1
|
Anjali, Kamboj P, Amir M. Synthetic Methods of Quinoxaline Derivatives and their Potential Anti-inflammatory Properties. Mini Rev Med Chem 2025; 25:138-162. [PMID: 38910487 DOI: 10.2174/0113895575307480240610055622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/03/2024] [Accepted: 05/13/2024] [Indexed: 06/25/2024]
Abstract
Quinoxaline molecule has gathered great attention in medicinal chemistry due to its vide spectrum of biological activities and has emerged as a versatile pharmacophore in drug discovery and development. Its structure comprises a bicyclic ring of benzopyrazine and displays a range of pharmacological properties, including antibacterial, antifungal, antiviral, anticancer, and antiinflammatory. This study aims to summarize the different strategies for the synthesis of quinoxalines and their anti-inflammatory properties acting through different mechanisms. Structure-activity relationships have also been discussed in order to determine the effect of structural modifications on anti-inflammatory potential. These analyses illuminate critical structural features required for optimal activity, driving the design and synthesis of new quinoxaline analogues with better antiinflammatory activities. The anti-inflammatory properties of quinoxalines are attributed to their inhibitory action on the expression of several inflammatory modulators such as cyclooxygenase, cytokines, nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB) and p38α Mitogen Activated Protein Kinase (p38α MAPK). Activators of nuclear factor erythroid 2-related factor 2 (NRF2) and agonistic effect on opioid receptors have also been discussed. Hence, this study may provide a future template for the design and development of novel quinoxaline derivatives acting through different molecular targets as potential anti-inflammatory agents with better efficacy and safety profiles.
Collapse
Affiliation(s)
- Anjali
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Payal Kamboj
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Mohammad Amir
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| |
Collapse
|
2
|
Xiong S, Pu J, Xiao T, Jiang Y. Synthesis of 2,3-Diperfluoroalkylated Quinoxalines via Selenium-Catalyzed Reductive C-C Coupling of Vicinal Perfluoroalkyl Formimidoyl Chlorides. Org Lett 2024; 26:8866-8871. [PMID: 39382382 DOI: 10.1021/acs.orglett.4c03308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
A direct and efficient approach to access structurally interesting 2,3-diperfluoroalkylated quinoxalines via selenium-catalyzed reductive C-C construction of vicinal bis(perfluoroalkyl formimidoyl chloride)s has been disclosed. This protocol features the use of easily accessible starting materials, scalability, and a diverse functional group tolerance. Mechanism studies suggested that this reaction may involve an interesting selenium-containing seven-membered-ring intermediate and proceed through an electrocyclization/selenium reductive elimination pathway, which is significantly different from the traditional transition-metal-catalyzed reductive coupling strategies of alkyl halides.
Collapse
Affiliation(s)
- Shaoqi Xiong
- Faculty of Science, Kunming University of Science and Technology, Kunming 650500, China
| | - Jijun Pu
- Faculty of Science, Kunming University of Science and Technology, Kunming 650500, China
| | - Tiebo Xiao
- Faculty of Science, Kunming University of Science and Technology, Kunming 650500, China
| | - Yubo Jiang
- Faculty of Science, Kunming University of Science and Technology, Kunming 650500, China
| |
Collapse
|
3
|
Petkov H, Ravutsov MA, Verganista MJ, Mitrev YN, Candeias NR, Simeonov SP. Cu-Catalyzed Tandem Oxidation-Intramolecular Cannizzaro Reaction of Biorenewables and Bioactive Molecules. CHEMSUSCHEM 2024; 17:e202400013. [PMID: 38376915 DOI: 10.1002/cssc.202400013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/19/2024] [Accepted: 02/19/2024] [Indexed: 02/21/2024]
Abstract
A tandem Cu-catalyzed oxidation-intramolecular Cannizzaro reaction leading to bioactive α-hydroxyesters from α-hydroxyketones is reported. The process uses oxygen as a sole oxidant to achieve the formation of glyoxals, which are efficiently converted in situ to important α-hydroxyesters. The mechanistic insights are provided by isotopic labeling and supported by DFT calculations. The transformation proved a robust synthetic tool to achieve the synthesis of human metabolites and hydroxyl esters of various biologically active steroid derivatives.
Collapse
Affiliation(s)
- Hristo Petkov
- Institute of Organic Chemistry with Centre of Phytochemistry Bulgarian Academy of Sciences, Acad. G. Bonchev str., bl. 9, Sofia, 1113, Bulgaria
| | - Martin A Ravutsov
- Institute of Organic Chemistry with Centre of Phytochemistry Bulgarian Academy of Sciences, Acad. G. Bonchev str., bl. 9, Sofia, 1113, Bulgaria
| | - Manuel J Verganista
- LAQV-REQUIMTE Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Yavor N Mitrev
- Institute of Organic Chemistry with Centre of Phytochemistry Bulgarian Academy of Sciences, Acad. G. Bonchev str., bl. 9, Sofia, 1113, Bulgaria
| | - Nuno R Candeias
- LAQV-REQUIMTE Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
- Faculty of Engineering and Natural Sciences, Tampere University, Korkeakoulunkatu 8, 33101, Tampere, Finland
| | - Svilen P Simeonov
- Institute of Organic Chemistry with Centre of Phytochemistry Bulgarian Academy of Sciences, Acad. G. Bonchev str., bl. 9, Sofia, 1113, Bulgaria
- Research Institute for Medicines (iMed.ULisboa) Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisbon, Portugal
| |
Collapse
|
4
|
Yang ML, Zhao L, Chen HR, Ding MW. Synthesis of Luminescent Indolo[2,1- b]quinazolin-6(12 H)-ones via a Sequential Ugi/Iodine-Promoted Cyclization/Staudinger/Aza-Wittig Reaction. J Org Chem 2023; 88:16424-16434. [PMID: 37943255 DOI: 10.1021/acs.joc.3c01955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
A new efficient synthesis of indolo[2,1-b]quinazolin-6(12H)-ones via a sequential Ugi/iodine-promoted cyclization/Staudinger/aza-Wittig reaction was developed. The acid catalyzed three-component reactions of 2-azidobenzaldehydes, 2-[2-(trimethylsilyl)ethynyl]benzenamines (or o-aminoacetophenones), and isocyanides gave Ugi-3CR intermediates, which reacted subsequently with I2/DMSO and triphenylphosphine to produce indolo[2,1-b]quinazolin-6(12H)-ones in good overall yields. The obtained indolo[2,1-b]quinazolin-6(12H)-ones were all colored in bright red or orange. Their luminescent property was studied preliminarily and some of them showed high molar absorption coefficients, strong fluorescence emission intensity, and good absolute light quantum yields.
Collapse
Affiliation(s)
- Mao-Lin Yang
- National Key Laboratory of Green Pesticide, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, Central China Normal University, Wuhan 430079, P. R. China
| | - Long Zhao
- National Key Laboratory of Green Pesticide, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, Central China Normal University, Wuhan 430079, P. R. China
| | - Hao-Ran Chen
- National Key Laboratory of Green Pesticide, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, Central China Normal University, Wuhan 430079, P. R. China
| | - Ming-Wu Ding
- National Key Laboratory of Green Pesticide, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, Central China Normal University, Wuhan 430079, P. R. China
| |
Collapse
|
5
|
Tran TMC, Lai ND, Bui TTT, Mac DH, Nguyen TTT, Retailleau P, Nguyen TB. DABCO-Catalyzed DMSO-Promoted Sulfurative 1,2-Diamination of Phenylacetylenes with Elemental Sulfur and o-Phenylenediamines: Access to Quinoxaline-2-thiones. Org Lett 2023; 25:7225-7229. [PMID: 37738043 DOI: 10.1021/acs.orglett.3c02835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
The oxidative amination of alkynes typically requires transition metal catalysts and strong oxidants. Herein, we alternatively utilize DABCO as a sulfur-activating catalyst to achieve the sulfurative 1,2-diamination of phenylacetylenes with elemental sulfur and o-phenylenediamines. DMSO was found to be particularly suitable for use as a terminal oxidant for this three-component process. A mechanistic study has shown that this cascade reaction is triggered by the addition of active sulfur species to the triple bond of phenylacetylenes.
