rue Pierre et Marie Curie, 75005, Paris, France
| | - Sylvain Darses
- PSL Université Paris, Chimie ParisTech-CNRS, Institute of
Chemistry for Life and Health Sciences (i-CLeHS), 11 rue Pierre et Marie Curie, 75005, Paris, France
| |
Collapse
|
9
|
Highly efficient aerobic oxidation of tetralin to α-tetralone over MnOx–CoOy/γ-Al2O3 catalysts. CATAL COMMUN 2019. [DOI: 10.1016/j.catcom.2019.04.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
10
|
Selective hydroxylation of 1,8- and 1,4-cineole using bacterial P450 variants. Arch Biochem Biophys 2019; 663:54-63. [DOI: 10.1016/j.abb.2018.12.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 10/24/2018] [Accepted: 12/21/2018] [Indexed: 01/10/2023]
|
11
|
Syntrivanis LD, Wong LL, Robertson J. Hydroxylation of Eleuthoside Synthetic Intermediates by P450BM3
(CYP102A1). European J Org Chem 2018. [DOI: 10.1002/ejoc.201801206] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
| | - Luet Lok Wong
- Department of Chemistry; Inorganic Chemistry Laboratory; University of Oxford; South Parks Road 3QR Oxford, OX1 UK
| | - Jeremy Robertson
- Department of Chemistry; Chemistry Research Laboratory; University of Oxford; Mansfield Road 3TA (UK) Oxford, OX1
| |
Collapse
|
12
|
Sosa V, Melkie M, Sulca C, Li J, Tang L, Li J, Faris J, Foley B, Banh T, Kato M, Cheruzel LE. Selective Light-Driven Chemoenzymatic Trifluoromethylation/Hydroxylation of Substituted Arenes. ACS Catal 2018. [DOI: 10.1021/acscatal.7b04160] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Victor Sosa
- Department of Chemistry, San José State University, One Washington Square, San
José, California 95192-0101, United States
| | - Marya Melkie
- Department of Chemistry, San José State University, One Washington Square, San
José, California 95192-0101, United States
| | - Carolina Sulca
- Department of Chemistry, San José State University, One Washington Square, San
José, California 95192-0101, United States
| | - Jennifer Li
- Department of Chemistry, San José State University, One Washington Square, San
José, California 95192-0101, United States
| | - Lawrence Tang
- Department of Chemistry, San José State University, One Washington Square, San
José, California 95192-0101, United States
| | - Jeffrey Li
- Department of Chemistry, San José State University, One Washington Square, San
José, California 95192-0101, United States
| | - Justin Faris
- Department of Chemistry, San José State University, One Washington Square, San
José, California 95192-0101, United States
| | - Bridget Foley
- Department of Chemistry, San José State University, One Washington Square, San
José, California 95192-0101, United States
| | - Tam Banh
- Department of Chemistry, San José State University, One Washington Square, San
José, California 95192-0101, United States
| | - Mallory Kato
- Department of Chemistry, San José State University, One Washington Square, San
José, California 95192-0101, United States
| | - Lionel E. Cheruzel
- Department of Chemistry, San José State University, One Washington Square, San
José, California 95192-0101, United States
| |
Collapse
|
13
|
Ilie A, Harms K, Reetz MT. P450-Catalyzed Regio- and Stereoselective Oxidative Hydroxylation of 6-Iodotetralone: Preparative-Scale Synthesis of a Key Intermediate for Pd-Catalyzed Transformations. J Org Chem 2018; 83:7504-7508. [DOI: 10.1021/acs.joc.7b02878] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Adriana Ilie
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein Str. 4, 35032 Marburg, Germany
| | - Klaus Harms
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein Str. 4, 35032 Marburg, Germany
| | - Manfred T. Reetz
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein Str. 4, 35032 Marburg, Germany
| |
Collapse
|
14
|
Stereoselective hydroxylation of isophorone by variants of the cytochromes P450 CYP102A1 and CYP101A1. Enzyme Microb Technol 2018; 111:29-37. [PMID: 29421034 DOI: 10.1016/j.enzmictec.2018.01.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Revised: 01/02/2018] [Accepted: 01/04/2018] [Indexed: 11/23/2022]
Abstract
