1
|
Gaddam R, Wang Z, Li Y, Harris LC, Pence MA, Guerrero ER, Kenis PJA, Gewirth AA, Rodríguez-López J. Identifying Reactive Trends in Glycerol Electro-Oxidation Using an Automated Screening Approach: 28 Ways to Electrodeposit an Au Electrocatalyst. ACS Catal 2025; 15:639-652. [PMID: 39839852 PMCID: PMC11744662 DOI: 10.1021/acscatal.4c04190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 11/07/2024] [Indexed: 01/23/2025]
Abstract
Automated, rapid electrocatalyst discovery techniques that comprehensively address the exploration of chemical spaces, characterization of catalyst robustness, reproducibility, and translation of results to (flow) electrolysis operation are needed. Responding to the growing interest in biomass valorization, we studied the glycerol electro-oxidation reaction (GEOR) on gold in alkaline media as a model reaction to demonstrate the efficacy of such methodology introduced here. Our platform combines individually addressable electrode arrays with HardPotato, a Python application programming interface for potentiostat control, to automate electrochemical experiments and data analysis operations. We systematically investigated the effects of reduction potential (E l) and pulse width (PW) on GEOR activity during the electrodeposition (Edep) of gold, evaluating 28 different conditions in triplicate measurements with great versatility. Our findings reveal a direct correlation between E l and GEOR activity. Upon CV cycling, we recorded a 52% increase in peak current density and a -0.25 V shift in peak potential as E l varied from -0.2 to -1.4 V. We also identified an optimal PW of ∼1.0 s, yielding maximum catalytic performance. The swift analysis enabled by our methodology allowed us to correlate performance enhancements with increased electrochemical surface area and preferential deposition of Au(110) and Au(111) sites, even in disparate Edep conditions. We validate our methodology by scaling the Edep process to larger electrodes and correlating intrinsic activity with product speciation via flow electrolysis measurements. Our platform highlights opportunities in automation for electrocatalyst discovery to address pressing needs toward industrial decarbonization, such as biomass valorization.
Collapse
Affiliation(s)
- Raghuram Gaddam
- Department
of Chemistry, University of Illinois Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Zirui Wang
- Department
of Chemistry, University of Illinois Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Yichen Li
- Department
of Chemistry, University of Illinois Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Lauren C. Harris
- Department
of Chemistry, University of Illinois Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Michael A. Pence
- Department
of Chemistry, University of Illinois Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Efren R. Guerrero
- Department
of Chemistry, University of Illinois Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Paul J. A. Kenis
- Department
of Chemical and Biomolecular Engineering, University of Illinois Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Andrew A. Gewirth
- Department
of Chemistry, University of Illinois Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Joaquín Rodríguez-López
- Department
of Chemistry, University of Illinois Urbana−Champaign, Urbana, Illinois 61801, United States
- Beckman
Institute for Advanced Science and Technology, University of Illinois Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
2
|
Gao N, Li C, Xue Y, Wang Y, Ma H. Design and optimization of pore structure in three-dimensional micro-nano hierarchical SnO x supercapacitor electrodes for enhanced ion diffusion. J Colloid Interface Sci 2025; 678:693-703. [PMID: 39265340 DOI: 10.1016/j.jcis.2024.09.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/05/2024] [Accepted: 09/06/2024] [Indexed: 09/14/2024]
Abstract
This paper introduced a novel continuous electrochemical synthesis strategy to address the challenges of slow ion/electron transport rates and low electrode reaction efficiency in Sn-based electrode materials. This approach leveraged the induction and confinement of bubble templates to assist atoms deposition, generating micron-sized tin skeletons. Subsequently, these skeletons were transformed into a secondary nanoporous structure through dissolution-deposition etching effects. From liquid-phase ions to metal skeletons to porous oxides, the sequential material transformations realized the innovative design of three-dimensional (3D) hierarchical structures. This strategy ingeniously exploited the diffusion advantages of the electrolyte in the micro-nano hierarchical structure to achieve the diffusion enhancement of ions, thus solving the "dead surface" problem in the energy storage process. This study revealed the thermodynamic and kinetic feasibility of the constructed 3D micro-nano hierarchical structure through electrochemical evaluations and theoretical calculations, and elucidated the constitutive relationship in which the electrochemical performance of the electrode materials was enhanced with decreasing pore size. In addition, design optimization of pore structures and modelling exploration of pore size limit values were conducted based on density functional theory (DFT) simulations. These simulations demonstrated the advantages of hierarchical structures with controllable pore sizes in facilitating electrolyte ion diffusion, predicting an optimal pore size of 55 μm for 3D hierarchical porous SnOx electrodes. The integration of this innovative structural design with simulation insights offered significant implications for enhancing the sluggish electrode reaction kinetics of metal oxide electrode materials, advancing the controllable fabrication of high-performance energy storage devices.
Collapse
Affiliation(s)
- Nan Gao
- School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China
| | - Chenyu Li
- School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China
| | - Yanjie Xue
- School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China
| | - Yunpeng Wang
- School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China.
| | - Haitao Ma
- School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
3
|
Chen Y, Cui H, Shi Y, Li X, Zhang J, Guan R. Magnetic Field-Induced Control of Crystal Orientation in Porous CuNi Films for Enhanced Electrocatalytic Hydrogen Evolution. ACS APPLIED MATERIALS & INTERFACES 2025; 17:943-951. [PMID: 39726383 DOI: 10.1021/acsami.4c15492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Porous CuNi films are promising candidates for electrocatalytic water splitting, with their catalytic performance largely influenced by the crystallographic structure and chemical state. In this study, by employing a magnetic field-controlled bubble template-assisted electrodeposition method, CuNi films with a preferred Ni(111) crystal orientation were synthesized. Moreover, adjusting the magnetic field direction during deposition can affect the degree of preferred orientation and, consequently, the electrochemical activity of the films. The deposited porous CuNi films under the up/down Lorentz force conditions show a preferred orientation along the Ni(111) direction, although the extent of this orientation varies. For the sake of comparison, porous CuNi films electrodeposited under the condition of magnetic stirring and undistributed were also synthesized. The electrochemical performance was evaluated using cyclic voltammetry and Tafel analysis, revealing that the preferred Ni(111) orientation enhances hydrogen atom migration, thereby improving the hydrogen evolution reaction (HER) efficiency. The porous CuNi film deposited with upward Lorentz force exhibits the highest HER activity, and the onset potential is as low as -3 mV vs a reversible hydrogen electrode (RHE). This work emphasizes the importance of the magnetic field in optimizing the crystal orientation and electrochemical performance of CuNi films for sustainable energy applications.
Collapse
Affiliation(s)
- Yuxi Chen
- Key Laboratory of Near-Net Forming of Light Metals of Liaoning Province, Dalian Jiaotong University, Dalian 116028, China
- Engineering Research Center of Continuous Extrusion, Ministry of Education, Dalian Jiaotong University, Dalian 116028, China
| | - Hanzhong Cui
- Key Laboratory of Near-Net Forming of Light Metals of Liaoning Province, Dalian Jiaotong University, Dalian 116028, China
- Engineering Research Center of Continuous Extrusion, Ministry of Education, Dalian Jiaotong University, Dalian 116028, China
| | - Yinghui Shi
- Key Laboratory of Near-Net Forming of Light Metals of Liaoning Province, Dalian Jiaotong University, Dalian 116028, China
- Engineering Research Center of Continuous Extrusion, Ministry of Education, Dalian Jiaotong University, Dalian 116028, China
| | - Xinci Li
- Key Laboratory of Near-Net Forming of Light Metals of Liaoning Province, Dalian Jiaotong University, Dalian 116028, China
- Engineering Research Center of Continuous Extrusion, Ministry of Education, Dalian Jiaotong University, Dalian 116028, China
| | - Jin Zhang
- Key Laboratory of Near-Net Forming of Light Metals of Liaoning Province, Dalian Jiaotong University, Dalian 116028, China
- Engineering Research Center of Continuous Extrusion, Ministry of Education, Dalian Jiaotong University, Dalian 116028, China
| | - Renguo Guan
- Key Laboratory of Near-Net Forming of Light Metals of Liaoning Province, Dalian Jiaotong University, Dalian 116028, China
- Engineering Research Center of Continuous Extrusion, Ministry of Education, Dalian Jiaotong University, Dalian 116028, China
| |
Collapse
|
4
|
Li Y, Chen X, Yuan Z, Yi Z, Wang Z, Wang R. Nanoporous Gold-Modified Screen-Printed Electrodes for the Simultaneous Determination of Pb 2+ and Cu 2+ in Water. SENSORS (BASEL, SWITZERLAND) 2024; 24:5745. [PMID: 39275655 PMCID: PMC11397832 DOI: 10.3390/s24175745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 08/28/2024] [Accepted: 09/02/2024] [Indexed: 09/16/2024]
Abstract
In this study, nanoporous gold (NPG) was deposited on a screen-printed carbon electrode (SPCE) by the dynamic hydrogen bubble template (DHBT) method to prepare an electrochemical sensor for the simultaneous determination of Pb2+ and Cu2+ by square wave anodic stripping voltammetry (SWASV). The electrodeposition potential and electrodeposition time for NPG/SPCE preparation were investigated thoroughly. Scanning electron microscopy (SEM) and energy-dispersive X-ray diffraction (EDX) analysis confirmed successful fabrication of the NPG-modified electrode. Electrochemical characterization exhibits its superior electron transfer ability compared with bare and nanogold-modified electrodes. After a comprehensive optimization, Pb2+ and Cu2+ were simultaneously determined with linear range of 1-100 μg/L for Pb2+ and 10-100 μg/L for Cu2+, respectively. The limits of detection were determined to be 0.4 μg/L and 5.4 μg/L for Pb2+ and Cu2+, respectively. This method offers a broad linear detection range, a low detection limit, and good reliability for heavy metal determination in drinking water. These results suggest that NPG/SPCE holds great promise in environmental and food applications.