Collapse
Affiliation(s)
- Thi Minh Chau Tran
- Faculty of Chemistry, VNU University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hanoi, Vietnam
| | - Nang Duy Lai
- Faculty of Chemistry, VNU University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hanoi, Vietnam
| | - Thai Thanh Thu Bui
- Faculty of Chemistry, VNU University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hanoi, Vietnam
| | - Dinh Hung Mac
- Faculty of Chemistry, VNU University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hanoi, Vietnam
| | - Thi Thu Tram Nguyen
- Department of Chemistry, Faculty of Basic Science, Can Tho University of Medicine and Pharmacy, Can Tho, Vietnam
| | - Pascal Retailleau
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Sud, Université Paris-Saclay, 1, av de la Terrasse, 91198 Gif-sur-Yvette, France
| | - Thanh Binh Nguyen
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Sud, Université Paris-Saclay, 1, av de la Terrasse, 91198 Gif-sur-Yvette, France
| |
Collapse
|
6
|
De S, Chowdhury C. Substrate-Controlled Product Divergence in Iron(III)-Catalyzed Reactions of Propargylic Alcohols: Easy Access to Spiro-indenyl 1,4-Benzoxazines and 2-(2,2-Diarylvinyl)quinoxalines. Chemistry 2023; 29:e202203993. [PMID: 36651187 DOI: 10.1002/chem.202203993] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/17/2023] [Accepted: 01/17/2023] [Indexed: 01/19/2023]
Abstract
We report herein unprecedented cascade reactions of O-propargyl-N-tosyl-amino phenols with 10 mol% FeCl3 in DCE at room temperature for 0.67-3 h to form spiro-indenyl 1,4-benzoxazines with 38-89 % yield. Replacing the substrates' oxygen atom by a N-tosylimine group followed by treatment with the same catalyst and solvent at 80 °C produced 2-(2,2-diarylvinyl)quinoxalines in 12-20 h with up to 62 % yield. Mechanistic understanding provided an insight into the transformations. The use of simple substrates and an environmentally benign low-cost catalyst, broad substrate scope and tolerance of diverse functional groups makes the methodology inherently attractive.
Collapse
Affiliation(s)
- Sukanya De
- Organic & Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata, 700032, India
| | - Chinmay Chowdhury
- Organic & Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata, 700032, India
| |
Collapse
|
7
|
Zhu BH, Ye SB, Nie ML, Xie ZY, Wang YB, Qian PC, Sun Q, Ye LW, Li L. I 2 -Catalyzed Cycloisomerization of Ynamides: Chemoselective and Divergent Access to Indole Derivatives. Angew Chem Int Ed Engl 2023; 62:e202215616. [PMID: 36573021 DOI: 10.1002/anie.202215616] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Indexed: 12/28/2022]
Abstract
Herein, an I2 -catalyzed unprecedented cycloisomerization of ynamides is developed, furnishing various functionalized bis(indole) derivatives in generally good to excellent yields with wide substrate scope and excellent atom-economy. This protocol not only represents the first molecular-iodine-catalyzed tandem complex alkyne cycloisomerizations, but also constitutes the first chemoselective cycloisomerization of tryptamine-ynamides involving distinctively different C(sp3 )-C(sp3 ) bond cleavage and rearrangement. Moreover, chiral tetrahydropyridine frameworks containing two stereocenters are obtained with moderate to excellent diastereoselectivities and excellent enantioselectivities. Meanwhile, cycloisomerization and aromatization of ynamides produce pyrrolyl indoles with high efficiency enabled by I2 . Additionally, control experiments and theoretical calculations reveal that this reaction probably undergoes a tandem 5-exo-dig cyclization/rearrangement process.
Collapse
Affiliation(s)
- Bo-Han Zhu
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou, 325035, China.,Wenzhou Key Laboratory of Technology and Application of Environmental Functional Materials, Institute of New Materials & Industry Technology, Wenzhou University, Wenzhou, 325000, China
| | - Sheng-Bing Ye
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou, 325035, China.,Wenzhou Key Laboratory of Technology and Application of Environmental Functional Materials, Institute of New Materials & Industry Technology, Wenzhou University, Wenzhou, 325000, China
| | - Min-Ling Nie
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou, 325035, China.,Wenzhou Key Laboratory of Technology and Application of Environmental Functional Materials, Institute of New Materials & Industry Technology, Wenzhou University, Wenzhou, 325000, China
| | - Zhong-Yang Xie
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou, 325035, China.,Wenzhou Key Laboratory of Technology and Application of Environmental Functional Materials, Institute of New Materials & Industry Technology, Wenzhou University, Wenzhou, 325000, China
| | - Yi-Bo Wang
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou, 325035, China.,Wenzhou Key Laboratory of Technology and Application of Environmental Functional Materials, Institute of New Materials & Industry Technology, Wenzhou University, Wenzhou, 325000, China
| | - Peng-Cheng Qian
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou, 325035, China.,Wenzhou Key Laboratory of Technology and Application of Environmental Functional Materials, Institute of New Materials & Industry Technology, Wenzhou University, Wenzhou, 325000, China
| | - Qing Sun
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, China
| | - Long-Wu Ye
- State Key Laboratory of Physical Chemistry of Solid Surfaces and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Long Li
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou, 325035, China.,Wenzhou Key Laboratory of Technology and Application of Environmental Functional Materials, Institute of New Materials & Industry Technology, Wenzhou University, Wenzhou, 325000, China.,State Key Laboratory of Physical Chemistry of Solid Surfaces and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
8
|
Yang HR, Hu ZY, Li XC, Wu L, Guo XX. Cobalt-Catalyzed Effective Access to Quinoxalines with Insights in Annulation of Terminal Alkynes and o-Phenylenediamines. Org Lett 2022; 24:8392-8396. [DOI: 10.1021/acs.orglett.2c03465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Hui-Ru Yang
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhe-Yao Hu
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xin-Chang Li
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ling Wu
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xun-Xiang Guo
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai 200240, China
| |
Collapse
|
9
|
Song W, Du Q, Li X, Wang S, Song G. Sustainable Production of Bioactive Molecules from C-Lignin-Derived Propenylcatechol. CHEMSUSCHEM 2022; 15:e202200646. [PMID: 35548878 DOI: 10.1002/cssc.202200646] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/12/2022] [Indexed: 06/15/2023]
Abstract
Catechyl lignin (C-lignin) is a naturally occurring linear homogeneous biopolymer composed solely of caffeyl alcohol subunits with cleavable benzodioxane linkages. The inherent structural features of propenylcatechol, a direct depolymerized product of castor seed coats C-lignin, render it a sustainable and promising platform for the synthesis of bioactive molecules. Herein, diversified transformations of propenylcatechol, including C=C bond difunctionalization, β-modification, β,γ-rearrangement, and γ-methyl derivatization, were reported based on known or developed methods. A series of functional molecular skeletons involved in the current synthetic routes for the preparation of pharmaceuticals and bioactive molecules were obtained. Starting from castor seed coats, annuloline (natural product) and CC-5079 (antitumor) were synthesized using facile and inexpensive reagents in only four- and five-sequence reactions, respectively, thereby demonstrating a superior step-efficiency to that of reported synthetic routes. Almost all atoms in the C-lignin biopolymer were incorporated into the final products owing to the intrinsic structures of naturally occurring C-lignin. Bioactive molecules produced from C-lignin integrate a low-carbon footprint with high-quality and economical manufacture of pharmaceuticals.
Collapse
Affiliation(s)
- Weihong Song
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083, P. R. China
- Institute of Drug Discovery Technology Institution, Ningbo University, Ningbo, 315000, P. R. China
| | - Qinglian Du
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083, P. R. China
| | - Xiancheng Li
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083, P. R. China
| | - Shuizhong Wang
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083, P. R. China
| | - Guoyong Song
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083, P. R. China
| |
Collapse
|
10
|
A HCl-Mediated, Metal- and Oxidant-Free Photocatalytic Strategy for C3 Arylation of Quinoxalin(on)es with Arylhydrazine. Catalysts 2022. [DOI: 10.3390/catal12060633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
A novel and simple HCl-mediated, photocatalytic method for quinoxaline(on)es C3-H arylation with arylhydrazine under transition metal catalyst- and oxidant-free conditions is presented. Various quinoxaline(on)es underwent this transformation smoothly, demonstrating a broad substrate tolerance and providing the corresponding aryl products in moderate to excellent yields. Mechanistic studies indicated that a radical pathway may be involved in this transformation.
