1
|
Synthesis and CO2 Capture of Porous Hydrogel Particles Consisting of Hyperbranched Poly(amidoamine)s. Gels 2022; 8:gels8080500. [PMID: 36005101 PMCID: PMC9407192 DOI: 10.3390/gels8080500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/05/2022] [Accepted: 08/09/2022] [Indexed: 11/17/2022] Open
Abstract
We successfully synthesized new macroporous hydrogel particles consisting of hyperbranched poly(amidoamine)s (HPAMAM) using the Oil-in-Water-in-Oil (O/W/O) suspension polymerization method at both the 50 mL flask scale and the 5 L reactor scale. The pore sizes and particle sizes were easily tuned by controlling the agitation speeds during the polymerization reaction. Since O/W/O suspension polymerization gives porous architecture to the microparticles, synthesized hydrogel particles having abundant amine groups inside polymers exhibited a high CO2 absorption capacity (104 mg/g) and a fast absorption rate in a packed-column test.
Collapse
|
2
|
Li Z, Chen H, Fang Y, Ma Y, Chen H, Yang B, Wang Y. A Highly Efficient Three-Liquid-Phase-Based Enzymatic One-Pot Multistep Reaction System with Recoverable Enzymes for the Synthesis of Biodiesel. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:5481-5490. [PMID: 33955745 DOI: 10.1021/acs.jafc.0c07448] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A three-liquid-phase system (TLPS) was developed and used as a novel enzymatic one-pot multistep reaction (EOMR) system. In this system, lipase and phospholipase were enriched in a single liquid phase with a high recovery (ca. 98%) and then used for the simultaneous catalysis of mutually inhibiting and interfering reactions (hydrolysis of phospholipids and glyceride in crude oil). A novel emulsion containing the two dispersed droplets (W2/O/W2 and W1/W2 emulsion structures) could be the key reason for this phenomenon because the emulsion system not only provided a new catalytic interface but also relieved the product inhibition. As a result, the content of free fatty acid (main hydrolysate of the glyceride) and the removal of phospholipid from the crude oil could be increased to 96 and 95%, respectively, within 1 h. The product obtained from the EOMR was directly used in the production of biodiesel via enzymatic esterification, and the content of fatty acid methanol ester could be increased to 93% within 2 h. Furthermore, the enzymes in the middle phase could also be reused, at least for eight rounds without significant loss in catalytic efficiency. Therefore, the TLPS could be considered as an ideal catalytic platform for the EOMR.
Collapse
Affiliation(s)
- Zhigang Li
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou 510006, China
| | - Hua Chen
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Yinglin Fang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Yunjian Ma
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Huayong Chen
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Bo Yang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Yonghua Wang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| |
Collapse
|
3
|
Efficient immobilization of phospholipase D on novel polymer supports with hierarchical pore structures. Int J Biol Macromol 2019; 141:60-67. [DOI: 10.1016/j.ijbiomac.2019.08.192] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 08/06/2019] [Accepted: 08/21/2019] [Indexed: 12/15/2022]
|
4
|
Li Z, Chen H, Su J, Wang W, Chen H, Yang B, Wang Y. Highly Efficient and Enzyme-Recoverable Method for Enzymatic Concentrating Omega-3 Fatty Acids Generated by Hydrolysis of Fish Oil in a Substrate-Constituted Three-Liquid-Phase System. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:2570-2580. [PMID: 30739448 DOI: 10.1021/acs.jafc.8b06382] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A novel three-liquid-phase system which contained fish oil as the nonpolar phase was developed for the lipase-based hydrolysis of fish oil and subsequent enrichment of the omega-3 polyunsaturated fatty acids (n-3 PUFA) in the glyceride fraction of the fish oil. In comparison with the traditional oil/water system, the enrichment factor of n-3 PUFA in this system was increased by 363.4% as a result of a higher dispersity, higher selectivity of the lipase for the other fatty acids except for n-3PUFA, and relief of product inhibition. The content of n-3 PUFA in the glyceride fraction could be concentrated to 67.97% by repeated hydrolysis after removing the free fatty acids. Furthermore, the lipase could be reused for at least eight rounds. This method would be an ideal approach for enriching n-3 PUFA because it is cost-effective, low in toxicity, and easily scaled up.