Collapse
Affiliation(s)
- Yongfang Li
- School of Food Science and Engineering, Foshan University, Foshan 528231, China
| | - Xuan Chen
- School of Food Science and Engineering, Foshan University, Foshan 528231, China
| | - Zhiyong Yuan
- School of Food Science and Engineering, Foshan University, Foshan 528231, China
| | - Zhijian Yi
- School of Food Science and Engineering, Foshan University, Foshan 528231, China
| | - Zijun Wang
- School of Food Science and Engineering, Foshan University, Foshan 528231, China
| | - Rui Wang
- Human Phenome Institute, State Key Laboratory of Genetic Engineering, Fudan University, Shanghai 200438, China
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 200438, China
- International Human Phenome Institutes, Shanghai 200438, China
| |
Collapse
|
5
|
Liu R, Huang J, Li J, Placidi E, Chen F, Zhu X, Liao Q. Capillary-Driven Separate Gas-Liquid Transport: Alleviating Mass Transport Losses for Efficient Hydrogen Evolution. ACS APPLIED MATERIALS & INTERFACES 2024; 16:33336-33346. [PMID: 38907693 DOI: 10.1021/acsami.4c02524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/24/2024]
Abstract
Developing earth-abundant transition metal electrodes with high activity and durability is crucial for efficient and cost-effective hydrogen production. However, numerous studies in the hydrogen evolution reaction (HER) primarily focus on improving the inherent activity of catalysts, and the critical influence of gas-liquid countercurrent transport behavior is often overlooked. In this study, we introduce the concept of separate-path gas-liquid transport to alleviate mass transport losses for the HER by developing a novel hierarchical porous Ni-doped cobalt phosphide electrode (CoNix-P@Ni). The CoNix-P@Ni electrodes with abundant microvalleys and crack structures facilitate the gas-liquid cotransport by separating the bubble release and water supply paths. Visualization and numerical simulation results demonstrate that cracks primarily serve as water supply paths, with capillary pressure facilitating the transport of water from the cracks to the microvalleys. This process ensures the continuous wetting of electrolytes in the electrode, reduces hydrogen supersaturation near the active site, and increases hydrogen transport flux to the microvalleys for accelerating bubble growth. Additionally, the microvalleys act as preferential sites for bubble evolution, preventing bubble coverage on other active sites. By regulating the amount of nickel, the CoNi1-P@Ni electrode exhibited the smallest and densest microvalleys and cracks, achieving superior HER performance with an overpotential of 51 mV at 10 mA cm-2. The results offer a promising direction for constructing high-performance HER electrodes.
Collapse
Affiliation(s)
- Run Liu
- Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
- Key Laboratory of Low-Grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China
| | - Jian Huang
- Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
- Key Laboratory of Low-Grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China
| | - Jun Li
- Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
- Key Laboratory of Low-Grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China
| | - Ernesto Placidi
- Department of Physics, Sapienza University of Rome, Rome 00185, Italy
| | - Fang Chen
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Xun Zhu
- Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
- Key Laboratory of Low-Grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China
| | - Qiang Liao
- Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
- Key Laboratory of Low-Grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China
| |
Collapse
|
6
|
Guo YW, Wei QH, Wei F, Liu H, Zhao HB, Wang D, Tu HL. In situ synthesis of porous Pt–Pd bimetallic structures for sweat glucose biosensing using dynamic hydrogen bubble template method. RARE METALS 2024; 43:3408-3414. [DOI: 10.1007/s12598-024-02792-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 01/03/2025]
|
7
|
Rajagopal V, Mehla S, Jones LA, Bhargava SK. Nanoengineered Cobalt Electrocatalyst for Alkaline Oxygen Evolution Reaction. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:946. [PMID: 38869572 PMCID: PMC11173492 DOI: 10.3390/nano14110946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 05/18/2024] [Accepted: 05/24/2024] [Indexed: 06/14/2024]
Abstract
The alkaline oxygen evolution reaction (OER) remains a bottleneck in green hydrogen production owing to its slow reaction kinetics and low catalytic efficiencies of earth abundant electrocatalysts in the alkaline OER reaction. This study investigates the OER performance of hierarchically porous cobalt electrocatalysts synthesized using the dynamic hydrogen bubble templating (DHBT) method. Characterization studies revealed that electrocatalysts synthesized under optimized conditions using the DHBT method consisted of cobalt nanosheets, and hierarchical porosity with macropores distributed in a honeycomb network and mesopores distributed between cobalt nanosheets. Moreover, X-ray photoelectron spectroscopy studies revealed the presence of Co(OH)2 as the predominant surface cobalt species while Raman studies revealed the presence of the cubic Co3O4 phase in the synthesized electrocatalysts. The best performing electrocatalyst required only 360 mV of overpotential to initiate a current density of 10 mA cm-2, exhibited a Tafel slope of 37 mV dec-1, and stable OER activity over 24 h. The DHBT method offers a facile, low cost and rapid synthesis approach for preparation for highly efficient cobalt electrocatalysts.
Collapse
Affiliation(s)
| | | | | | - Suresh K. Bhargava
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, STEM College, RMIT University, GPO Box 2476, Melbourne, VIC 3001, Australia; (V.R.); (S.M.)
| |
Collapse
|
8
|
Wang S, Lu M, Xia X, Wang F, Xiong X, Ding K, Pang Z, Li G, Xu Q, Hsu HY, Hu S, Ji L, Zhao Y, Wang J, Zou X, Lu X. A universal and scalable transformation of bulk metals into single-atom catalysts in ionic liquids. Proc Natl Acad Sci U S A 2024; 121:e2319136121. [PMID: 38408257 PMCID: PMC10927526 DOI: 10.1073/pnas.2319136121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/17/2024] [Indexed: 02/28/2024] Open
Abstract
Single-atom catalysts (SACs) with maximized metal atom utilization and intriguing properties are of utmost importance for energy conversion and catalysis science. However, the lack of a straightforward and scalable synthesis strategy of SACs on diverse support materials remains the bottleneck for their large-scale industrial applications. Herein, we report a general approach to directly transform bulk metals into single atoms through the precise control of the electrodissolution-electrodeposition kinetics in ionic liquids and demonstrate the successful applicability of up to twenty different monometallic SACs and one multimetallic SAC with five distinct elements. As a case study, the atomically dispersed Pt was electrodeposited onto Ni3N/Ni-Co-graphene oxide heterostructures in varied scales (up to 5 cm × 5 cm) as bifunctional catalysts with the electronic metal-support interaction, which exhibits low overpotentials at 10 mA cm-2 for hydrogen evolution reaction (HER, 30 mV) and oxygen evolution reaction (OER, 263 mV) with a relatively low Pt loading (0.98 wt%). This work provides a simple and practical route for large-scale synthesis of various SACs with favorable catalytic properties on diversified supports using alternative ionic liquids and inspires the methodology on precise synthesis of multimetallic single-atom materials with tunable compositions.