Collapse
|
11
|
Shalini C, Dharmaraj N, Bhuvanesh NS, Kaveri M. Suzuki Miyaura cross-coupling of 2-chloropyrazine with arylboronic acids catalyzed by novel palladium(II) ONO pincer complexes. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.121028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
12
|
Song S, Shi X, Zhu Y, Ren Q, Zhou P, Zhou J, Li J. Electrochemical Oxidative C-H Arylation of Quinoxalin(on)es with Arylhydrazine Hydrochlorides under Mild Conditions. J Org Chem 2022; 87:4764-4776. [PMID: 35319891 DOI: 10.1021/acs.joc.2c00043] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A practical and scalable protocol for electrochemical arylation of quinoxalin(on)es with arylhydrazine hydrochlorides under mild conditions has been developed. This method exhibits high efficiency, easy scalability, and broad functional group tolerance. Various quinoxalin(on)es and arylhydrazines underwent this transformation smoothly in an undivided cell, providing the corresponding aryl-substituted quinoxalin(on)es in moderate to good yields. A radical mechanism is involved in this arylation reaction.
Collapse
Affiliation(s)
- Shengjie Song
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Xiangjun Shi
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Yunsheng Zhu
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Quanlei Ren
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Peng Zhou
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Jiadi Zhou
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Jianjun Li
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China.,Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| |
Collapse
|
13
|
Wang Y, Li S, Wang X, Yao Y, Feng L, Ma C. A multi pathway coupled domino strategy: I 2/TBHP-promoted synthesis of imidazopyridines and thiazoles via sp 3, sp 2 and sp C-H functionalization. RSC Adv 2022; 12:5919-5927. [PMID: 35424560 PMCID: PMC8981869 DOI: 10.1039/d1ra07438e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/21/2021] [Indexed: 12/21/2022] Open
Abstract
I2/TBHP-promoted, one-pot, multi pathway synthesis of imidazopyridines and thiazoles has been achieved through readily available ethylarenes, ethylenearenes and ethynearenes. I2/TBHP as an initiator and oxidant is used to realize the C-H functionalization of this domino reaction. Simple and available starting materials, wide range of functional group tolerance, high potential for drug activity of the products and application in production are the advantageous features of this method.
Collapse
Affiliation(s)
- Yishou Wang
- School of Chemistry and Chemical Engineering, Shandong University Jinan 250100 P. R. China
| | - Shichen Li
- School of Chemistry and Chemical Engineering, Shandong University Jinan 250100 P. R. China
| | - Xinfeng Wang
- School of Chemistry and Chemical Engineering, Shandong University Jinan 250100 P. R. China
| | - Yiming Yao
- School of Chemistry and Chemical Engineering, Shandong University Jinan 250100 P. R. China
| | - Lei Feng
- School of Chemistry and Chemical Engineering, Shandong University Jinan 250100 P. R. China
| | - Chen Ma
- School of Chemistry and Chemical Engineering, Shandong University Jinan 250100 P. R. China
| |
Collapse
|
14
|
A. El-Hiti G, F. Abdel-Wahab B, A. Mohamed H, A. Farahat A, M. Kariuki B. Reactivity of 4-Bromoacetyl-1,2,3-triazoles towards Amines and Phenols: Synthesis and Antimicrobial Activity of Novel Heterocycles. HETEROCYCLES 2022. [DOI: 10.3987/com-22-14700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
15
|
Zheng S, Smit W, Spannenberg A, Tin S, de Vries JG. Synthesis of α-Keto Aldehydes via Selective Cu(I)-catalyzed Oxidation of α-Hydroxy Ketones. Chem Commun (Camb) 2022; 58:4639-4642. [DOI: 10.1039/d2cc00773h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient approach to synthesize α-keto aldehydes was established through selective oxidation of α-hydroxy ketones catalyzed by Cu(I) using oxygen as oxidant. A wide array of α-keto aldehydes was prepared...
Collapse
|
16
|
Moussa Z, Judeh ZMA, Alzamly A, Ahmed SA, Tomah Al-Masri H, Al-Hindawi B, Rasool F, Saada S. Iodine-DMSO mediated conversion of N-arylcyanothioformamides to N-arylcyanoformamides and the unexpected formation of 2-cyanobenzothiazoles. RSC Adv 2022; 12:6133-6148. [PMID: 35424574 PMCID: PMC8981512 DOI: 10.1039/d2ra00049k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 01/29/2022] [Indexed: 11/21/2022] Open
Abstract
Cyanoformamides are ubiquitous as useful components for assembling key intermediates and bioactive molecules. The development of an efficient and simple approach to this motif is a challenge. Herein, we demonstrate the effectiveness of the I2-DMSO oxidative system in the preparation of N-arylcyanoformamides from N-arylcyanothioformamides. The synthetic method features mild conditions, broad substrate scope, and high reaction efficiency. Furthermore, this method provides an excellent entry to exclusively afford 2-cyanobenzothiazoles which are useful substrates to access new luciferin analogs. The structures of all new products were elucidated by multinuclear NMR spectroscopy and high accuracy mass spectral analysis. Crystal-structure determination by means of single-crystal X-ray diffraction was carried out on (4-bromophenyl)carbamoyl cyanide, 5,6-dimethoxybenzo[d]thiazole-2-carbonitrile, 5-(benzyloxy)benzo[d]oxazole-2-carbonitrile, 4,7-dimethoxybenzo[d]thiazole-2-carbonitrile, and (5-iodo-2,4-dimethoxyphenyl)carbamoyl cyanide, a key intermediate with mechanistic implications. Conversion of N-arylcyanothioformamides to N-arylcyanoformamides and 2-cyanobenzothiazoles has been achieved with I2-DMSO oxidative system.![]()
Collapse
Affiliation(s)
- Ziad Moussa
- Department of Chemistry, College of Science, United Arab Emirates University, P. O. Box 15551, Al Ain, United Arab Emirates
| | - Zaher M. A. Judeh
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, N1.2–B1-14, Singapore, 637459, Singapore
| | - Ahmed Alzamly
- Department of Chemistry, College of Science, United Arab Emirates University, P. O. Box 15551, Al Ain, United Arab Emirates
| | - Saleh A. Ahmed
- Department of Chemistry, Faculty of Applied Sciences, Umm Al-Qura University, Makkah 21955, Saudi Arabia
- Department of Chemistry, Faculty of Science, Assiut University, 71516 Assiut, Egypt
| | - Harbi Tomah Al-Masri
- Department of Chemistry, Faculty of Sciences, Al al-Bayt University, P. O. Box 130040, Mafraq, 25113, Jordan
| | - Bassam Al-Hindawi
- Department of Chemistry, College of Science, United Arab Emirates University, P. O. Box 15551, Al Ain, United Arab Emirates
| | - Faisal Rasool
- Department of Chemistry, College of Science, United Arab Emirates University, P. O. Box 15551, Al Ain, United Arab Emirates
| | - Sara Saada
- Department of Chemistry, College of Science, United Arab Emirates University, P. O. Box 15551, Al Ain, United Arab Emirates
| |
Collapse
|
17
|
Suzuki Y, Takehara R, Miura K, Ito R, Suzuki N. Regioselective Synthesis of Trisubstituted Quinoxalines Mediated by Hypervalent Iodine Reagents. J Org Chem 2021; 86:16892-16900. [PMID: 34797078 DOI: 10.1021/acs.joc.1c02087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A facile and regioselective synthesis of quinoxalines, an important motif in medicinal chemistry and materials sciences, was developed. Despite their prospective utility, the regioselective preparation of trisubstituted quinoxalines has not been previously established. In the reported system, hypervalent iodine reagents catalyzed the annulation between α-iminoethanones and o-phenylenediamines in a chemo/regioselective manner to afford trisubstituted quinoxalines. Excellent regioselectivities (6:1 to 1:0) were achieved using [bis(trifluoroacetoxy)iodo]benzene and [bis(trifluoroacetoxy)iodo]pentafluorobenzene as annulation catalysts.