The stereoselective oxidation of hydrocarbons is an area of research where enzyme biocatalysis can make a substantial impact. The cyclic ketone isophorone was stereoselectively hydroxylated (≥95%) by wild-type CYP102A1 to form (R)-4-hydroxyisophorone, an important chiral synthon and flavour and fragrance compound. CYP102A1 variants were also selective for 4-hydroxyisophorone formation and the product formation rate increased over the wild-type enzyme by up to 285-fold, with the best mutants being R47L/Y51F/I401P and A74G/F87V/L188Q. The latter variant, which contained mutations in the distal substrate binding pocket, was marginally less selective. Combining perfluorodecanoic acid decoy molecules with the rate accelerating variant R47L/Y51F/I401P engendered further improvement with the purified enzymes. However when the decoy molecules were used with A74G/F87V/L188Q the amount of product generated by the enzyme was reduced. Addition of decoy molecules to whole-cell turnovers did not improve the productivity of these CYP102A1 systems. WT CYP101A1 formed significant levels of 7-hydroxyisophorone as a minor product alongside 4-hydroxyisophorone. However the F87W/Y96F/L244A/V247L CYP101A1 mutant was ≥98% selective for (R)-4-hydroxyisophorone. A comparison of the two enzyme systems using whole-cell oxidation reactions showed that the best CYP101A1 variant was able to generate more product. We also characterised that the further oxidation metabolite 4-ketoisophorone was produced and then subsequently reduced to levodione by an endogenous Escherichia coli ene reductase.
Collapse
|
15
|
Li RJ, Li A, Zhao J, Chen Q, Li N, Yu HL, Xu JH. Engineering P450LaMO stereospecificity and product selectivity for selective C–H oxidation of tetralin-like alkylbenzenes. Catal Sci Technol 2018. [DOI: 10.1039/c8cy01448e] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Via Phe scanning based protein engineering, P450LaMO increased enantioselectivity to er 98 : 2 and product selectivity, alcohol : ketone, to ak 99 : 1.
Collapse
Affiliation(s)
- Ren-Jie Li
- State Key Laboratory of Bioreactor Engineering
- Shanghai Collaborative Innovation Center for Biomanufacturing
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| | - Aitao Li
- Hubei Collaborative Innovation Center for Green Transformation of Bio-resources
- Hubei Key Laboratory of Industrial Biotechnology
- College of Life Sciences
- Hubei University
- Wuhan 430062
| | - Jing Zhao
- Tianjin Institute of Industrial Biotechnology
- Chinese Academy of Sciences
- Tianjin 300308
- P. R. China
| | - Qi Chen
- State Key Laboratory of Bioreactor Engineering
- Shanghai Collaborative Innovation Center for Biomanufacturing
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| | - Ning Li
- State Key Laboratory of Pulp and Paper Engineering
- College of Light Industry and Food Sciences
- South China University of Technology
- Guangzhou
- China
| | - Hui-Lei Yu
- State Key Laboratory of Bioreactor Engineering
- Shanghai Collaborative Innovation Center for Biomanufacturing
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| | - Jian-He Xu
- State Key Laboratory of Bioreactor Engineering
- Shanghai Collaborative Innovation Center for Biomanufacturing
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| |
Collapse
|
16
|
Biocatalysts for the pharmaceutical industry created by structure-guided directed evolution of stereoselective enzymes. Bioorg Med Chem 2017; 26:1241-1251. [PMID: 28693917 DOI: 10.1016/j.bmc.2017.05.021] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 04/11/2017] [Accepted: 05/09/2017] [Indexed: 01/01/2023]
Abstract
Enzymes have been used for a long time as catalysts in the asymmetric synthesis of chiral intermediates needed in the production of therapeutic drugs. However, this alternative to man-made catalysts has suffered traditionally from distinct limitations, namely the often observed wrong or insufficient enantio- and/or regioselectivity, low activity, narrow substrate range, and insufficient thermostability. With the advent of directed evolution, these problems can be generally solved. The challenge is to develop and apply the most efficient mutagenesis methods which lead to highest-quality mutant libraries requiring minimal screening. Structure-guided saturation mutagenesis and its iterative form have emerged as the method of choice for evolving stereo- and regioselective mutant enzymes needed in the asymmetric synthesis of chiral intermediates. The number of (industrial) applications in the preparation of chiral pharmaceuticals is rapidly increasing. This review features and analyzes typical case studies.