Collapse
Affiliation(s)
- Shujuan Wang
- State Key Laboratory of Advanced Special Steel and Shanghai Key Laboratory of Advanced Ferrometallurgy and School of Materials Science and Engineering, Shanghai University, Shanghai200444, China
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai201800, China
| | - Minghui Lu
- State Key Laboratory of Advanced Special Steel and Shanghai Key Laboratory of Advanced Ferrometallurgy and School of Materials Science and Engineering, Shanghai University, Shanghai200444, China
| | - Xuewen Xia
- State Key Laboratory of Advanced Special Steel and Shanghai Key Laboratory of Advanced Ferrometallurgy and School of Materials Science and Engineering, Shanghai University, Shanghai200444, China
| | - Fei Wang
- State Key Laboratory of Advanced Special Steel and Shanghai Key Laboratory of Advanced Ferrometallurgy and School of Materials Science and Engineering, Shanghai University, Shanghai200444, China
| | - Xiaolu Xiong
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai201800, China
| | - Kai Ding
- State Key Laboratory of Advanced Special Steel and Shanghai Key Laboratory of Advanced Ferrometallurgy and School of Materials Science and Engineering, Shanghai University, Shanghai200444, China
| | - Zhongya Pang
- State Key Laboratory of Advanced Special Steel and Shanghai Key Laboratory of Advanced Ferrometallurgy and School of Materials Science and Engineering, Shanghai University, Shanghai200444, China
| | - Guangshi Li
- State Key Laboratory of Advanced Special Steel and Shanghai Key Laboratory of Advanced Ferrometallurgy and School of Materials Science and Engineering, Shanghai University, Shanghai200444, China
| | - Qian Xu
- State Key Laboratory of Advanced Special Steel and Shanghai Key Laboratory of Advanced Ferrometallurgy and School of Materials Science and Engineering, Shanghai University, Shanghai200444, China
| | - Hsien-Yi Hsu
- Department of Materials Science and Engineering, School of Energy and Environment, City University of Hong Kong, Kowloon Tong, Hong Kong, China
| | - Shen Hu
- School of Microelectronics, Fudan University, Shanghai200433, China
| | - Li Ji
- School of Microelectronics, Fudan University, Shanghai200433, China
| | - Yufeng Zhao
- Institute of Sustainable Energy, College of Sciences, Shanghai University, Shanghai200444, China
| | - Jing Wang
- Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao066000, China
| | - Xingli Zou
- State Key Laboratory of Advanced Special Steel and Shanghai Key Laboratory of Advanced Ferrometallurgy and School of Materials Science and Engineering, Shanghai University, Shanghai200444, China
| | - Xionggang Lu
- State Key Laboratory of Advanced Special Steel and Shanghai Key Laboratory of Advanced Ferrometallurgy and School of Materials Science and Engineering, Shanghai University, Shanghai200444, China
| |
Collapse
|
9
|
Moreno-García P, de Gálvez-Vázquez MDJ, Prenzel T, Winter J, Gálvez-Vázquez L, Broekmann P, Waldvogel SR. Self-Standing Metal Foam Catalysts for Cathodic Electro-Organic Synthesis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307461. [PMID: 37917032 DOI: 10.1002/adma.202307461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/19/2023] [Indexed: 11/03/2023]
Abstract
Although electro-organic synthesis is currently receiving renewed interest because of its potential to enable sustainability in chemical processes to value-added products, challenges in process development persist: For reductive transformations performed in protic media, an inherent issue is the limited choice of metallic cathode materials that can effectively suppress the parasitic hydrogen evolution reaction (HER) while maintaining a high activity toward the targeted electro-organic reaction. Current development trends are aimed at avoiding the previously used HER-suppressing elements (Cd, Hg, and Pb) because of their toxicity. Here, this work reports the rational design of highly porous foam-type binary and ternary electrocatalysts with reduced Pb content. Optimized cathodes are tested in electro-organic reductions using an oxime to nitrile transformation as a model reaction relevant for the synthesis of fine chemicals. Their electrocatalytic performance is compared with that of the model CuSn7Pb15 bronze alloy that has recently been endorsed as the best cathode replacement for bare Pb electrodes. All developed metal foam catalysts outperform both bare Pb and the CuSn7Pb15 benchmark in terms of chemical yield and energetic efficiency. Moreover, post-electrolysis analysis of the crude electrolyte mixture and the cathode's surfaces through inductively coupled plasma mass spectrometry (ICP-MS) and scanning electron microscopy (SEM), respectively, reveal the foam catalysts' elevated resistance to cathodic corrosion.
Collapse
Affiliation(s)
- Pavel Moreno-García
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, 3012, Switzerland
| | | | - Tobias Prenzel
- Department of Chemistry, Johannes Gutenberg-University Mainz, 55128, Mainz, Germany
| | - Johannes Winter
- Department of Chemistry, Johannes Gutenberg-University Mainz, 55128, Mainz, Germany
| | - Liliana Gálvez-Vázquez
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, 3012, Switzerland
| | - Peter Broekmann
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, 3012, Switzerland
| | - Siegfried R Waldvogel
- Department of Chemistry, Johannes Gutenberg-University Mainz, 55128, Mainz, Germany
- Institute of Biological and Chemical Systems - Functional Molecular Systems (IBCS-FMS), Kaiserstraße 12, 76131, Karlsruhe, Germany
| |
Collapse
|
10
|
Sharp J, Ciotti A, Andrews H, Udayasurian SR, García-Melchor M, Li T. Sustainable Electrosynthesis of Cyclohexanone Oxime through Nitrate Reduction on a Zn-Cu Alloy Catalyst. ACS Catal 2024; 14:3287-3297. [PMID: 38449527 PMCID: PMC10913030 DOI: 10.1021/acscatal.3c05388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 03/08/2024]
Abstract
Cyclohexanone oxime is an important precursor for Nylon-6 and is typically synthesized via the nucleophilic addition-elimination of hydroxylamine with cyclohexanone. Current technologies for hydroxylamine production are, however, not environment-friendly due to the requirement of harsh reaction conditions. Here, we report an electrochemical method for the one-pot synthesis of cyclohexanone oxime under ambient conditions with aqueous nitrate as the nitrogen source. A series of Zn-Cu alloy catalysts are developed to drive the electrochemical reduction of nitrate, where the hydroxylamine intermediate formed in the electroreduction process can undergo a chemical reaction with the cyclohexanone present in the electrolyte to produce the corresponding oxime. The best performance is achieved on a Zn93Cu7 electrocatalyst with a 97% yield and a 27% Faradaic efficiency for cyclohexanone oxime at 100 mA/cm2. By analyzing the catalytic activities/selectivities of the different Zn-Cu alloys and conducting in-depth mechanistic studies via in situ Raman spectroscopy and theoretical calculations, we demonstrate that the adsorption of nitrogen species plays a central role in catalytic performance. Overall, this work provides an attractive strategy to build the C-N bond in oxime and drive organic synthesis through electrochemical nitrate reduction, while highlighting the importance of controlling surface adsorption for product selectivity in electrosynthesis.
Collapse
Affiliation(s)
- Jonathan Sharp
- School
of Chemistry and Environment, Manchester
Metropolitan University, Chester Street, Manchester M1 5GD, United Kingdom
| | - Anna Ciotti
- School
of Chemistry, CRANN and AMBER Research Centres,
Trinity College Dublin, College Green, Dublin 2, Ireland
| | - Hayley Andrews
- School
of Chemistry and Environment, Manchester
Metropolitan University, Chester Street, Manchester M1 5GD, United Kingdom
| | - Shaktiswaran R. Udayasurian
- School
of Chemistry and Environment, Manchester
Metropolitan University, Chester Street, Manchester M1 5GD, United Kingdom
| | - Max García-Melchor
- School
of Chemistry, CRANN and AMBER Research Centres,
Trinity College Dublin, College Green, Dublin 2, Ireland
| | - Tengfei Li
- School
of Chemistry and Environment, Manchester
Metropolitan University, Chester Street, Manchester M1 5GD, United Kingdom
| |
Collapse
|
11
|
Cui P, Wang T, Zhang X, Wang X, Wu H, Wu Y, Ba C, Zeng Y, Liu P, Jiang J. Rapid Formation of Epitaxial Oxygen Evolution Reaction Catalysts on Dendrites with High Catalytic Activity and Stability. ACS NANO 2023; 17:22268-22276. [PMID: 37934206 DOI: 10.1021/acsnano.3c02662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Oxygen evolution reaction is an essential but kinetically sluggish step in many energy storage and conversion processes and therefore is in pursuit of highly efficient and stable catalysts. Although nanosized transition-metal-based oxides/hydroxides exhibit high catalytic activity toward the oxygen evolution reaction (OER), many of them suffer from low stability at an anode current density in industrial scale. Herein, by combining a rapid epitaxial formation method with dynamic bubble-templated electrodeposition, we successfully developed single crystalline NiFeCu oxide catalysts with a hierarchical porous structure. It was found that the structure can facilitate fast electron transportation for the catalysts and retard the diffusion of the O atoms to the inner metallic current collector. The hierarchical pores inherited from the hydrogen bubble templates built ideal channels for the massive and rapid release of oxygen bubbles. As a consequence, the NiFeCu oxides catalyzed the OER more efficiently and steadily than the commercial RuO2 catalyst at an anode current density in industrial scale (300 mA/cm2). This work, by resolving the durability concerns for nanosized oxides, offers a series of highly efficient and stable catalysts for OER and a structure building strategy to boost the catalytic activity and stability for nonconductive catalysts.
Collapse
Affiliation(s)
- Peng Cui
- Jiangsu Key Laboratory of Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University, Nanjing, 211189, People's Republic of China
| | - Tongheng Wang
- Jiangsu Key Laboratory of Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University, Nanjing, 211189, People's Republic of China
| | - Xuhai Zhang
- Jiangsu Key Laboratory of Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University, Nanjing, 211189, People's Republic of China
| | - Xinyao Wang
- Shanghai Key Laboratory of Advanced High-Temperature Materials and Precision Forming, State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Haofei Wu
- Shanghai Key Laboratory of Advanced High-Temperature Materials and Precision Forming, State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Yangkun Wu
- Jiangsu Key Laboratory of Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University, Nanjing, 211189, People's Republic of China
- Department of Basic Science, Graduate Schools of Arts and Sciences, The University of Tokyo, Komaba, Tokyo 153-8920, Japan
| | - Chongyang Ba
- Jiangsu Key Laboratory of Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University, Nanjing, 211189, People's Republic of China
| | - Yuqiao Zeng
- Jiangsu Key Laboratory of Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University, Nanjing, 211189, People's Republic of China
| | - Pan Liu
- Shanghai Key Laboratory of Advanced High-Temperature Materials and Precision Forming, State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Jianqing Jiang
- Jiangsu Key Laboratory of Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University, Nanjing, 211189, People's Republic of China
- College of Mechanical and Electronic Engineering, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| |
Collapse
|
12
|
Jia S, Zhu Q, Han S, Zhai J, Dong M, Xia W, Xing X, Wu H, He M, Han B. Ultra-fast synthesis of three-dimensional porous Cu/Zn heterostructures for enhanced carbon dioxide electroreduction. Chem Sci 2023; 14:11474-11480. [PMID: 37886083 PMCID: PMC10599477 DOI: 10.1039/d3sc03317a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 10/02/2023] [Indexed: 10/28/2023] Open
Abstract
The construction of metal hetero-interfaces has great potential in the application of electro-catalytic carbon dioxide reduction (ECR). Herein, we report a fast, efficient, and simple electrodeposition strategy for synthesizing three-dimensional (3D) porous Cu/Zn heterostructures using the hydrogen bubble template method. When the deposition was carried out at -1.0 A for 30 s, the obtained 3D porous Cu/Zn heterostructures on carbon paper (CP) demonstrated a nearly 100% CO faradaic efficiency (FE) with a high partial current density of 91.8 mA cm-2 at -2.1 V vs. Ag/Ag+ in the mixed electrolyte of ionic liquids/acetonitrile in an H-type cell. In particular, the partial current density of CO could reach 165.5 mA cm-2 and the FE of CO could remain as high as 94.3% at -2.5 V vs. Ag/Ag+. The current density is much higher than most reported to date in an H-type cell (Table S1). Experimental and density functional theory (DFT) calculations reveal that the outstanding electrocatalytic performance of the electrode can be ascribed to the formation of 3D porous Cu/Zn heterostructures, in which the porous and self-supported architecture facilitates diffusion and the Cu/Zn heterostructures can reduce the energy barrier for ECR to CO.