Collapse
Affiliation(s)
- Yumiko Suzuki
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, 102-8554 Tokyo, Japan
| | - Ren Takehara
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, 102-8554 Tokyo, Japan
| | - Kasumi Miura
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, 102-8554 Tokyo, Japan
| | - Ryota Ito
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, 102-8554 Tokyo, Japan
| | - Noriyuki Suzuki
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, 102-8554 Tokyo, Japan
| |
Collapse
|
18
|
Deka B, Rastogi GK, Deb ML, Baruah PK. Ten Years of Glory in the α-Functionalizations of Acetophenones: Progress Through Kornblum Oxidation and C-H Functionalization. Top Curr Chem (Cham) 2021; 380:1. [PMID: 34746982 DOI: 10.1007/s41061-021-00356-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 10/21/2021] [Indexed: 11/29/2022]
Abstract
This review article focuses on the α-functionalization of acetophenones involving Kornblum oxidation and C-H functionalizations. Although various other strategies, such as classical approaches, enamine approaches and umpolung strategy are also known for this functionalization, here we discuss mainly the Kornblum oxidation approach and C-H functionalization strategy as they have advantages over the others. In Kornblum oxidation, the reaction uses iodine and dimethylsulfoxide and proceeds through the formation of arylglyoxal as the key intermediate. In C-H functionalization, the reaction requires metal, or metal-free catalyst, and generates radical intermediate in most cases. α-Functionalization of acetophenones is very important because of their huge applications in the synthesis of various natural products and pharmaceuticals and, therefore, a number of research articles have been published in this area. However, no review articles are available so far. In this article, we present a succinct discussion of various important and novel reactions, along with their mechanisms, published since 2012 to date. We believe that this first review article in this field will give readers one-stop information on this topic and encourage further intriguing work in this area.
Collapse
Affiliation(s)
- Bhaskar Deka
- Department of Applied Sciences, GUIST, Gauhati University, Guwahati, Assam, 781014, India
| | - Gaurav K Rastogi
- Department of Applied Sciences, GUIST, Gauhati University, Guwahati, Assam, 781014, India
| | - Mohit L Deb
- Department of Applied Sciences, GUIST, Gauhati University, Guwahati, Assam, 781014, India
| | - Pranjal K Baruah
- Department of Applied Sciences, GUIST, Gauhati University, Guwahati, Assam, 781014, India.
| |
Collapse
|
19
|
Ding Y, Zhang R, Ma R, Ma Y. Iodine‐Catalyzed Double [4+2] Oxidative Annulations for the Synthesis of Bipyrazines from Ketones and Diamines by a Domino Strategy. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100991] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yuxin Ding
- Institute of Advanced Studies and School of Pharmaceutical and Chemical Engineering Taizhou University 1139 Shifu Avenue Taizhou 318000 People's Republic Of China
- School of Pharmaceutical Science Zhejiang Chinese Medical University Hangzhou 310053 People's Republic Of China
| | - Ruiqin Zhang
- School of Pharmaceutical Science Zhejiang Chinese Medical University Hangzhou 310053 People's Republic Of China
| | - Renchao Ma
- Institute of Advanced Studies and School of Pharmaceutical and Chemical Engineering Taizhou University 1139 Shifu Avenue Taizhou 318000 People's Republic Of China
| | - Yongmin Ma
- Institute of Advanced Studies and School of Pharmaceutical and Chemical Engineering Taizhou University 1139 Shifu Avenue Taizhou 318000 People's Republic Of China
- School of Pharmaceutical Science Zhejiang Chinese Medical University Hangzhou 310053 People's Republic Of China
| |
Collapse
|
20
|
Zhang J, Tang J, Chen Z, Wu X. Synthesis of 5‐Trifluoromethyl‐1,2,4‐Triazoles via Metal‐Free Annulation of Trifluoroacetimidohydrazides and Methyl Ketones. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100130] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Jiajun Zhang
- Department of Chemistry Zhejiang Sci-Tech University Hangzhou 310018 People's Republic of China
| | - Jianhua Tang
- Department of Chemistry Zhejiang Sci-Tech University Hangzhou 310018 People's Republic of China
| | - Zhengkai Chen
- Department of Chemistry Zhejiang Sci-Tech University Hangzhou 310018 People's Republic of China
| | - Xiao‐Feng Wu
- Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 Liaoning People's Republic of China
- Leibniz-Institut für Katalyse e. V. an der Universität Rostock Albert-Einstein-Straβe 29a 18059 Rostock Germany
| |
Collapse
|
21
|
Affiliation(s)
- Lukas Biesen
- Institut für Organische Chemie und Makromolekulare Chemie Heinrich-Heine-Universität Düsseldorf Universitätsstrasse 1 D-40225 Düsseldorf Germany Tel
| | - Thomas J. J. Müller
- Institut für Organische Chemie und Makromolekulare Chemie Heinrich-Heine-Universität Düsseldorf Universitätsstrasse 1 D-40225 Düsseldorf Germany Tel
| |
Collapse
|
22
|
Rajai-Daryasarei S, Gohari MH, Mohammadi N. Reactions involving aryl methyl ketone and molecular iodine: a powerful tool in the one-pot synthesis of heterocycles. NEW J CHEM 2021. [DOI: 10.1039/d1nj03572j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The preparation of heterocyclic compounds has attracted great attention in organic chemistry because of their extensive application in the field of bioactive molecules, materials science, and natural products.
Collapse
Affiliation(s)
| | | | - Narges Mohammadi
- School of Chemistry, College of Science, University of Tehran, 14155-6455 Tehran, Iran
| |
Collapse
|
23
|
Wang YB, Shi L, Zhang X, Fu LR, Hu W, Zhang W, Zhu X, Hao XQ, Song MP. NaOH-Mediated Direct Synthesis of Quinoxalines from o-Nitroanilines and Alcohols via a Hydrogen-Transfer Strategy. J Org Chem 2021; 86:947-958. [PMID: 33351617 DOI: 10.1021/acs.joc.0c02453] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A NaOH-mediated sustainable synthesis of functionalized quinoxalines is disclosed via redox condensation of o-nitroamines with diols and α-hydroxy ketones. Under optimized conditions, various o-nitroamines and alcohols are well tolerated to generate the desired products in 44-99% yields without transition metals and external redox additives.