Collapse
Affiliation(s)
- Zhigang Li
- School of Biology and Biological Engineering , South China University of Technology , Guangzhou 510006 , People's Republic of China
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering , South China University of Technology , Guangzhou 510006 , People's Republic of China
| | - Hua Chen
- School of Biology and Biological Engineering , South China University of Technology , Guangzhou 510006 , People's Republic of China
| | - Jinfen Su
- School of Biology and Biological Engineering , South China University of Technology , Guangzhou 510006 , People's Republic of China
| | - Weifei Wang
- Sericultural & Agri-food Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Food, Ministry of Agriculture, Guangdong Key Laboratory of Agricultural Products Processing , Guangzhou 510610 , People's Republic of China
| | - Huayong Chen
- School of Biology and Biological Engineering , South China University of Technology , Guangzhou 510006 , People's Republic of China
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering , South China University of Technology , Guangzhou 510006 , People's Republic of China
| | - Bo Yang
- School of Biology and Biological Engineering , South China University of Technology , Guangzhou 510006 , People's Republic of China
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering , South China University of Technology , Guangzhou 510006 , People's Republic of China
| | - Yonghua Wang
- School of Light Industry and Food Sciences , South China University of Technology , Guangzhou 510641 , People's Republic of China
| |
Collapse
|
5
|
Rosch JG, Winter H, DuRoss AN, Sahay G, Sun C. Inverse-micelle synthesis of doxorubicin-loaded alginate/chitosan nanoparticles and in vitro assessment of breast cancer cytotoxicity. COLLOID AND INTERFACE SCIENCE COMMUNICATIONS 2019; 28:69-74. [PMID: 31602357 PMCID: PMC6786499 DOI: 10.1016/j.colcom.2018.12.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Naturally-derived polysaccharides, such as alginate and chitosan, can be assembled to form nanocarriers for the delivery of therapeutic agents. Here we exploit the electrostatic complexation of alginate/chitosan in a water-in-oil (w/o) emulsion process to produce doxorubicin (DOX)-loaded nanoparticles (~80 nm) with exceptional spherical morphology and uniformity. This robust synthetic route utilizes an aqueous phase dispersed in a cyclohexane/dodecylamine organic phase and is capable of encapsulating DOX in the nanoparticle solution. The uptake and efficacy of this novel formulation was evaluated in a murine breast cancer cell line, 4T1, with comparable 72 h IC50 values of the nanoparticle solution (0.15 μg/mL) and free DOX (0.13 μg/mL). Overall, the favorable performance, physiochemical properties, and their facile production support these nanocarriers as promising platform for the delivery of aqueous soluble drugs.
Collapse
Affiliation(s)
- Justin G. Rosch
- Department of Pharmaceutical Science, Oregon State University, 2730 SW Moody Ave, Portland, OR, 97201, USA
| | - Hayden Winter
- Department of Chemistry, Portland State University, 1719 SW 10th Ave, Portland, OR, 97201, USA
| | - Allison N. DuRoss
- Department of Pharmaceutical Science, Oregon State University, 2730 SW Moody Ave, Portland, OR, 97201, USA
| | - Gaurav Sahay
- Department of Pharmaceutical Science, Oregon State University, 2730 SW Moody Ave, Portland, OR, 97201, USA
- Department of Biomedical Engineering, 2730 SW Moody Ave, Oregon Health & Science University, Portland, OR 97201, USA
| | - Conroy Sun
- Department of Pharmaceutical Science, Oregon State University, 2730 SW Moody Ave, Portland, OR, 97201, USA
- Department of Radiation Medicine, 3181 S.W. Sam Jackson Park Rd, Oregon Health & Science, University, Portland, OR 97239, USA
| |
Collapse
|
6
|
Rosch JG, Brown AL, DuRoss AN, DuRoss EL, Sahay G, Sun C. Nanoalginates via Inverse-Micelle Synthesis: Doxorubicin-Encapsulation and Breast Cancer Cytotoxicity. NANOSCALE RESEARCH LETTERS 2018; 13:350. [PMID: 30392055 PMCID: PMC6215536 DOI: 10.1186/s11671-018-2748-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 10/11/2018] [Indexed: 05/21/2023]
Abstract
Crosslinked-biopolymer nanoparticles provide a convenient platform for therapeutic encapsulation and delivery. Here, we present a robust inverse-micelle process to load water-soluble drugs into a calcium-crosslinked alginate matrix. The utility of the resulting nanoalginate (NALG) carriers was assessed by a doxorubicin (DOX) formulation (NALG-DOX) and evaluating its potency on breast cancer cells (4T1). This facile synthesis process produced doxorubicin-containing particles of ~ 83 nm by hydrodynamic size and zeta potential ~ 7.2 mV. The cyclohexane/dodecylamine microemulsion yielded uniform and spherical nanoparticles as observed by electron microscopy. The uptake of the drug from the NALG-DOX formulation in 4T1 cells was observed by fluorescence microscopy employing doxorubicin's inherent fluorescence. Therapeutic efficacy of the NALG-DOX against 4T1 cells was demonstrated qualitatively through a LIVE/DEAD fluorescence assay and quantitatively via cell viability assay (Alamar Blue). In addition, IC50 values were determined, with encapsulated doxorubicin having a slightly higher value. No toxicity of the empty NALG carrier was observed. Overall, these results demonstrate the utility of this synthesis process for encapsulation of hydrophilic therapeutics and NALG to function as a drug carrier.