Collapse
Affiliation(s)
- Shuaiqiang Jia
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200062 China
| | - Qinggong Zhu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid and Interface and Thermodynamics, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
- School of Chemistry, University of Chinese Academy of Sciences Beijing 100049 China
| | - Shitao Han
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200062 China
| | - Jianxin Zhai
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200062 China
| | - Mengke Dong
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200062 China
| | - Wei Xia
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200062 China
| | - Xueqing Xing
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences Beijing 100049 China
| | - Haihong Wu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200062 China
- Institute of Eco-Chongming 20 Cuiniao Road, Chenjia Town, Chongming District Shanghai 202162 China
| | - Mingyuan He
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200062 China
- Institute of Eco-Chongming 20 Cuiniao Road, Chenjia Town, Chongming District Shanghai 202162 China
| | - Buxing Han
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200062 China
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid and Interface and Thermodynamics, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
- School of Chemistry, University of Chinese Academy of Sciences Beijing 100049 China
- Institute of Eco-Chongming 20 Cuiniao Road, Chenjia Town, Chongming District Shanghai 202162 China
| |
Collapse
|
13
|
Roy N, Khattak N, Phan KK, Hossain MS, Thomas S, Ram M, Sheridan M, Lorentz B, Takshi A. Sequential Laser-Burned Lignin and Hydrogen Evolution-Assisted Copper Electrodeposition to Manufacture Wearable Electronics. ACS APPLIED MATERIALS & INTERFACES 2023; 15:46571-46578. [PMID: 37733934 DOI: 10.1021/acsami.3c11814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
In the contemporary world, wearable electronics and smart textiles/fabrics are galvanizing a transformation of the health care, aerospace, military, and commercial industries. However, a major challenge that exists is the manufacture of electronic circuits directly on fabrics. In this work, we addressed the issue by developing a sequential manufacturing process. First, the target fabric was coated with a customized ink containing lignin. Next, a desired circuit layout was patterned by laser burning lignin, converting it to carbon and establishing a conductive template on the fabric. At last, using an in-house-designed printer, a devised localized hydrogen evolution-assisted (HEA) copper electroplating method was applied to metalize the surface of the laser-burned lignin pattern to achieve a very low resistive circuit layout (0.103 Ω for a 1 cm long interconnect). The nanostructure and material composition of the different layers were investigated via scanning electron microscopy, energy-dispersive X-ray spectroscopy (EDX), Raman spectroscopy, and Fourier-transform infrared spectroscopy (FTIR). Monitoring the conductivity change before and after bending, rolling, stretching, washing, and adhesion tests presented remarkable mechanical stability due to the entanglement of the copper nanostructure to the fibers of the fabric. Furthermore, the HEA method was used to solder a light-emitting diode to a patterned circuit on the fabric by growing copper at the terminals, creating interconnects. The presented sequential printing method has the potential for fabricating reliable wearable electronics for various applications, particularly in medical monitoring.
Collapse
Affiliation(s)
- Nirmita Roy
- University of South Florida, Tampa, Florida 33620, United States
| | - Nida Khattak
- University of South Florida, Tampa, Florida 33620, United States
| | - Kat-Kim Phan
- University of South Florida, Tampa, Florida 33620, United States
| | | | - Sylvia Thomas
- University of South Florida, Tampa, Florida 33620, United States
| | - Manoj Ram
- PolyMaterialsApp, Tampa, Florida 33612, United States
| | | | | | - Arash Takshi
- University of South Florida, Tampa, Florida 33620, United States
| |
Collapse
|
14
|
Zhang Y, Gu L, Zhang Y, Yang J, Li Q, Yu S, Li C, Wei K. Energy-efficient reuse of bio-treated textile wastewater by a porous-structure electrochemical PbO2 filter: Performance and mechanism. ENVIRONMENTAL RESEARCH 2023; 231:116254. [PMID: 37245572 DOI: 10.1016/j.envres.2023.116254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 05/12/2023] [Accepted: 05/26/2023] [Indexed: 05/30/2023]
Abstract
In this work, a novel porous-structure electrochemical PbO2 filter (PEF-PbO2) was developed to achieve the reuse of bio-treated textile wastewater. The characterization of PEF-PbO2 confirmed that its coating has a variable pore size that increases with depth from the substrate, and the pores with a size of 5 μm account for the largest proportion. The study on the role of this unique structure illustrated that PEF-PbO2 possesses a larger electroactive area (4.09 times) than the conventional electrochemical PbO2 filter (EF-PbO2) and enhanced mass transfer (1.39 times) in flow mode. The investigation of operating parameters with a special discussion of electric energy consumption suggested that the optimal conditions were a current density of 3 mA cm-2, Na2SO4 concentration of 10 g L-1 and pH value of 3, which resulted in 99.07% and 53.3% removal of Rhodamine B and TOC, respectively, together with an MCETOC of 24.6%. A stable removal of 65.9% COD and 99.5% Rhodamine B with a low electric energy consumption of 5.19 kWh kg-1 COD under long-term reuse of bio-treated textile wastewater indicated that PEF-PbO2 was durable and energy-efficient in practical applications. Mechanism study by simulation calculation illustrated that the part of the pore of the PEF-PbO2's coating with small size (5 μm) plays an important role in this excellent performance which provides the advantage of rich ·OH concentration, short pollutant diffusion distance and high contact possibility.
Collapse
Affiliation(s)
- Yonghao Zhang
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, 224051, China; Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| | - Liankai Gu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Ying Zhang
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Jing Yang
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Qian Li
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Shuyan Yu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Congju Li
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Kajia Wei
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| |
Collapse
|
15
|
Miao F, Cui P, Yu S, Gu T. In situ fabrication of a 3D self-supported porous Ni-Mo-Cu catalyst for an efficient hydrogen evolution reaction. Dalton Trans 2023. [PMID: 37306025 DOI: 10.1039/d3dt00699a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
It is still a challenge to develop very effective and stable non-noble catalysts for the hydrogen evolution reaction (HER). Here, a self-supported porous Ni-Mo-Cu coating is prepared by the dynamic hydrogen bubble template (DHBT) method. This three-dimensional (3D) porous Ni-Mo-Cu coating can offer a large surface area, which helps expose more active sites and promote the transmission of electrons and materials. To achieve this, the 3D porous Ni-Mo-Cu coating catalyst requires a low overpotential value of 70 mV at 10 mA cm-2 in 1 M KOH and stable catalytic properties at a high current density of 500 mA cm-2 for more than 10 h with no obvious evidence of degradation. DFT calculations show the source of the excellent catalytic performance of the 3D porous Ni-Mo-Cu catalyst in alkaline media, including the kinetic energy and adsorption energy. This work provides significant insight into the design of efficient 3D porous materials.