Collapse
Affiliation(s)
- Yan-Bing Wang
- College of Chemistry, Zhengzhou University, No. 100 of Science Road, Zhengzhou, Henan 450001, P. R. China
| | - Linlin Shi
- College of Chemistry, Zhengzhou University, No. 100 of Science Road, Zhengzhou, Henan 450001, P. R. China
| | - Xiaojie Zhang
- College of Chemistry, Zhengzhou University, No. 100 of Science Road, Zhengzhou, Henan 450001, P. R. China
| | - Lian-Rong Fu
- College of Chemistry, Zhengzhou University, No. 100 of Science Road, Zhengzhou, Henan 450001, P. R. China
| | - Weinan Hu
- College of Chemistry, Zhengzhou University, No. 100 of Science Road, Zhengzhou, Henan 450001, P. R. China
| | - Wenjing Zhang
- College of Chemistry, Zhengzhou University, No. 100 of Science Road, Zhengzhou, Henan 450001, P. R. China
| | - Xinju Zhu
- College of Chemistry, Zhengzhou University, No. 100 of Science Road, Zhengzhou, Henan 450001, P. R. China
| | - Xin-Qi Hao
- College of Chemistry, Zhengzhou University, No. 100 of Science Road, Zhengzhou, Henan 450001, P. R. China
| | - Mao-Ping Song
- College of Chemistry, Zhengzhou University, No. 100 of Science Road, Zhengzhou, Henan 450001, P. R. China
| |
Collapse
|
24
|
Gómez‐Herrera A, Hashim II, Porré M, Nahra F, Cazin CSJ. Au(I)‐Catalyzed Hydration of 1‐Iodoalkynes Leading to α‐Iodoketones. European J Org Chem 2020. [DOI: 10.1002/ejoc.202001238] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
| | - Ishfaq Ibni Hashim
- Department of Chemistry and Center for Sustainable Chemistry Ghent University Krijgslaan 281 – S3 9000 Gent Belgium
| | - Marre Porré
- Department of Chemistry and Center for Sustainable Chemistry Ghent University Krijgslaan 281 – S3 9000 Gent Belgium
| | - Fady Nahra
- Department of Chemistry and Center for Sustainable Chemistry Ghent University Krijgslaan 281 – S3 9000 Gent Belgium
- Separation and Conversion Technology Unit VITO (Flemish Institute for Technological Research) Boeretang 200 2400 Mol Belgium
| | - Catherine S. J. Cazin
- Department of Chemistry and Center for Sustainable Chemistry Ghent University Krijgslaan 281 – S3 9000 Gent Belgium
| |
Collapse
|
25
|
Das A, Thomas KRJ. Light Promoted Synthesis of Quinoxalines and Imidazo[1,2‐
a
]pyridines via Oxybromination from Alkynes and Alkenes. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.202000388] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Anupam Das
- Organic Materials Laboratory, Department of Chemistry Indian Institute of Technology Roorkee Roorkee 247667 India
| | - K. R. Justin Thomas
- Organic Materials Laboratory, Department of Chemistry Indian Institute of Technology Roorkee Roorkee 247667 India
| |
Collapse
|
26
|
Xu Y, Huang X, Lv G, Lai R, Lv S, Li J, Hai L, Wu Y. Iridium-Catalyzed Carbenoid Insertion of Sulfoxonium Ylides for Synthesis of Quinoxalines and β-Keto Thioethers in Water. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000716] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yingying Xu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province; Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology; West China School of Pharmacyy; Sichuan University; 610041 Chengdu China
| | - Xin Huang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province; Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology; West China School of Pharmacyy; Sichuan University; 610041 Chengdu China
| | - Guanghui Lv
- Department of Pharmacy; Taihe Hospital; Hubei University of Medicine; No. 32 South Renmin Road 442000 Shiyan Huibei China
| | - Ruizhi Lai
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province; Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology; West China School of Pharmacyy; Sichuan University; 610041 Chengdu China
| | - Songyang Lv
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province; Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology; West China School of Pharmacyy; Sichuan University; 610041 Chengdu China
| | - Jianglian Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province; Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology; West China School of Pharmacyy; Sichuan University; 610041 Chengdu China
| | - Li Hai
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province; Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology; West China School of Pharmacyy; Sichuan University; 610041 Chengdu China
| | - Yong Wu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province; Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology; West China School of Pharmacyy; Sichuan University; 610041 Chengdu China
| |
Collapse
|
27
|
Donthiboina K, Mani GS, Shankaraiah N, Kamal A. Iodine‐Mediated Oxidative Annulation by C–C Cleavage: A Domino Synthetic Approach to Quinazolinones and Benzo[4,5]imidazo[1,2‐
c
]quinazolines. ChemistrySelect 2020. [DOI: 10.1002/slct.202000682] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
| | - Geeta Sai Mani
- Department of Medicinal Chemistry NIPER-Hyderabad Hyderabad 500 037 India
| | - Nagula Shankaraiah
- Department of Medicinal Chemistry NIPER-Hyderabad Hyderabad 500 037 India
| | - Ahmed Kamal
- Department of Medicinal Chemistry NIPER-Hyderabad Hyderabad 500 037 India
- School of Pharmaceutical Education and Research (SPER) Jamia Hamdard New Delhi 110062 India
| |
Collapse
|
28
|
Shaikh A, Ravi O, Pushpa Ragini S, Sadhana N, Reddy Bathula S. Benzimidazoles and benzothiazoles from styrenes and N-vinylimidazole via palladium catalysed oxidative C C and C N bond cleavage. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2019.151356] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
29
|
Jana A, Bhaumick P, Panday AK, Mishra R, Choudhury LH. I 2/DMSO mediated multicomponent reaction for the synthesis of 2-arylbenzo[d]imidazo[2,1-b] thiazole derivatives. Org Biomol Chem 2019; 17:5316-5330. [PMID: 31095156 DOI: 10.1039/c9ob00515c] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Synthesis of a series of 2-arylbenzo[d]imidazo[2,1-b] thiazoles tethered with barbituric acid moiety has been reported from the three component reaction of 2-aminobenzothiazoles, barbituric acids and terminal aryl acetylenes or aryl methyl ketones in the presence of I2 in DMSO medium. Both conventional and microwave heating conditions can be used for this multicomponent reaction. The salient features of this methodology are: (i) formation of one C-C and two C-N bonds in one-pot under metal-free oxidation followed by cyclization, (ii) selective formation of the fused imidazole ring, (iii) wide substrate scope, (iv) easy purification of the products, (v) products having more than one pharmaceutically important motifs and (vi) gram scale synthesis possible.
Collapse
Affiliation(s)
- Asim Jana
- Department of Chemistry, Indian Institute of Technology Patna, Bihta, Patna-801106, India.
| | | | | | | | | |
Collapse
|
30
|
Integration of Pd and Cu on polymer: a powerful bimetallic heterogeneous catalyst for sequential synthesis of quinoxalines. RESEARCH ON CHEMICAL INTERMEDIATES 2019. [DOI: 10.1007/s11164-019-03918-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
31
|
Mani GS, Donthiboina K, Shaik SP, Shankaraiah N, Kamal A. Iodine-mediated C-N and N-N bond formation: a facile one-pot synthetic approach to 1,2,3-triazoles under metal-free and azide-free conditions. RSC Adv 2019; 9:27021-27031. [PMID: 35528599 PMCID: PMC9070426 DOI: 10.1039/c9ra06005g] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 08/21/2019] [Indexed: 01/01/2023] Open
Abstract
A novel strategy towards the synthesis of 1,4-disubstituted 1,2,3-triazoles via C–N and N–N bond formation has been demonstrated under transition metal-free and azide-free conditions. These 1,2,3-triazoles were obtained in a regioselective manner from commercially available anilines, aryl alkenes/aryl alkynes and N-tosylhydrazines using I2 under O2 atmosphere. Broad substrate scope, milder reaction conditions, good to moderate yields and clean protocol are the notable features of the method. Moreover, this protocol is amenable for the generation of a library of medicinally important key building blocks. A novel strategy towards the synthesis of 1,4-disubstituted 1,2,3-triazoles via C–N and N–N bond formation has been demonstrated under transition metal-free and azide-free conditions.![]()
Collapse
Affiliation(s)
- Geeta Sai Mani
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500037 India
| | - Kavitha Donthiboina
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500037 India
| | - Siddiq Pasha Shaik
- Medicinal Chemistry and Pharmacology, CSIR-Indian Institute of Chemical Technology Hyderabad 500007 India
| | - Nagula Shankaraiah
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500037 India
| | - Ahmed Kamal
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500037 India .,Medicinal Chemistry and Pharmacology, CSIR-Indian Institute of Chemical Technology Hyderabad 500007 India .,School of Pharmaceutical Education and Research (SPER) Jamia Hamdard New Delhi 110062 India
| |
Collapse
|
32
|