Collapse
|
17
|
Nath U, Pan SC. Organocatalytic Asymmetric Tamura Cycloaddition with α- Branched Nitroolefins: Synthesis of Functionalized 1-Tetralones. J Org Chem 2017; 82:3262-3269. [PMID: 28226211 DOI: 10.1021/acs.joc.6b03020] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A new catalytic asymmetric Tamura cycloaddition with nitroolefins was developed. This demonstration of the reaction of α-branched nitroolefins with homophthalic anhydrides delivers highly functionalized 1-tetralone compounds. With bifunctional squaramide catalyst, the desired tetralone products are obtained with high enantioselectivity and good diastereoselectivity.
Collapse
Affiliation(s)
- Utpal Nath
- Department of Chemistry, Indian Institute of Technology Guwahati , North Guwahati, Assam 781039, India
| | - Subhas Chandra Pan
- Department of Chemistry, Indian Institute of Technology Guwahati , North Guwahati, Assam 781039, India
| |
Collapse
|
18
|
O'Hanlon JA, Ren X, Morris M, Wong LL, Robertson J. Hydroxylation of anilides by engineered cytochrome P450BM3. Org Biomol Chem 2017; 15:8780-8787. [DOI: 10.1039/c7ob02236k] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cytochrome P450BM3mutants achieve selectivepara-hydroxylation of substitutedN-sulfonylanilines under mild conditions.
Collapse
Affiliation(s)
- Jack A. O'Hanlon
- Department of Chemistry
- University of Oxford
- Chemistry Research laboratory
- Oxford
- UK
| | - Xinkun Ren
- Department of Chemistry
- University of Oxford
- Inorganic Chemistry Laboratory
- Oxford
- UK
| | - Melloney Morris
- Syngenta UK
- Jealott's Hill International Research Centre
- Bracknell
- UK
| | - Luet Lok Wong
- Department of Chemistry
- University of Oxford
- Inorganic Chemistry Laboratory
- Oxford
- UK
| | - Jeremy Robertson
- Department of Chemistry
- University of Oxford
- Chemistry Research laboratory
- Oxford
- UK
| |
Collapse
|
19
|
Suzuki K, Stanfield JK, Shoji O, Yanagisawa S, Sugimoto H, Shiro Y, Watanabe Y. Control of stereoselectivity of benzylic hydroxylation catalysed by wild-type cytochrome P450BM3 using decoy molecules. Catal Sci Technol 2017. [DOI: 10.1039/c7cy01130j] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The benzylic hydroxylation of non-native substrates was catalysed by cytochrome P450BM3, wherein “decoy molecules” controlled the stereoselectivity of the reactions.