Collapse
Affiliation(s)
- Justin G. Rosch
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR 97201 USA
| | - Anna L. Brown
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR 97201 USA
| | - Allison N. DuRoss
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR 97201 USA
| | - Erin L. DuRoss
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR 97201 USA
| | - Gaurav Sahay
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR 97201 USA
- Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, OR 97201 USA
| | - Conroy Sun
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR 97201 USA
- Department of Radiation Medicine, School of Medicine, Oregon Health & Science University, Portland, OR 97239 USA
| |
Collapse
|
7
|
Pavel IA, Prazeres SF, Montalvo G, Garcı A Ruiz C, Nicolas V, Celzard A, Dehez F, Canabady-Rochelle L, Canilho N, Pasc A. Effect of Meso vs Macro Size of Hierarchical Porous Silica on the Adsorption and Activity of Immobilized β-Galactosidase. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:3333-3340. [PMID: 28301164 DOI: 10.1021/acs.langmuir.7b00134] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
β-Galactosidase (β-Gal) is one of the most important enzymes used in milk processing for improving their nutritional quality and digestibility. Herein, β-Gal has been entrapped into a meso-macroporous material (average pore size 9 and 200 nm, respectively) prepared by a sol-gel method from a silica precursor and a dispersion of solid lipid nanoparticles in a micelle phase. The physisorption of the enzyme depends on the concentration of the feed solution and on the pore size of the support. The enzyme is preferentially adsorbed either in mesopores or in macropores, depending on its initial concentration. Moreover, this selective adsorption, arising from the oligomeric complexation of the enzyme (monomer/dimer/tetramer), has an effect on the catalytic activity of the material. Indeed, the enzyme encapsulated in macropores is more active than the enzyme immobilized in mesopores. Designed materials containing β-Gal are of particular interest for food applications and potentially extended to bioconversion, bioremediation, or biosensing when coupling the designed support with other enzymes.
Collapse
Affiliation(s)
- Ileana-Alexandra Pavel
- SRSMC UMR 7565 CNRS-Université de Lorraine, Bvd des Aiguillettes, BP 70239, F-54506 Vandoeuvre-lès-Nancy, France
| | - Sofia F Prazeres
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcalá , E-28871 Alcala de Henares, Spain
| | - Gemma Montalvo
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcalá , E-28871 Alcala de Henares, Spain
- University Institute of Research in Police Sciences (IUICP) , E-28871 Alcalá de Henares, Madrid, Spain
| | - Carmen Garcı A Ruiz
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcalá , E-28871 Alcala de Henares, Spain
- University Institute of Research in Police Sciences (IUICP) , E-28871 Alcalá de Henares, Madrid, Spain
| | - Vincent Nicolas
- Institut Jean Lamour UMR 7198 CNRS-Université de Lorraine, ENSTIB, 27 rue Philippe Séguin, CS 60036, 88026 Cedex Epinal, France
| | - Alain Celzard
- Institut Jean Lamour UMR 7198 CNRS-Université de Lorraine, ENSTIB, 27 rue Philippe Séguin, CS 60036, 88026 Cedex Epinal, France
| | - François Dehez
- SRSMC UMR 7565 CNRS-Université de Lorraine, Bvd des Aiguillettes, BP 70239, F-54506 Vandoeuvre-lès-Nancy, France
| | - Laetitia Canabady-Rochelle
- LRGP UMR 7274 CNRS-Université de Lorraine, ENSAIA, 2, avenue de la forêt de Hayes, 54500 Vandoeuvre-lès-Nancy, France
| | - Nadia Canilho
- SRSMC UMR 7565 CNRS-Université de Lorraine, Bvd des Aiguillettes, BP 70239, F-54506 Vandoeuvre-lès-Nancy, France
| | - Andreea Pasc
- SRSMC UMR 7565 CNRS-Université de Lorraine, Bvd des Aiguillettes, BP 70239, F-54506 Vandoeuvre-lès-Nancy, France
| |
Collapse
|
8
|
Riachy P, Lopez G, Emo M, Stébé MJ, Blin JL, Ameduri B. Investigation of a novel fluorinated surfactant-based system for the design of spherical wormhole-like mesoporous silica. J Colloid Interface Sci 2017; 487:310-319. [DOI: 10.1016/j.jcis.2016.10.053] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 10/18/2016] [Accepted: 10/19/2016] [Indexed: 12/20/2022]