Littleson MM, Campbell AD, Clarke A, Dow M, Ensor G, Evans MC, Herring A, Jackson BA, Jackson LV, Karlsson S, Klauber DJ, Legg DH, Leslie KW, Moravčík Š, Parsons CD, Ronson TO, Meadows RE. Synthetic Route Design of AZD4635, an A2AR Antagonist. Org Process Res Dev 2019. [DOI: 10.1021/acs.oprd.9b00171] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mairi M. Littleson
- Chemical Development, Pharmaceutical Technology and Development, AstraZeneca, Macclesfield Campus, SK10 2NA, Macclesfield, U.K
| | - Andrew D. Campbell
- Chemical Development, Pharmaceutical Technology and Development, AstraZeneca, Macclesfield Campus, SK10 2NA, Macclesfield, U.K
| | - Adam Clarke
- Chemical Development, Pharmaceutical Technology and Development, AstraZeneca, Macclesfield Campus, SK10 2NA, Macclesfield, U.K
| | - Mark Dow
- Chemical Development, Pharmaceutical Technology and Development, AstraZeneca, Macclesfield Campus, SK10 2NA, Macclesfield, U.K
| | - Gareth Ensor
- Chemical Development, Pharmaceutical Technology and Development, AstraZeneca, Macclesfield Campus, SK10 2NA, Macclesfield, U.K
| | - Matthew C. Evans
- Chemical Development, Pharmaceutical Technology and Development, AstraZeneca, Macclesfield Campus, SK10 2NA, Macclesfield, U.K
| | - Adam Herring
- Chemical Development, Pharmaceutical Technology and Development, AstraZeneca, Macclesfield Campus, SK10 2NA, Macclesfield, U.K
| | - Bethany A. Jackson
- Chemical Development, Pharmaceutical Technology and Development, AstraZeneca, Macclesfield Campus, SK10 2NA, Macclesfield, U.K
| | - Lucinda V. Jackson
- Chemical Development, Pharmaceutical Technology and Development, AstraZeneca, Macclesfield Campus, SK10 2NA, Macclesfield, U.K
| | - Staffan Karlsson
- Early Chemical Development, Pharmaceutical Sciences, IMED Biotech Unit, AstraZeneca, Gothenburg, SE-431 83 Mölndal, Sweden
| | - David J. Klauber
- Chemical Development, Pharmaceutical Technology and Development, AstraZeneca, Macclesfield Campus, SK10 2NA, Macclesfield, U.K
| | - Danny H. Legg
- Early Chemical Development, Pharmaceutical Sciences, IMED Biotech Unit, AstraZeneca, Macclesfield Campus, SK10 2NA, Macclesfield, U.K
| | - Kevin W. Leslie
- Chemical Development, Pharmaceutical Technology and Development, AstraZeneca, Macclesfield Campus, SK10 2NA, Macclesfield, U.K
| | - Štefan Moravčík
- Early Chemical Development, Pharmaceutical Sciences, IMED Biotech Unit, AstraZeneca, Gothenburg, SE-431 83 Mölndal, Sweden
| | - Chris D. Parsons
- Early Chemical Development, Pharmaceutical Sciences, IMED Biotech Unit, AstraZeneca, Macclesfield Campus, SK10 2NA, Macclesfield, U.K
| | - Thomas O. Ronson
- Chemical Development, Pharmaceutical Technology and Development, AstraZeneca, Macclesfield Campus, SK10 2NA, Macclesfield, U.K
| | - Rebecca E. Meadows
- Chemical Development, Pharmaceutical Technology and Development, AstraZeneca, Macclesfield Campus, SK10 2NA, Macclesfield, U.K
| |
Collapse
|
33
|
Samanta SK, Bera MK. Iodine mediated oxidative cross coupling of 2-aminopyridine and aromatic terminal alkyne: a practical route to imidazo[1,2-a]pyridine derivatives. Org Biomol Chem 2019; 17:6441-6449. [PMID: 31206121 DOI: 10.1039/c9ob00812h] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
A novel, transition-metal free route leading to imidazo[1,2-a]pyridine derivatives via iodine mediated oxidative coupling between 2-aminopyridine and aromatic terminal alkyne has been demonstrated. This newly developed method discloses an operationally simple way for the construction of imidazoheterocycles. Commercially available antiulcer drug zolimidine may readily be synthesized employing this method.
Collapse
Affiliation(s)
- Surya Kanta Samanta
- Department of Chemistry, Indian Institute of Engineering Science and Technology (IIEST), Shibpur PO-Botanic Garden, Howrah-711 103, WB, India.
| | - Mrinal K Bera
- Department of Chemistry, Indian Institute of Engineering Science and Technology (IIEST), Shibpur PO-Botanic Garden, Howrah-711 103, WB, India.
| |
Collapse
|
34
|
Rezaei Z, Mahdi Didehvar M, Mahdavi M, Azizian H, Hamedifar H, Mohammed EHM, Ostad S, Amini M. Anticancer properties of N-alkyl-2, 4-diphenylimidazo [1, 2-a] quinoxalin-1-amine derivatives; kinase inhibitors. Bioorg Chem 2019; 90:103055. [PMID: 31220669 DOI: 10.1016/j.bioorg.2019.103055] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 03/27/2019] [Accepted: 06/06/2019] [Indexed: 12/24/2022]
Abstract
Structure activity correlation revealed that the quinoxaline ring is a satisfactory backbone for anticancer activity and a specific functional group at position 1 and 2 can improve the activity. In this basis, besides quinoxaline, imidazoles as potential anticancer agents were used as a supplementary agents for cancer treatment. In this paper, a new series of N-alkyl-2, 4-diphenylimidazo [1, 2-a] quinoxalin-1-amine derivatives were synthesized in a simple and efficient step. The products are fully characterized by 1H NMR, 13C NMR, FT-IR, HRMS, and CHN elemental analysis. Several starting materials with different functionalities have been used for the synthesis of the final products with high isolated yields. The biological activities of the synthesized compounds were evaluated in kinase inhibition and cytotoxic activity in several cancerous cell lines. All compounds (6) were evaluated for inhibition of the cell proliferation using 4 cancerous cell lines. Five of the more active compounds were studied for determination of IC50%. Compounds 6(32-34) showed good activity on some of cancerous cell lines. The results showed that compound 6-32 has the highest biological activity (IC50% 9.77 for K562 cell line). An IC50% value of 15.84 µM was observed for 6-34. Furthermore 6-34 exhibited inhibition of ABL1 and c-Src kinases with an IC50% value of 5.25 µM and 3.94 µM respectively. Docking simulation was performed to position active synthesized compounds 6-32, 6-33, and 6-34 over the ABL1 active site in two different wild-type (DFG-in and DFG-out motif conformer) and T315I mutant to determine the probable binding orientation, conformation and mode of interaction. According to docking study, the docked location in wild type forms is similar and can be found near the P-loop region while in the case of T315I mutant form, the compounds have a distinct docked location which is close to the αC helix and activation loop. Also, it concluded the role of R1 substituent on phenyl ring produced higher interaction energy. Additionally, the detailed inter-molecular energy and types of non-bonding interaction of these compounds over the wild-type and mutant form of ABL1.
Collapse
Affiliation(s)
- Zahra Rezaei
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, 14176 Tehran, Iran
| | - Mir Mahdi Didehvar
- School of Chemistry, University College of Science, University of Tehran, PO Box 14155-6455, Tehran, Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Homa Azizian
- Department of Medicinal Chemistry, School of Pharmacy-International Campus, Iran University of Medical Sciences, Tehran, Iran
| | - Haleh Hamedifar
- CinnaGen Medical Biotechnology Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Eman H M Mohammed
- Department of Chemistry, Faculty of Sciences, Menoufia University, Shebin EI-Koam, Egypt
| | - Sayednaser Ostad
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohsen Amini
- Department of Medicinal Chemistry, Faculty of Pharmacy and Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran, Iran.
| |
Collapse
|
35
|
Sadhukhan S, Baire B. Metal Free Synthesis of α‐Acetoxy/Hydroxymethyl Ketones from Propargylic acetates. ChemistrySelect 2019. [DOI: 10.1002/slct.201900786] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Santu Sadhukhan
- Department of ChemistryIndian Institute of Technology Madras, Chennai Tamilnadu INDIA- 600036
| | - Beeraiah Baire
- Department of ChemistryIndian Institute of Technology Madras, Chennai Tamilnadu INDIA- 600036
| |
Collapse
|
36
|
Loukrakpam DC, Phukan P. TsNBr2Mediated Synthesis of 2‐Acylbenzothiazoles and Quinoxalines from Aryl Methyl Ketones under Metal Free Condition. ChemistrySelect 2019. [DOI: 10.1002/slct.201900713] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | - Prodeep Phukan
- Department of ChemistryGauhati University Guwahati 781014 Assam India
| |
Collapse
|
37
|
Zhang H, Shen J, Yang Z, Cui X. PIDA-mediated intramolecular oxidative C-N bond formation for the direct synthesis of quinoxalines from enaminones. RSC Adv 2019; 9:7718-7722. [PMID: 35521175 PMCID: PMC9061175 DOI: 10.1039/c9ra01200a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 02/18/2019] [Indexed: 11/30/2022] Open
Abstract
A intramolecular oxidative C(sp2)-N bond formation mediated by hypervalent iodine(iii) to obtain quinoxalines from readily available N-(2-acetaminophenyl)enaminones was developed. A tandem process involving PIDA-mediated intramolecular condensation cyclization and a subsequent elimination was postulated, which was highly efficient and metal-free under mild conditions. Moreover, flexible structural modifications of quinoxalines bearing carbonyl groups are of interest for further transformations as building blocks in organic synthesis.