Collapse
Affiliation(s)
- Kazuto Suzuki
- Department of Chemistry
- Graduate School of Science
- Nagoya University
- Nagoya 464-8602
- Japan
| | - Joshua Kyle Stanfield
- Department of Chemistry
- Graduate School of Science
- Nagoya University
- Nagoya 464-8602
- Japan
| | - Osami Shoji
- Department of Chemistry
- Graduate School of Science
- Nagoya University
- Nagoya 464-8602
- Japan
| | - Sota Yanagisawa
- Department of Chemistry
- Graduate School of Science
- Nagoya University
- Nagoya 464-8602
- Japan
| | - Hiroshi Sugimoto
- Core Research for Evolutional Science and Technology (CREST)
- Japan Science and Technology Agency
- Tokyo
- Japan
- RIKEN SPring-8 Center
| | | | - Yoshihito Watanabe
- Research Center for Materials Science
- Nagoya University
- Nagoya 464-8602
- Japan
| |
Collapse
|
20
|
Munday SD, Dezvarei S, Bell SG. Increasing the Activity and Efficiency of Stereoselective Oxidations by using Decoy Molecules in Combination with Rate-Enhancing Variants of P450Bm3. ChemCatChem 2016. [DOI: 10.1002/cctc.201600551] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Samuel D. Munday
- Department of Chemistry; University of Adelaide; SA 5005 Australia
| | | | - Stephen G. Bell
- Department of Chemistry; University of Adelaide; SA 5005 Australia
| |
Collapse
|
21
|
Girvan HM, Munro AW. Applications of microbial cytochrome P450 enzymes in biotechnology and synthetic biology. Curr Opin Chem Biol 2016; 31:136-45. [PMID: 27015292 DOI: 10.1016/j.cbpa.2016.02.018] [Citation(s) in RCA: 167] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 02/23/2016] [Accepted: 02/24/2016] [Indexed: 12/11/2022]
Abstract
Cytochrome P450 enzymes (P450s) are a superfamily of monooxygenase enzymes with enormous potential for synthetic biology applications. Across Nature, their substrate range is vast and exceeds that of other enzymes. The range of different chemical transformations performed by P450s is also substantial, and continues to expand through interrogation of the properties of novel P450s and by protein engineering studies. The ability of P450s to introduce oxygen atoms at specific positions on complex molecules makes these enzymes particularly valuable for applications in synthetic biology. This review focuses on the enzymatic properties and reaction mechanisms of P450 enzymes, and on recent studies that highlight their broad applications in the production of oxychemicals. For selected soluble bacterial P450s (notably the high-activity P450-cytochrome P450 reductase enzyme P450 BM3), variants with a multitude of diverse substrate selectivities have been generated both rationally and by random mutagenesis/directed evolution approaches. This highlights the robustness and malleability of the P450 fold, and the capacity of these biocatalysts to oxidise a wide range of chemical scaffolds. This article reviews recent research on the application of wild-type and engineered P450s in the production of important chemicals, including pharmaceuticals and drug metabolites, steroids and antibiotics. In addition, the properties of unusual members of the P450 superfamily that do not follow the canonical P450 catalytic pathway are described.
Collapse
Affiliation(s)
- Hazel M Girvan
- Manchester Institute of Biotechnology, Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM), Faculty of Life Sciences, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK
| | - Andrew W Munro
- Manchester Institute of Biotechnology, Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM), Faculty of Life Sciences, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK.
| |
Collapse
|
22
|
Lafleur-Lambert R, Boukouvalas J. Asymmetric total synthesis of (+)-O-methylasparvenone, a rare nitrogen-free serotonin 2C receptor antagonist. Org Biomol Chem 2016; 14:8758-8763. [DOI: 10.1039/c6ob01678b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The first enantioselective synthesis of the fungal metabolite (+)-O-methylasparvenone is reported.
Collapse
Affiliation(s)
| | - John Boukouvalas
- Department of Chemistry
- Pavillon Alexandre-Vachon
- Université Laval
- Quebec City
- Canada
| |
Collapse
|
23
|
Li RJ, Xu JH, Yin YC, Wirth N, Ren JM, Zeng BB, Yu HL. Rapid probing of the reactivity of P450 monooxygenases from the CYP116B subfamily using a substrate-based method. NEW J CHEM 2016. [DOI: 10.1039/c6nj00809g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Four types of O-methylated substrates were designed as probes for the detection of fingerprints of Type IV P450s.
Collapse
Affiliation(s)
- Ren-Jie Li
- State Key of Laboratory of Bioreactor Engineering
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| | - Jian-He Xu
- State Key of Laboratory of Bioreactor Engineering
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| | - Yue-Cai Yin
- State Key of Laboratory of Bioreactor Engineering
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| | - Nicolas Wirth
- State Key of Laboratory of Bioreactor Engineering
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| | - Jiang-Meng Ren
- Shanghai Key Laboratory of New Drug Design
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| | - Bu-Bing Zeng
- Shanghai Key Laboratory of New Drug Design
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| | - Hui-Lei Yu
- State Key of Laboratory of Bioreactor Engineering
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| |
Collapse
|
24
|
Borie C, Ackermann L, Nechab M. Enantioselective syntheses of indanes: from organocatalysis to C–H functionalization. Chem Soc Rev 2016; 45:1368-86. [DOI: 10.1039/c5cs00622h] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The indanyl core is ubiquitous in a large variety of drugs and natural products. Remarkable recent progress has been accomplished in the step-economical assembly of functionalization of chiral indanes by means of enantioselective catalysis, with major progress being achieved in organocatalysis and C–H activation chemistry.