Collapse
Affiliation(s)
- Fang Miao
- College of Materials Science and Engineering, North University of China, Taiyuan, 030051, China
| | - Peng Cui
- Jiangsu Key Laboratory of Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University, Nanjing, 211189, China.
| | - Shijie Yu
- Jiangsu Key Laboratory of Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University, Nanjing, 211189, China.
| | - Tao Gu
- College of Materials Science and Engineering, North University of China, Taiyuan, 030051, China
| |
Collapse
|
16
|
Jiang H, Sun Y, You B. Dynamic Electrodeposition on Bubbles: An Effective Strategy toward Porous Electrocatalysts for Green Hydrogen Cycling. Acc Chem Res 2023. [PMID: 37229761 DOI: 10.1021/acs.accounts.3c00059] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
ConspectusClosed-loop cycling of green hydrogen is a promising alternative to the current hydrocarbon economy for mitigating the energy crisis and environmental pollution. It stores energy from renewable energy sources like solar, wind, and hydropower into the chemical bond of dihydrogen (H2) via (photo)electrochemical water splitting, and then the stored energy can be released on demand through the reverse reactions in H2-O2 fuel cells. The sluggish kinetics of the involved half-reactions like hydrogen evolution reaction (HER), oxygen evolution reaction (OER), hydrogen oxidation reaction (HOR), and oxygen reduction reaction (ORR) limit its realization. Moreover, considering the local gas-liquid-solid triphase microenvironments during H2 generation and utilization, rapid mass transport and gas diffusion are critical as well. Accordingly, developing cost-effective and active electrocatalysts featuring three-dimensional hierarchically porous structures are highly desirable to promote the energy conversion efficiency. Traditionally, the synthetic approaches of porous materials include soft/hard templating, sol-gel, 3D printing, dealloying, and freeze-drying, which often need tedious procedures, high temperature, expensive equipment, and/or harsh physiochemical conditions. In contrast, dynamic electrodeposition on bubbles using the in situ formed bubbles as templates can be conducted at ambient conditions with an electrochemical workstation. Moreover, the whole preparation process can be finished within minutes/hours, and the resulting porous materials can be employed as catalytic electrodes directly, avoiding the use of polymeric binders like Nafion and the consequent issues like limited catalyst loading, reduced conductivity, and inhibited mass transport.In this Account, we summarize our contributions to the dynamic electrodeposition on bubbles toward advanced porous electrocatalysts for green hydrogen cycling. These dynamic electrosynthesis strategies include potentiodynamic electrodeposition that linearly scans the applied potentials, galvanostatic electrodeposition that fixes the applied currents, and electroshock which quickly switches the applied potentials. The resulting porous electrocatalysts range from transition metals to alloys, nitrides, sulfides, phosphides, and their hybrids. We mainly focus on the 3D porosity design of the electrocatalysts by tuning the electrosynthesis parameters to tailor the behaviors of bubble co-generation and thus the reaction interface. Then, their electrocatalytic applications for HER, OER, overall water splitting (OWS), biomass oxidation (to replace OER), and HOR are introduced, with a special emphasis on the porosity-promoted activity. Finally, the remaining challenges and future perspective are also discussed. We hope this Account will encourage more efforts into this attractive research field of dynamic electrodeposition on bubbles for various energy catalytic reactions like carbon dioxide/monoxide reduction, nitrate reduction, methane oxidation, chlorine evolution, and others.
Collapse
Affiliation(s)
- Hui Jiang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry, and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Yujie Sun
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, USA
| | - Bo You
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry, and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| |
Collapse
|
17
|
Wang H, Zhang L, Zhang W, Sun S, Yao S. Highly Efficient Spatial Three-Level CoP@ZIF-8/pNF Based on Modified Porous NF as Dual Functional Electrocatalyst for Water Splitting. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1386. [PMID: 37110971 PMCID: PMC10142043 DOI: 10.3390/nano13081386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/09/2023] [Accepted: 04/13/2023] [Indexed: 06/19/2023]
Abstract
The development of non-noble metal catalysts for water electrolysis to product hydrogen meets the current strategic need for carbon peaking and carbon neutrality. However, complex preparation methods, low catalytic activity and high energy consumption still limit the application of these materials. Herein, in this work we prepared a three-level structured electrocatalyst of CoP@ZIF-8 growing on modified porous nickel foam (pNF) via the natural growing and phosphating process. In contrast to the common NF, the modified NF constructs a large number of micron-sized pores carrying the nanoscaled catalytic CoP@ZIF-8 on the millimeter-sized skeleton of bare NF, which significantly increases the specific surface area and catalyst load of the material. Thanks to the unique spatial three-level porous structure, electrochemical tests showed a low overpotential of 77 mV at 10 mA cm-2 for HER, and 226 mV at 10 mA cm-2 and 331 mV at 50 mA cm-2 for OER. The result obtained from testing the electrode's overall water splitting performance is also satisfactory, needing only 1.57 V at 10 mA cm-2. Additionally, this electrocatalyst showed great stability for more than 55 h when a 10 mA cm-2 constant current was applied to it. Based on the above characteristics, the present work demonstrates the promising application of this material to the electrolysis of water for the production of hydrogen and oxygen.
Collapse
Affiliation(s)
- Hongzhi Wang
- Department of Applied Chemistry, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; (H.W.)
| | - Limin Zhang
- Department of Applied Chemistry, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; (H.W.)
| | - Weiguo Zhang
- Department of Applied Chemistry, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; (H.W.)
- Institute of Sport and Health, Tianjin University of Sport, Tianjin 301617, China
| | | | - Suwei Yao
- Department of Applied Chemistry, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; (H.W.)
| |
Collapse
|
18
|
Wu H, Singh-Morgan A, Qi K, Zeng Z, Mougel V, Voiry D. Electrocatalyst Microenvironment Engineering for Enhanced Product Selectivity in Carbon Dioxide and Nitrogen Reduction Reactions. ACS Catal 2023; 13:5375-5396. [PMID: 37123597 PMCID: PMC10127282 DOI: 10.1021/acscatal.3c00201] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/23/2023] [Indexed: 04/08/2023]
Abstract
Carbon and nitrogen fixation strategies are regarded as alternative routes to produce valuable chemicals used as energy carriers and fertilizers that are traditionally obtained from unsustainable and energy-intensive coal gasification (CO and CH4), Fischer-Tropsch (C2H4), and Haber-Bosch (NH3) processes. Recently, the electrocatalytic CO2 reduction reaction (CO2RR) and N2 reduction reaction (NRR) have received tremendous attention, with the merits of being both efficient strategies to store renewable electricity while providing alternative preparation routes to fossil-fuel-driven reactions. To date, the development of the CO2RR and NRR processes is primarily hindered by the competitive hydrogen evolution reaction (HER); however, the corresponding strategies for inhibiting this undesired side reaction are still quite limited. Considering such complex reactions involve three gas-liquid-solid phases and successive proton-coupled electron transfers, it appears meaningful to review the current strategies for improving product selectivity in light of their respective reaction mechanisms, kinetics, and thermodynamics. By examining the developments and understanding in catalyst design, electrolyte engineering, and three-phase interface modulation, we discuss three key strategies for improving product selectivity for the CO2RR and NRR: (i) targeting molecularly defined active sites, (ii) increasing the local reactant concentration at the active sites, and (iii) stabilizing and confining product intermediates.
Collapse
Affiliation(s)
- Huali Wu
- Institut Européen des Membranes, IEM, UMR 5635, Université Montpellier, ENSCM, CNRS, Montpellier 34000, France
| | - Amrita Singh-Morgan
- Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich 8093, Switzerland
| | - Kun Qi
- Institut Européen des Membranes, IEM, UMR 5635, Université Montpellier, ENSCM, CNRS, Montpellier 34000, France
| | - Zhiyuan Zeng
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, P. R. China
| | - Victor Mougel
- Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich 8093, Switzerland
| | - Damien Voiry
- Institut Européen des Membranes, IEM, UMR 5635, Université Montpellier, ENSCM, CNRS, Montpellier 34000, France
| |
Collapse
|
19
|
Multi-scale morphology characterization of hierarchically porous silver foam electrodes for electrochemical CO 2 reduction. Commun Chem 2023; 6:50. [PMID: 36928610 PMCID: PMC10020469 DOI: 10.1038/s42004-023-00847-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 02/27/2023] [Indexed: 03/18/2023] Open
Abstract
Ag catalysts show high selectivities in the conversion of carbon dioxide to carbon monoxide during the electrochemical carbon dioxide reduction reaction (CO2RR). Indeed, highly catalytically active porous electrodes with increased surface area achieve faradaic conversion efficiencies close to 100%. To establish reliable structure-property relationships, the results of qualitative structural analysis need to be complemented by a more quantitative approach to assess the overall picture. In this paper, we present a combination of suitable methods to characterize foam electrodes, which were synthesised by the Dynamic Hydrogen Bubble Templation (DHBT) approach to be used for the CO2RR. Physicochemical and microscopic techniques in conjunction with electrochemical analyses provide insight into the structure of the carefully tailored electrodes. By elucidating the morphology, we were able to link the electrochemical deposition at higher current densities to a more homogenous and dense structure and hence, achieve a better performance in the conversion of CO2 to valuable products.
Collapse
|
20
|
Yan W, Xue S, Bin Xiang, Zhao X, Zhang W, Mu P, Li J. Recent advances of slippery liquid-infused porous surfaces with anti-corrosion. Chem Commun (Camb) 2023; 59:2182-2198. [PMID: 36723187 DOI: 10.1039/d2cc06688b] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Metal materials are susceptible to the influence of environmental media, and chemical or electrochemical multiphase reactions occur on the metal surface, resulting in the corrosion of metal materials, which can directly damage the geometry and reduce the physical properties of metal materials. This corrosion damage can seriously affect the long-term use of metal materials in marine equipment and the aerospace industry, and other fields. Inspired by the special microstructure and slippery properties of natural nepenthes intine, researchers have prepared slippery liquid-infused porous surfaces (SLIPS) with a stable continuous lubricant layer by injecting low-surface-energy lubricants into a substrate with a micro/nano-porous structure. This surface has excellent hydrophobicity, low friction, non-adhesiveness, and self-healing properties. The broad application prospects of SLIPS in the fields of anti-corrosion, anti-icing, anti-bacteria, and anti-fouling have made it a hot research topic directing the study of biomimetic materials at present. However, SLIPS are susceptible to environmental shear forces, such as ocean flow or extraneous fluids, resulting in destruction of the porous structure and loss of surface lubricant, thereby depriving SLIPS of the ability to protect metals from corrosion. Therefore, it is important for metal corrosion protection to find ways to improve the stability and extend the service life of SLIPS. Over the last several years, research into and development of SLIPS have come a long way. Herein, a summary of available reports on SLIPS is given in terms of design principles and their performance characteristics, the construction of rough/porous substrate structures, the choice of low-surface-energy modifiers and lubricants, and lubricant infusion methods. Ways of constructing different substrate structures and the characteristics, advantages, and disadvantages of choosing various modifiers and lubricants to prepare the surface are compared. Finally, a comprehensive summary and outlook of SLIPS with anti-corrosion properties are provided. We are convinced that a comprehensive review of SLIPS will provide important guidance and strong reference for the design and preparation of green and economical SLIPS with anti-corrosion capabilities in the future.