Collapse
Affiliation(s)
- Hong Zhang
- Engineering Research Center of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Xiamen Marine and Gene Drugs, School of Biomedical Sciences, Huaqiao University Xiamen 361021 P. R. China
| | - Jinhai Shen
- Engineering Research Center of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Xiamen Marine and Gene Drugs, School of Biomedical Sciences, Huaqiao University Xiamen 361021 P. R. China
| | - Zhenhui Yang
- Engineering Research Center of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Xiamen Marine and Gene Drugs, School of Biomedical Sciences, Huaqiao University Xiamen 361021 P. R. China
| | - Xiuling Cui
- Engineering Research Center of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Xiamen Marine and Gene Drugs, School of Biomedical Sciences, Huaqiao University Xiamen 361021 P. R. China
| |
Collapse
|
38
|
Weng WZ, Gao YH, Zhang X, Liu YH, Shen YJ, Zhu YP, Sun YY, Meng QG, Wu AX. Oxidative C(sp3)–H functionalization of methyl-azaheteroarenes: a facile route to 1,2,4-triazolo[4,3-a]pyridines. Org Biomol Chem 2019; 17:2087-2091. [DOI: 10.1039/c9ob00033j] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
An oxidative [4 + 1] annulation for triazolo[4,3-a]pyridine–quinoline linked diheterocycle synthesis via functionalization of the sp3 C–H bonds of 2-methyl-azaheteroarenes has been developed.
Collapse
Affiliation(s)
- Wei-Zhao Weng
- School of Pharmacy
- Key Laboratory of Molecular Pharmacology and Drug Evaluation
- Ministry of Education
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong
- Yantai University
| | - Yin-He Gao
- School of Pharmacy
- Key Laboratory of Molecular Pharmacology and Drug Evaluation
- Ministry of Education
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong
- Yantai University
| | - Xue Zhang
- School of Pharmacy
- Key Laboratory of Molecular Pharmacology and Drug Evaluation
- Ministry of Education
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong
- Yantai University
| | - Yan-Hua Liu
- School of Pharmacy
- Key Laboratory of Molecular Pharmacology and Drug Evaluation
- Ministry of Education
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong
- Yantai University
| | - Ying-Jie Shen
- School of Pharmacy
- Key Laboratory of Molecular Pharmacology and Drug Evaluation
- Ministry of Education
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong
- Yantai University
| | - Yan-Ping Zhu
- School of Pharmacy
- Key Laboratory of Molecular Pharmacology and Drug Evaluation
- Ministry of Education
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong
- Yantai University
| | - Yuan-Yuan Sun
- School of Pharmacy
- Key Laboratory of Molecular Pharmacology and Drug Evaluation
- Ministry of Education
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong
- Yantai University
| | - Qing-Guo Meng
- School of Pharmacy
- Key Laboratory of Molecular Pharmacology and Drug Evaluation
- Ministry of Education
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong
- Yantai University
| | - An-Xin Wu
- Key Laboratory of Pesticide & Chemical Biology
- Ministry of Education
- College of Chemistry
- Central China Normal University
- Wuhan
| |
Collapse
|
39
|
Rather SA, Kumar A, Ahmed QN. Iodine–DMSO-promoted divergent reactivities of arylacetylenes. Chem Commun (Camb) 2019; 55:4511-4514. [DOI: 10.1039/c9cc00346k] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
An unprecedented set of efficient, economical, atom-economic and exceedingly selective I2–DMSO-promoted methods is described for the generation of different structures.
Collapse
Affiliation(s)
- Suhail A. Rather
- Medicinal Chemistry Division
- CSIR-Indian Institute of Integrative Medicine
- Jammu 180001
- India
- Academy of Scientific and Innovative Research (AcSIR)
| | - Atul Kumar
- Medicinal Chemistry Division
- CSIR-Indian Institute of Integrative Medicine
- Jammu 180001
- India
- Academy of Scientific and Innovative Research (AcSIR)
| | - Qazi Naveed Ahmed
- Medicinal Chemistry Division
- CSIR-Indian Institute of Integrative Medicine
- Jammu 180001
- India
- Academy of Scientific and Innovative Research (AcSIR)
| |
Collapse
|
40
|
Pu J, Liu X, Luo X, Zhan Z, Zhang Y, Huang G. Metal‐Free Synthesis of the Functionalized Quinoxalines viaα‐Aminocarbonyl Compounds witho‐Phenylenediamine. ChemistrySelect 2018. [DOI: 10.1002/slct.201802735] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jinghong Pu
- State Key Laboratory of Applied Organic ChemistryKey Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu ProvinceDepartment of ChemistryLanzhou University Lanzhou 730000 China
| | - Xingxing Liu
- State Key Laboratory of Applied Organic ChemistryKey Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu ProvinceDepartment of ChemistryLanzhou University Lanzhou 730000 China
| | - Xinliang Luo
- State Key Laboratory of Applied Organic ChemistryKey Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu ProvinceDepartment of ChemistryLanzhou University Lanzhou 730000 China
| | - Zhenzhen Zhan
- State Key Laboratory of Applied Organic ChemistryKey Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu ProvinceDepartment of ChemistryLanzhou University Lanzhou 730000 China
| | - Yixin Zhang
- State Key Laboratory of Applied Organic ChemistryKey Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu ProvinceDepartment of ChemistryLanzhou University Lanzhou 730000 China
| | - Guosheng Huang
- State Key Laboratory of Applied Organic ChemistryKey Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu ProvinceDepartment of ChemistryLanzhou University Lanzhou 730000 China
| |
Collapse
|
41
|
Jayram J, Jeena V. An iodine/DMSO-catalyzed sequential one-pot approach to 2,4,5-trisubstituted-1 H-imidazoles from α-methylene ketones. RSC Adv 2018; 8:37557-37563. [PMID: 35558600 PMCID: PMC9089320 DOI: 10.1039/c8ra07238h] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 11/01/2018] [Indexed: 01/08/2023] Open
Abstract
A sequential one-pot approach to 2,4,5-trisubstituted imidazoles has been developed from α-methylene ketones and aldehydes. This methodology employs air-moisture stable reaction conditions and an inexpensive iodine/DMSO system affording a diverse range of known and novel (substrate scope) 2,4,5-trisubstituted imidazoles in moderate to excellent yields. The iodine/DMSO system was extended to the domino convergent synthesis of two functionalized intermediates, benzil and benzaldehyde, to produce the final product.