|
9
|
Kim S, Diab R, Joubert O, Canilho N, Pasc A. Core-shell microcapsules of solid lipid nanoparticles and mesoporous silica for enhanced oral delivery of curcumin. Colloids Surf B Biointerfaces 2015; 140:161-168. [PMID: 26752213 DOI: 10.1016/j.colsurfb.2015.12.040] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 11/26/2015] [Accepted: 12/20/2015] [Indexed: 01/19/2023]
Abstract
Newly designed microcapsules (MC) combining a core of solid lipid nanoparticle (SLN) and a mesoporous silica shell have been developed and explored as oral delivery system of curcumin (CU). CU-loaded MC (MC-CU) are 2 μm sized and have a mesoporous silica shell of 0.3 μm thickness with a wormlike structure as characterized by small angle X-ray scattering (SAXS), nitrogen adsorption/desorption and transmission electron microscopy (TEM) measurements. It was found that SLN acts as reservoir of curcumin while the mesoporous shell insures the protection and the controlled release of the drug. MC-CU displayed a pH-dependent in vitro release profile with marked drug retention at pH 2.8. Neutral red uptake assay together with confocal laser scanning microscopy (CLSM) showed a good cell tolerance to MC-CU at relatively high concentration of inert materials. Besides, the cell-uptake test revealed that fluorescent-MC were well internalized into Caco-2 cells, confirming the possibility to use MC for gut cells targeting. These findings suggest that organic core-silica shell microcapsules are promising drug delivery systems with enhanced bioavailability for poorly soluble drugs.
Collapse
Affiliation(s)
- Sanghoon Kim
- SRSMC, UMR 7565, Université de Lorraine-CNRS, F-54506 Vandœuvre-lès-Nancy, France
| | - Roudayna Diab
- SRSMC, UMR 7565, Université de Lorraine-CNRS, F-54506 Vandœuvre-lès-Nancy, France.
| | - Olivier Joubert
- CITHEFOR, EA 3452, Université de Lorraine, F-54000 Nancy, France
| | - Nadia Canilho
- SRSMC, UMR 7565, Université de Lorraine-CNRS, F-54506 Vandœuvre-lès-Nancy, France
| | - Andreea Pasc
- SRSMC, UMR 7565, Université de Lorraine-CNRS, F-54506 Vandœuvre-lès-Nancy, France.
| |
Collapse
|
10
|
Detailed investigation of nano-emulsions obtained from the Remcopal 4/decane/water system. Colloids Surf A Physicochem Eng Asp 2015. [DOI: 10.1016/j.colsurfa.2015.05.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
11
|
Investigation of mixed fluorinated and triblock copolymer liquid crystals: Imprint for mesostructured bimodal silica. J Colloid Interface Sci 2015; 446:170-6. [DOI: 10.1016/j.jcis.2015.01.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 01/14/2015] [Accepted: 01/14/2015] [Indexed: 11/17/2022]
|
12
|
Li Z, Chen H, Wang W, Qu M, Tang Q, Yang B, Wang Y. Substrate-constituted three-liquid-phase system: a green, highly efficient and recoverable platform for interfacial enzymatic reactions. Chem Commun (Camb) 2015; 51:12943-6. [DOI: 10.1039/c5cc04457j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Using substrate (oil) as one phase, a three-liquid-phase system was fabricated, wherein the highly efficient interfacial enzymatic hydrolysis of oil toward the production of fatty acids could be readily achieved.
Collapse
Affiliation(s)
- Zhigang Li
- School of Bioscience and Bioengineering
- South China University of Technology
- Guangzhou 510006
- China
| | - Huayong Chen
- School of Bioscience and Bioengineering
- South China University of Technology
- Guangzhou 510006
- China
| | - Weifei Wang
- School of Light Industry and Food Sciences
- South China University of Technology
- Guangzhou 510641
- China
| | - Man Qu
- School of Bioscience and Bioengineering
- South China University of Technology
- Guangzhou 510006
- China
| | - Qingyun Tang
- School of Light Industry and Food Sciences
- South China University of Technology
- Guangzhou 510641
- China
| | - Bo Yang
- School of Bioscience and Bioengineering
- South China University of Technology
- Guangzhou 510006
- China
| | - Yonghua Wang
- School of Light Industry and Food Sciences
- South China University of Technology
- Guangzhou 510641
- China
| |
Collapse
|