Collapse
Affiliation(s)
- Wenhao Yan
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China.
| | - Shuaiya Xue
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China.
| | - Bin Xiang
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China.
| | - Xuerui Zhao
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China.
| | - Wei Zhang
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China.
| | - Peng Mu
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China.
| | - Jian Li
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China.
| |
Collapse
|
21
|
Yu X, Ren X, Yuan Z, Hou X, Yang T, Wang M. Ni 3 S 2 -Ni Hybrid Nanospheres with Intra-Core Void Structure Encapsulated in N-Doped Carbon Shells for Efficient and Stable K-ion Storage. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205556. [PMID: 36587976 PMCID: PMC9929274 DOI: 10.1002/advs.202205556] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Iron group metals chalcogenides, especially NiS, are promising candidates for K-ion battery anodes due to their high theoretical specific capacity and abundant reserves. However, the practical application of NiS-based anodes is hindered by slow electrochemical kinetics and unstable structure. Herein, a novel structure of Ni3 S2 -Ni hybrid nanosphere with intra-core voids encapsulated by N-doped carbon shells (Ni3 S2 -Ni@NC-AE) is constructed, based on the first electrodeposited NiS nanosphere particles, dopamine coating outer layer, oxygen-free annealing treatment to form Ni3 S2 -Ni core and N-doped carbon shell, and selective etching of the Ni phase to form intra-core void. The electron/K+ transport and K+ storage reaction kinetics are enhanced due to shortened diffusion pathways, increased active sites, generation of built-in electric field, high K+ adsorption energies, and large electronic density of states at Fermi energy level, resulting from the multi-structures synergistic effect of Ni3 S2 -Ni@NC-AE. Simultaneously, the volume expansion is alleviated due to the sufficient buffer space and strong chemical bonding provided by intra-core void and yolk-shell structure. Consequently, the Ni3 S2 -Ni@NC-AE exhibits excellent specific capacity (438 mAh g-1 at 0.1 A g-1 up to 150 cycles), outstanding rate performances, and ultra-stable long-cycle performance (176.4 mAh g-1 at 1 A g-1 up to 5000 cycles) for K-ion storage.
Collapse
Affiliation(s)
- Xiangtao Yu
- Collaborative Innovation Center of Steel TechnologyUniversity of Science and Technology BeijingBeijing100083P. R. China
| | - Xiangyu Ren
- Collaborative Innovation Center of Steel TechnologyUniversity of Science and Technology BeijingBeijing100083P. R. China
| | - Zhangfu Yuan
- Collaborative Innovation Center of Steel TechnologyUniversity of Science and Technology BeijingBeijing100083P. R. China
| | - Xinmei Hou
- Collaborative Innovation Center of Steel TechnologyUniversity of Science and Technology BeijingBeijing100083P. R. China
| | - Tao Yang
- Collaborative Innovation Center of Steel TechnologyUniversity of Science and Technology BeijingBeijing100083P. R. China
| | - Mingyong Wang
- State Key Laboratory of Advanced MetallurgyUniversity of Science and Technology BeijingBeijing100083P. R. China
| |
Collapse
|
22
|
Abdelrahim AM, Abd El-Moghny MG, El-Shakre ME, El-Deab MS. Promoted glucose electrooxidation at Ni(OH) 2/graphene layers exfoliated facilely from carbon waste material. RSC Adv 2023; 13:1811-1822. [PMID: 36712643 PMCID: PMC9830938 DOI: 10.1039/d2ra07309a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/02/2023] [Indexed: 01/12/2023] Open
Abstract
Nowadays, the glucose electro-oxidation reaction (GOR) is considered one of the most important solutions for environmental pollution. The GOR is the anodic reaction in direct glucose fuel cells and hybrid water electrolysis. In this study, the GOR is boosted using a carbon support modified with Ni(OH)2 as a non-precious catalyst. The carbon support, with in situ generated graphene nanosheets having a large surface area, grooves, and surface functional groups, is prepared via a simple electrochemical treatment of the carbon rods of an exhausted zinc-carbon battery. Ni(OH)2 is electrodeposited on the surface of the functionalized exfoliated graphite rod (FEGR) via the dynamic hydrogen bubbling technique (DHBT) and tested for GOR. The thus-prepared Ni(OH)2/FEGR electrode is characterized by SEM, mapping EDX, HR-TEM, XRD, and XPS characterization tools. Ni(OH)2/FEGR displays an onset potential of 1.23 V vs. the reversible hydrogen electrode (RHE) and attains high current densities at lower potentials. Additionally, Ni(OH)2/FEGR showed prolonged stability toward GOR by supporting a constant current over a long electrolysis time. The enhanced catalytic performance is attributed to the superb ionic and electronic conductivity of the catalyst. Importantly, ionic conductivity increased, due to (i) a large surface area of in situ generated graphene layers, (ii) enhanced distribution of active material during deposition using DHBT, and (iii) increased hydrophilicity of the underlying substrate. Therefore, the Ni(OH)2/FEGR electrode can be used efficiently for GOR as a low-cost catalyst, achieving low onset potential and high current densities at low potentials.
Collapse
Affiliation(s)
- Ahmed M Abdelrahim
- Department of Chemistry, Faculty of Science, Cairo University Cairo Egypt
| | | | | | - Mohamed S El-Deab
- Department of Chemistry, Faculty of Science, Cairo University Cairo Egypt
| |
Collapse
|
23
|
Kumar A, Bettinger MF, Vibhu V, Bouvet M, Meunier-Prest R. Correlation of hierarchical porosity in nanoporous gold with the mass transport of electron transfer-coupled-chemical reactions. J Electroanal Chem (Lausanne) 2023. [DOI: 10.1016/j.jelechem.2023.117186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
24
|
3D-C-Fe4N@NiCu/Metallic Macroporous Frameworks for Binder-free Compact Hybrid Supercapacitors with High Areal Capacities. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
25
|
Characterization of electrodeposited porous structured composite layers and their unconventional wettability properties. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
26
|
Baibars IO, Abd El-Moghny MG, El-Deab MS. NiFeOxHy/Ni3Fe interface design via electropassivation for superior catalysis of HER. JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING 2022; 10:108736. [DOI: 10.1016/j.jece.2022.108736] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
27
|
Arshad F, Tahir A, Haq TU, Munir A, Hussain I, Sher F. Bubbles Templated Interconnected Porous Metallic Materials: Synthesis, Surface Modification, and their Electrocatalytic Applications for Water Splitting and Alcohols Oxidation. ChemistrySelect 2022. [DOI: 10.1002/slct.202202774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Farhan Arshad
- Department of Chemistry & Chemical Engineering Syed Babar Ali School of Science & Engineering Lahore University of Management Sciences (LUMS) DHA Lahore 54792 Pakistan
| | - Aleena Tahir
- Department of Chemistry & Chemical Engineering Syed Babar Ali School of Science & Engineering Lahore University of Management Sciences (LUMS) DHA Lahore 54792 Pakistan
| | - Tanveer Ul Haq
- Department of Chemistry College of Sciences University of Sharjah P.O. Box 27272 Sharjah, UAE
| | - Akhtar Munir
- Department of Chemistry University of Sialkot Sialkot 51040 Pakistan
| | - Irshad Hussain
- Department of Chemistry & Chemical Engineering Syed Babar Ali School of Science & Engineering Lahore University of Management Sciences (LUMS) DHA Lahore 54792 Pakistan
| | - Falak Sher
- Department of Chemistry & Chemical Engineering Syed Babar Ali School of Science & Engineering Lahore University of Management Sciences (LUMS) DHA Lahore 54792 Pakistan
| |
Collapse
|
28
|
George A, Kundu M. Construction of self-supported hierarchical CuCo2O4 dendrites as faradaic electrode material for redox-based supercapacitor applications. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
29
|
Li S, Zhou Y, Li K, Saccoccio M, Sažinas R, Andersen SZ, Pedersen JB, Fu X, Shadravan V, Chakraborty D, Kibsgaard J, Vesborg PC, Nørskov JK, Chorkendorff I. Electrosynthesis of ammonia with high selectivity and high rates via engineering of the solid-electrolyte interphase. JOULE 2022; 6:2083-2101. [PMID: 36188748 PMCID: PMC9511958 DOI: 10.1016/j.joule.2022.07.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/28/2022] [Accepted: 07/21/2022] [Indexed: 05/31/2023]
Abstract
Ammonia is a large-scale commodity essential to fertilizer production, but the Haber-Bosch process leads to massive emissions of carbon dioxide. Electrochemical ammonia synthesis is an attractive alternative pathway, but the process is still limited by low ammonia production rate and faradaic efficiency. Herein, guided by our theoretical model, we present a highly efficient lithium-mediated process enabled by using different lithium salts, leading to the formation of a uniform solid-electrolyte interphase (SEI) layer on a porous copper electrode. The uniform lithium-fluoride-enriched SEI layer provides an ammonia production rate of 2.5 ± 0.1 μmol s-1 cmgeo -2 at a current density of -1 A cmgeo -2 with 71% ± 3% faradaic efficiency under 20 bar nitrogen. Experimental X-ray analysis reveals that the lithium tetrafluoroborate electrolyte induces the formation of a compact and uniform SEI layer, which facilitates homogeneous lithium plating, suppresses the undesired hydrogen evolution as well as electrolyte decomposition, and enhances the nitrogen reduction.