Collapse
Affiliation(s)
- Janeeka Jayram
- School of Chemistry and Physics, University of KwaZulu-Natal Scottsville Pietermaritzburg 3209 South Africa
| | - Vineet Jeena
- School of Chemistry and Physics, University of KwaZulu-Natal Scottsville Pietermaritzburg 3209 South Africa
| |
Collapse
|
42
|
Salvanna N, Reddy LM, Kumar RA, Das B. Unactivated sp3
C-H Functionalization by I 2
/DMSO: An Efficient Method to Synthesize Isatins †. ChemistrySelect 2018. [DOI: 10.1002/slct.201801176] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Nayaki Salvanna
- Department of Chemistry; Osmania University Post Graduate College, Narsapur, Medak, Telangana; India-502313
- Natural Products Chemistry Division; CSIR-Indian Institute of Chemical Technology; Hyderabad-500007 India
| | - Lonka Madhava Reddy
- Department of Chemistry; Osmania University, Hyderabad, Telangana; India-500007
| | - Rathod Aravind Kumar
- Semiochemicals Division; CSIR- Indian Institute of Chemical Technology, Tarnaka, Hyderabad; Telangana-500007 India
| | - Biswanath Das
- Natural Products Chemistry Division; CSIR-Indian Institute of Chemical Technology; Hyderabad-500007 India
| |
Collapse
|
43
|
Reddy LM, Reddy VV, Prathima PS, Reddy CK, Reddy BVS. Metal-free One-pot Synthesis of 1,2,4-Triazolo[4,3-a]pyridines from 2-Hydrazinylpyridines. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201800512] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- L. Madhava Reddy
- Fluoro & Agrochemicals; CSIR-Indian Institute of Chemical Technology; Hyderabad 500 007
- Department of Chemistry; Osmania University; Hyderabad 500 007 India
| | - V. Veerabadra Reddy
- Fluoro & Agrochemicals; CSIR-Indian Institute of Chemical Technology; Hyderabad 500 007
| | - P. Sai Prathima
- Fluoro & Agrochemicals; CSIR-Indian Institute of Chemical Technology; Hyderabad 500 007
| | - Ch. Krishna Reddy
- Fluoro & Agrochemicals; CSIR-Indian Institute of Chemical Technology; Hyderabad 500 007
| | - B. V. Subba Reddy
- Fluoro & Agrochemicals; CSIR-Indian Institute of Chemical Technology; Hyderabad 500 007
| |
Collapse
|
44
|
Shaik SP, Sultana F, Ravikumar A, Sunkari S, Alarifi A, Kamal A. Regioselective oxidative cross-coupling of benzo[d]imidazo[2,1-b]thiazoles with styrenes: a novel route to C3-dicarbonylation. Org Biomol Chem 2018; 15:7696-7704. [PMID: 28872171 DOI: 10.1039/c7ob01778b] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel I2 promoted, highly efficient metal-free and peroxide-free greener domino protocol for the C3-dicarbonylation of benzo[d]imidazo[2,1-b]thiazoles (IBTs) with styrenes has been developed via oxidative cleavage of the C(sp2)-H bond, followed by C3-nucleophilic attack of IBT and oxidation. Interestingly, under these conditions 2-(benzo[d]imidazo[2,1-b]thiazol-2-yl)aniline gave the benzo[4',5']thiazolo[2',3':2,3]imidazo[4,5-c]quinoline derivative via oxidative cleavage of the C(sp2)-H bond, followed by Pictet-Spengler cyclization and aromatization. This method offers the advantages of broad substrate scope, ecofriendly feature and high atom economy apart from higher yields.
Collapse
Affiliation(s)
- Siddiq Pasha Shaik
- Medicinal Chemistry and Biotechnology Division, CSIR-Indian Institute of Chemical Technology (IICT), Hyderabad-500007, India.
| | | | | | | | | | | |
Collapse
|
45
|
Sathe PA, Vadagaonkar KS, Vhatkar MV, Melone L, Chaskar AC. Tandem Protocol for the Synthesis of 3-Acyl Benzothiadiazine 1,1-Dioxides. ChemistrySelect 2018. [DOI: 10.1002/slct.201702378] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Pratima A. Sathe
- National Centre for Nanosciences and Nanotechnology; University of Mumbai; Mumbai - 400 098 India
| | - Kamlesh S. Vadagaonkar
- Department of Dyestuff Technology; Institute of Chemical Technology; Mumbai - 400019 India
| | - Mahendra V. Vhatkar
- National Centre for Nanosciences and Nanotechnology; University of Mumbai; Mumbai - 400 098 India
| | - Lucio Melone
- Dipartimento di Chimica; Materiali ed Ingegneria Chimica “G. Natta”; Politecnico Di Milano; via L. Mancinelli, 7 20131 Milano Italy
| | - Atul C. Chaskar
- National Centre for Nanosciences and Nanotechnology; University of Mumbai; Mumbai - 400 098 India
| |
Collapse
|
46
|
Monga A, Bagchi S, Sharma A. Iodine/DMSO oxidations: a contemporary paradigm in C–N bond chemistry. NEW J CHEM 2018. [DOI: 10.1039/c7nj04513a] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A new era in the organic synthetic world is demanding greener protocols for the execution of reactions.
Collapse
Affiliation(s)
- Aparna Monga
- Department of Chemistry
- Indian Institute of Technology Roorkee
- Roorkee-247667
- India
| | - Sourav Bagchi
- Department of Chemistry
- Indian Institute of Technology Roorkee
- Roorkee-247667
- India
| | - Anuj Sharma
- Department of Chemistry
- Indian Institute of Technology Roorkee
- Roorkee-247667
- India
| |
Collapse
|
47
|
Pardeshi SD, Sathe PA, Vadagaonkar KS, Chaskar AC. One-Pot Protocol for the Synthesis of Imidazoles and Quinoxalines using N
-Bromosuccinimide. Adv Synth Catal 2017. [DOI: 10.1002/adsc.201700900] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Sachin D. Pardeshi
- National Centre for Nanosciences and Nanotechnology; University of Mumbai; Mumbai 400098 India
| | - Pratima A. Sathe
- National Centre for Nanosciences and Nanotechnology; University of Mumbai; Mumbai 400098 India
| | - Kamlesh S. Vadagaonkar
- Department of Dyestuff Technology; Institute of Chemical Technology; Mumbai 400019 India
| | - Atul C. Chaskar
- National Centre for Nanosciences and Nanotechnology; University of Mumbai; Mumbai 400098 India
| |
Collapse
|
48
|
Wang P, Fu Y, Wu P, Guo X, Chen B. Convenient Access to C4-Dicarbonylation of Anilines by Iodine-Promoted Oxidative Cross-Coupling Reactions. ASIAN J ORG CHEM 2017. [DOI: 10.1002/ajoc.201700212] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Panpan Wang
- State Key Laboratory of Applied Organic Chemistry Lanzhou University; Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization; Lanzhou 730000 China
| | - Yajie Fu
- State Key Laboratory of Applied Organic Chemistry Lanzhou University; Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization; Lanzhou 730000 China
| | - Ping Wu
- State Key Laboratory of Applied Organic Chemistry Lanzhou University; Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization; Lanzhou 730000 China
| | - Xin Guo
- State Key Laboratory of Applied Organic Chemistry Lanzhou University; Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization; Lanzhou 730000 China
| | - Baohua Chen
- State Key Laboratory of Applied Organic Chemistry Lanzhou University; Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization; Lanzhou 730000 China
| |
Collapse
|
49
|
A heterogeneous gold(I)-catalyzed cascade annulation of aldehydes with propargylamine leading to 3-substituted 2,5-dimethylpyrazines. J Organomet Chem 2017. [DOI: 10.1016/j.jorganchem.2017.07.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
50
|
Liu Y, Guo X, Tang D, Wang J, Wu P, Han J, Chen B. Synthesis of 1,2,4-Triazine Compounds via Two Distinct One-Pot Domino Protocols. CHINESE J CHEM 2017. [DOI: 10.1002/cjoc.201600922] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Yafeng Liu
- State Key Laboratory of Applied Organic Chemistry; Lanzhou University; Lanzhou Gansu 730000 China
| | - Xin Guo
- State Key Laboratory of Applied Organic Chemistry; Lanzhou University; Lanzhou Gansu 730000 China
| | - Dong Tang
- Department of Chemistry; Lishui University; Lishui Zhejiang 323000 China
| | - Jing Wang
- State Key Laboratory of Applied Organic Chemistry; Lanzhou University; Lanzhou Gansu 730000 China
| | - Ping Wu
- State Key Laboratory of Applied Organic Chemistry; Lanzhou University; Lanzhou Gansu 730000 China
| | - Jianwei Han
- State Key Laboratory of Applied Organic Chemistry; Lanzhou University; Lanzhou Gansu 730000 China
| | - Baohua Chen
- State Key Laboratory of Applied Organic Chemistry; Lanzhou University; Lanzhou Gansu 730000 China
| |
Collapse
|