Collapse
Affiliation(s)
- Cyril Borie
- Aix Marseille Université CNRS
- ICR
- UMR 7273
- 13013 Marseille
- France
| | - Lutz Ackermann
- Institut fuer Organische und Biomolekulare Chemie
- Georg-August-Universitaet Goettingen
- 37077 Goettingen
- Germany
| | - Malek Nechab
- Aix Marseille Université CNRS
- ICR
- UMR 7273
- 13013 Marseille
- France
| |
Collapse
|
25
|
Ilie A, Lonsdale R, Agudo R, Reetz MT. A diastereoselective P450-catalyzed epoxidation reaction: anti versus syn reactivity. Tetrahedron Lett 2015. [DOI: 10.1016/j.tetlet.2015.03.076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
26
|
Currin A, Swainston N, Day PJ, Kell DB. Synthetic biology for the directed evolution of protein biocatalysts: navigating sequence space intelligently. Chem Soc Rev 2015; 44:1172-239. [PMID: 25503938 PMCID: PMC4349129 DOI: 10.1039/c4cs00351a] [Citation(s) in RCA: 256] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Indexed: 12/21/2022]
Abstract
The amino acid sequence of a protein affects both its structure and its function. Thus, the ability to modify the sequence, and hence the structure and activity, of individual proteins in a systematic way, opens up many opportunities, both scientifically and (as we focus on here) for exploitation in biocatalysis. Modern methods of synthetic biology, whereby increasingly large sequences of DNA can be synthesised de novo, allow an unprecedented ability to engineer proteins with novel functions. However, the number of possible proteins is far too large to test individually, so we need means for navigating the 'search space' of possible protein sequences efficiently and reliably in order to find desirable activities and other properties. Enzymologists distinguish binding (Kd) and catalytic (kcat) steps. In a similar way, judicious strategies have blended design (for binding, specificity and active site modelling) with the more empirical methods of classical directed evolution (DE) for improving kcat (where natural evolution rarely seeks the highest values), especially with regard to residues distant from the active site and where the functional linkages underpinning enzyme dynamics are both unknown and hard to predict. Epistasis (where the 'best' amino acid at one site depends on that or those at others) is a notable feature of directed evolution. The aim of this review is to highlight some of the approaches that are being developed to allow us to use directed evolution to improve enzyme properties, often dramatically. We note that directed evolution differs in a number of ways from natural evolution, including in particular the available mechanisms and the likely selection pressures. Thus, we stress the opportunities afforded by techniques that enable one to map sequence to (structure and) activity in silico, as an effective means of modelling and exploring protein landscapes. Because known landscapes may be assessed and reasoned about as a whole, simultaneously, this offers opportunities for protein improvement not readily available to natural evolution on rapid timescales. Intelligent landscape navigation, informed by sequence-activity relationships and coupled to the emerging methods of synthetic biology, offers scope for the development of novel biocatalysts that are both highly active and robust.