Collapse
Affiliation(s)
- Shaofeng Li
- Department of Physics, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Yuanyuan Zhou
- Department of Physics, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Katja Li
- Department of Physics, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Mattia Saccoccio
- Department of Physics, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Rokas Sažinas
- Department of Physics, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Suzanne Z. Andersen
- Department of Physics, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Jakob B. Pedersen
- Department of Physics, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Xianbiao Fu
- Department of Physics, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Vahid Shadravan
- Department of Physics, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | - Jakob Kibsgaard
- Department of Physics, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Peter C.K. Vesborg
- Department of Physics, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Jens K. Nørskov
- Department of Physics, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Ib Chorkendorff
- Department of Physics, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
30
|
Márquez RA, Kawashima K, Son YJ, Rose R, Smith LA, Miller N, Carrasco Jaim OA, Celio H, Mullins CB. Tailoring 3D-Printed Electrodes for Enhanced Water Splitting. ACS APPLIED MATERIALS & INTERFACES 2022; 14:42153-42170. [PMID: 36084243 DOI: 10.1021/acsami.2c12579] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Alkaline water electrolysis, a promising technology for clean energy storage, is constrained by extrinsic factors in addition to intrinsic electrocatalytic activity. To begin to compare between catalytic materials for electrolysis applications, these extrinsic factors must first be understood and controlled. Here, we modify extrinsic electrode properties and study the effects of bubble release to examine how the electrode and surface design impact the performance of water electrolysis. We fabricate robust and cost-effective electrodes through a sequential three-dimensional (3D) printing and metal deposition procedure. Through a systematic assessment of the deposition procedure, we confirm the close relationship between extrinsic electrode properties (i.e., wettability, surface roughness, and electrochemically active surface area) and electrochemical performance. Modifying the electrode geometry, size, and electrolyte flow rate results in an overpotential decrease and different bubble diameters and lifetimes for the hydrogen (HER) and oxygen evolution reactions (OER). Hence, we demonstrate the essential role of the electrode architecture and forced electrolyte convection on bubble release. Additionally, we confirm the suitability of ordered, Ni-coated 3D porous structures by evaluating the HER/OER performance, bubble dissipation, and long-term stability. Finally, we utilize the 3D porous electrode as a support for studying a benchmark NiFe electrocatalyst, confirming the robustness and effectiveness of 3D-printed electrodes for testing electrocatalytic materials while extrinsic properties are precisely controlled. Overall, we demonstrate that tailoring electrode architectures and surface properties result in precise tuning of extrinsic electrode properties, providing more reproducible and comparable conditions for testing the efficiency of electrode materials for water electrolysis.
Collapse
Affiliation(s)
- Raúl A Márquez
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Kenta Kawashima
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Yoon Jun Son
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Roger Rose
- Texas Inventionworks, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Lettie A Smith
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Nathaniel Miller
- Department of Geosciences, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Omar Ali Carrasco Jaim
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Hugo Celio
- Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| | - C Buddie Mullins
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
- Center for Electrochemistry, The University of Texas at Austin, Austin, Texas 78712, United States
- H2@UT, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
31
|
Choudhury SH, Vignaud G, Dubreuil P, Assresahegn BD, Guay D, Pech D. Conformal atomic layer deposition of RuO xon highly porous current collectors for micro-supercapacitor applications. NANOTECHNOLOGY 2022; 33:495404. [PMID: 36063805 DOI: 10.1088/1361-6528/ac8f50] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/04/2022] [Indexed: 06/15/2023]
Abstract
3D porous electrodes have been considered as a new paradigm shift for increasing the energy storage of pseudocapacitive micro-supercapacitors for on-chip electronics. However, the conformal deposition of active materials is still challenging when highly porous structures are involved. In this work, we have investigated the atomic layer deposition (ALD) of ruthenium dioxide RuO2on porous Au and Pt architectures prepared by hydrogen bubble templated electrodeposition, with area enlargement factors ranging from 400 to 10 000 cm2/cm2. Using proper ALD conditions, a uniform RuO2coverage has been successfully obtained on porous Au, with a specific electrode capacitance of 8.1 mF cm-2and a specific power of 160 mW cm-2for a minute amount of active material. This study also shows the importance of the chemical composition and reactivity of the porous substrate for achieving conformal deposition of a ruthenium oxide layer.
Collapse
Affiliation(s)
- Sakeb Hasan Choudhury
- LAAS-CNRS, Université de Toulouse, CNRS, 7 avenue du colonel Roche, F-31400 Toulouse, France
| | - Guillaume Vignaud
- Institut de Recherche Dupuy de Lôme (IRDL), UMR CNRS 6027, Université Bretagne Sud, Rue St Maudé, F-56100 Lorient, France
| | - Pascal Dubreuil
- LAAS-CNRS, Université de Toulouse, CNRS, 7 avenue du colonel Roche, F-31400 Toulouse, France
| | - Birhanu Desalegn Assresahegn
- INRS-Énergie, Matériaux et Télécommunications, 1650 Boulevard Lionel Boulet, Varennes, C.P. 1020, Québec J3X 1P7, Canada
| | - Daniel Guay
- INRS-Énergie, Matériaux et Télécommunications, 1650 Boulevard Lionel Boulet, Varennes, C.P. 1020, Québec J3X 1P7, Canada
| | - David Pech
- LAAS-CNRS, Université de Toulouse, CNRS, 7 avenue du colonel Roche, F-31400 Toulouse, France
| |
Collapse
|
32
|
Preparation of NiCuGO composite and investigation of its electrocatalytic properties in methanol oxidation. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
33
|
Kang KN, Kim SI, Yoon JC, Kim J, Cahoon C, Jang JH. Bi-functional 3D-NiCu-Double Hydroxide@Partially Etched 3D-NiCu Catalysts for Non-Enzymatic Glucose Detection and the Hydrogen Evolution Reaction. ACS APPLIED MATERIALS & INTERFACES 2022; 14:33013-33023. [PMID: 35839325 DOI: 10.1021/acsami.2c04471] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Hydrogen production, which is in the spotlight as a promising eco-friendly fuel, and the need for inexpensive and accurate electronic devices in the biochemistry field are important emerging technologies. However, the use of electrocatalytic devices based on expensive noble metal catalysts limits commercial applications. In recent years, to improve performance and reduce cost, electrocatalysts based on cheaper copper or nickel materials have been investigated for the non-enzymatic glucose oxidation reaction (GOR) and hydrogen evolution reaction (HER). In this study, we demonstrate a facile and easy electrochemical method of forming a cheap nickel copper double hydroxide (NiCu-DH) electrocatalyst deposited onto a three-dimensional (3D) CuNi current collector, which can effectively handle two different reactions due to its high activity for both the GOR and the HER. The as-prepared electrode has a structure comprising abundant 3D-interconnected porous dendritic walls for easy access of the electrolyte ions and highly conductive networks for fast electron transfer; additionally, it provides numerous electroactive sites. The synergistic combination of the dendritic 3D-CuNi with its abundant active sites and the self-made NiCu-DH with its excellent electrocatalytic activity toward the oxidation of glucose and HER enables use of the catalyst for both reactions. The as-prepared electrode as a glucose sensor exhibits an outstanding glucose detection limit value (0.4 μM) and a wide detection range (from 0.4 μM to 1.4 mM) with an excellent sensitivity of 1452.5 μA/cm2/mM. The electrode is independent of the oxygen content and free from chloride poisoning. Furthermore, the as-prepared electrode also requires a low overpotential of -180 mV versus reversible hydrogen electrode to yield a current density of 10 mA/cm2 with a Tafel slope of 73 mV/dec for the HER. Based on this performance, this work introduces a new paradigm for exploring cost-effective bi-functional catalysts for the GOR and HER.
Collapse
Affiliation(s)
- Kyeong-Nam Kang
- School of Energy and Chemical Engineering, Department of Energy Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Sun-I Kim
- Green Materials & Processes Group, Korea Institute of Industrial Technology, Ulsan 44413, Republic of Korea
| | - Jong-Chul Yoon
- School of Energy and Chemical Engineering, Department of Energy Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jinho Kim
- School of Energy and Chemical Engineering, Department of Energy Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Collin Cahoon
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Ji-Hyun Jang
- School of Energy and Chemical Engineering, Department of Energy Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| |
Collapse
|
34
|
Electrochemical Biosensor Based on Chitosan- and Thioctic-Acid-Modified Nanoporous Gold Co-Immobilization Enzyme for Glycerol Determination. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10070258] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
An electrochemical biosensor based on chitosan- and thioctic-acid-modified nanoporous gold (NPG) co-immobilization glycerol kinase (GK) and glycerol-3-phosphate oxidase (GPO) was constructed for glycerol determination in wine. The NPG, with the properties of porous microstructure, large specific surface area, and high conductivity, was beneficial for protecting the enzyme from inactivation and denaturation and enhancing electron transfer in the modified electrode. The co-immobilization of the enzyme by chitosan-embedding and thioctic-acid-modified NPG covalent bonding was beneficial for improving the catalytic performance and stability of the enzyme-modified electrode. Ferrocene methanol (Fm) was used as a redox mediator to accelerate the electron transfer rate of the enzyme-modified electrode. The fabricated biosensor exhibited a wide determination range of 0.1–5 mM, low determination limit of 77.08 μM, and high sensitivity of 9.17 μA mM−1. Furthermore, it possessed good selectivity, repeatability, and stability, and could be used for the determination of glycerol in real wine samples. This work provides a simple and novel method for the construction of biosensors, which may be helpful to the application of enzymatic biosensors in different determination scenarios.