Collapse
Affiliation(s)
- Andrew Currin
- Manchester Institute of Biotechnology , The University of Manchester , 131, Princess St , Manchester M1 7DN , UK . ; http://dbkgroup.org/; @dbkell ; Tel: +44 (0)161 306 4492
- School of Chemistry , The University of Manchester , Manchester M13 9PL , UK
- Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM) , The University of Manchester , 131, Princess St , Manchester M1 7DN , UK
| | - Neil Swainston
- Manchester Institute of Biotechnology , The University of Manchester , 131, Princess St , Manchester M1 7DN , UK . ; http://dbkgroup.org/; @dbkell ; Tel: +44 (0)161 306 4492
- Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM) , The University of Manchester , 131, Princess St , Manchester M1 7DN , UK
- School of Computer Science , The University of Manchester , Manchester M13 9PL , UK
| | - Philip J. Day
- Manchester Institute of Biotechnology , The University of Manchester , 131, Princess St , Manchester M1 7DN , UK . ; http://dbkgroup.org/; @dbkell ; Tel: +44 (0)161 306 4492
- Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM) , The University of Manchester , 131, Princess St , Manchester M1 7DN , UK
- Faculty of Medical and Human Sciences , The University of Manchester , Manchester M13 9PT , UK
| | - Douglas B. Kell
- Manchester Institute of Biotechnology , The University of Manchester , 131, Princess St , Manchester M1 7DN , UK . ; http://dbkgroup.org/; @dbkell ; Tel: +44 (0)161 306 4492
- School of Chemistry , The University of Manchester , Manchester M13 9PL , UK
- Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM) , The University of Manchester , 131, Princess St , Manchester M1 7DN , UK
| |
Collapse
|
27
|
Salamone M, Mangiacapra L, Bietti M. Kinetic Solvent Effects on the Reactions of the Cumyloxyl Radical with Tertiary Amides. Control over the Hydrogen Atom Transfer Reactivity and Selectivity through Solvent Polarity and Hydrogen Bonding. J Org Chem 2015; 80:1149-54. [DOI: 10.1021/jo5026767] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Michela Salamone
- Dipartimento
di Scienze e
Tecnologie Chimiche, Università “Tor Vergata”, Via
della Ricerca Scientifica 1, I-00133 Rome, Italy
| | - Livia Mangiacapra
- Dipartimento
di Scienze e
Tecnologie Chimiche, Università “Tor Vergata”, Via
della Ricerca Scientifica 1, I-00133 Rome, Italy
| | - Massimo Bietti
- Dipartimento
di Scienze e
Tecnologie Chimiche, Università “Tor Vergata”, Via
della Ricerca Scientifica 1, I-00133 Rome, Italy
| |
Collapse
|
28
|
Ilie A, Agudo R, Roiban GD, Reetz MT. P450-catalyzed regio- and stereoselective oxidative hydroxylation of disubstituted cyclohexanes: creation of three centers of chirality in a single CH-activation event. Tetrahedron 2015. [DOI: 10.1016/j.tet.2014.11.067] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
29
|
Abstract
A personal selection of 32 recent papers is presented covering various aspects of current developments in bioorganic chemistry and novel natural products such as forazoline A from an Actinomadura species.
Collapse
|
30
|
Roiban GD, Reetz MT. Expanding the toolbox of organic chemists: directed evolution of P450 monooxygenases as catalysts in regio- and stereoselective oxidative hydroxylation. Chem Commun (Camb) 2015; 51:2208-24. [DOI: 10.1039/c4cc09218j] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cytochrome P450 enzymes (CYPs) have been used for more than six decades as catalysts for the CH-activating oxidative hydroxylation of organic compounds with formation of added-value products.
Collapse
Affiliation(s)
| | - Manfred T. Reetz
- Department of Chemistry
- Philipps-Universität Marburg
- 35032 Marburg
- Germany
- Max-Planck-Institut für Kohlenforschung
| |
Collapse
|
31
|
Agudo R, Roiban GD, Lonsdale R, Ilie A, Reetz MT. Biocatalytic route to chiral acyloins: P450-catalyzed regio- and enantioselective α-hydroxylation of ketones. J Org Chem 2014; 80:950-6. [PMID: 25495724 DOI: 10.1021/jo502397s] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
P450-BM3 and mutants of this monooxygenase generated by directed evolution are excellent catalysts for the oxidative α-hydroxylation of ketones with formation of chiral acyloins with high regioselectivity (up to 99%) and enantioselectivity (up to 99% ee). This constitutes a new route to a class of chiral compounds that are useful intermediates in the synthesis of many kinds of biologically active compounds.
Collapse
Affiliation(s)
- Rubén Agudo
- Department of Chemistry, Philipps-Universität Marburg , Hans-Meerwein Strasse, 35032 Marburg, Germany
| | | | | | | | | |
Collapse
|