Collapse
|
35
|
Jovanović AZ, Bijelić L, Dobrota AS, Skorodumova NV, Mentus SV, Pašti IA. Enhancement of hydrogen evolution reaction kinetics in alkaline media by fast galvanic displacement of nickel with rhodium – From smooth surfaces to electrodeposited nickel foams. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
36
|
Baibars IO, Abd El-Moghny MG, El-Deab MS. Boosted electrolytic hydrogen production at tailor-tuned nano-dendritic Ni-doped Co foam-like catalyst. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.139992] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
37
|
Electrochemical synthesis of catalytic materials for energy catalysis. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)63940-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
38
|
Parada WA, Vasilyev DV, Mayrhofer KJJ, Katsounaros I. CO 2 Electroreduction on Silver Foams Modified by Ionic Liquids with Different Cation Side Chain Length. ACS APPLIED MATERIALS & INTERFACES 2022; 14:14193-14201. [PMID: 35302346 DOI: 10.1021/acsami.1c24386] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Ionic liquids (ILs) are capable of tuning the kinetics of electroreduction processes by modifying a catalyst interface. In this work, a group of hydrophobic imidazolium-based ILs were immobilized on Ag foams by using a procedure known as "solid catalyst with ionic liquid layer" (SCILL). The derived electrocatalysts demonstrated altered selectivity and CO production rates for the electrochemical reduction of CO2 compared to the unmodified Ag foam. The activity change caused by the IL was dependent on the length of the N-alkyl substituent. The rate of CO production is optimized at moderate chain length and IL loadings. The observed trends are attributed to a local enrichment of CO2-based species in the proximity of the catalyst and a modification of the environment of its active sites. On the contrary, high loadings or long IL chains render the surface inaccessible and favor the hydrogen evolution reaction.
Collapse
Affiliation(s)
- Walter A Parada
- Helmholtz-Institut Erlangen-Nürnberg for Renewable Energy, Forschungszentrum Jülich GmbH, Cauerstr. 1, 91058 Erlangen, Germany
- Department of Chemical and Biological Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058 Erlangen, Germany
| | - Dmitry V Vasilyev
- Helmholtz-Institut Erlangen-Nürnberg for Renewable Energy, Forschungszentrum Jülich GmbH, Cauerstr. 1, 91058 Erlangen, Germany
| | - Karl J J Mayrhofer
- Helmholtz-Institut Erlangen-Nürnberg for Renewable Energy, Forschungszentrum Jülich GmbH, Cauerstr. 1, 91058 Erlangen, Germany
- Department of Chemical and Biological Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058 Erlangen, Germany
| | - Ioannis Katsounaros
- Helmholtz-Institut Erlangen-Nürnberg for Renewable Energy, Forschungszentrum Jülich GmbH, Cauerstr. 1, 91058 Erlangen, Germany
| |
Collapse
|
39
|
Othman A, Bilan HK, Katz E, Smutok O. Highly Porous Gold Electrodes – Preparation and Characterization. ChemElectroChem 2022. [DOI: 10.1002/celc.202200099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Ali Othman
- Clarkson University Department of Chemistry and Biomolecular Science 13699 Potsdam UNITED STATES
| | - Hubert K. Bilan
- Clarkson University Department of Chemistry and Biomolecular Science 13699 Potsdam UNITED STATES
| | - Evgeny Katz
- Clarkson University Chemistry Department 8 Clarkson Avenue 13699-5810 Potsdam UNITED STATES
| | - Oleh Smutok
- Clarkson University Department of Chemistry and Biomolecule Science 13699 Potsdam UNITED STATES
| |
Collapse
|
40
|
INOUE G, ABE S, GAO R, PARK K, SO M, MATSUKUMA Y, KIMURA N, TSUGE Y. Design of porous metal collector via bubble template-assisted electrochemical deposition using numerical simulation. CHEMICAL ENGINEERING JOURNAL ADVANCES 2022. [DOI: 10.1016/j.ceja.2022.100266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
41
|
Lee SA, Yang JW, Choi S, Jang HW. Nanoscale electrodeposition: Dimension control and 3D conformality. EXPLORATION (BEIJING, CHINA) 2021; 1:20210012. [PMID: 37323687 PMCID: PMC10191033 DOI: 10.1002/exp.20210012] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 09/23/2021] [Indexed: 06/15/2023]
Abstract
Electrodeposition with a long history has been considered one of the important synthesis techniques for applying various applications. It is a feasible route for fabricating nanostructures using diverse materials due to its simplicity, cost-effectiveness, flexibility, and ease of reaction control. Herein, we mainly focus on the nanoscale electrodeposition with respect to dimension control and three-dimensional (3D) conformality. The principles of electrodeposition, dimensional design of materials, and uniform coatings on various substrates are presented. We introduce that manipulating synthesis parameters such as precursors, applied current/voltage, and additives affect the synthesis reaction, resulting in not only dimensional control of materials from three-dimensional structures to zero-dimensional atomic-level but also conformal coatings on complicated substrates. Various cases regarding morphology control of metal (hydro)oxides, metals, and metal-organic frameworks according to electrodeposition conditions are summarized. Lastly, recent studies of applications such as batteries, photoelectrodes, and electrocatalysts using electrodeposited materials are summarized. This review represents significant advances in the nanoscale design of materials through methodological approaches, which are highly attractive from both academic and commercial aspects.
Collapse
Affiliation(s)
- Sol A Lee
- Department of Materials Science and Engineering, Research Institute of Advanced MaterialsSeoul National UniversitySeoul08826Republic of Korea
| | - Jin Wook Yang
- Department of Materials Science and Engineering, Research Institute of Advanced MaterialsSeoul National UniversitySeoul08826Republic of Korea
| | - Sungkyun Choi
- Department of Materials Science and Engineering, Research Institute of Advanced MaterialsSeoul National UniversitySeoul08826Republic of Korea
| | - Ho Won Jang
- Department of Materials Science and Engineering, Research Institute of Advanced MaterialsSeoul National UniversitySeoul08826Republic of Korea
- Advanced Institute of Convergence TechnologySeoul National UniversitySuwon16229Republic of Korea
| |
Collapse
|
42
|
Li S, Xu Z, Zhou L, Li D, Nan B, Dou X, Zhang J, Zeng J, Yu L. Porous CeO2/Ni-Cu composite catalyst for electrocatalytic hydrogen evolution in alkaline medium. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
43
|
Gold Nanoparticles/Carbon Nanotubes and Gold Nanoporous as Novel Electrochemical Platforms for L-Ascorbic Acid Detection: Comparative Performance and Application. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9080229] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Herein, the effects of nanostructured modifications of a gold electrode surface in the development of electrochemical sensors for L-ascorbic acid detection have been investigated. In particular, a bare gold electrode has been modified by electrodeposition of gold single-walled carbon nanotubes (Au/SWCNTs) and by the formation of a highly nanoporous gold (h-nPG) film. The procedure has been realized by sweeping the potential between +0.8 V and 0 V vs. Ag/AgCl for 25 scans in a suspension containing 5 mg/mL of SWCNTs in 10 mM HAuCl4 and 2.5 M NH4Cl solution for Au/SWCNTs modified gold electrode. A similar procedure was applied for a h-nPG electrode in a 10 mM HAuCl4 solution containing 2.5 M NH4Cl, followed by applying a fixed potential of −4 V vs. Ag/AgCl for 60 s. Cyclic voltammetry and electrochemical impedance spectroscopy were used to characterize the properties of the modified electrodes. The developed sensors showed strong electrocatalytic activity towards ascorbic acid oxidation with enhanced sensitivities of 1.7 × 10−2 μA μM−1cm−2 and 2.5 × 10−2 μA μM−1cm−2 for Au/SWCNTs and h-nPG modified electrode, respectively, compared to bare gold electrode (1.0 × 10−2 μA μM−1cm−2). The detection limits were estimated to be 3.1 and 1.8 μM, respectively. The h-nPG electrode was successfully used to determine ascorbic acid in human urine with no significant interference and with satisfactory recovery levels.
Collapse
|
44
|
Rahaman M, Kiran K, Zelocualtecatl Montiel I, Dutta A, Broekmann P. Suppression of the Hydrogen Evolution Reaction Is the Key: Selective Electrosynthesis of Formate from CO 2 over Porous In 55Cu 45 Catalysts. ACS APPLIED MATERIALS & INTERFACES 2021; 13:35677-35688. [PMID: 34288647 DOI: 10.1021/acsami.1c07829] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Direct electrosynthesis of formate through CO2 electroreduction (denoted CO2RR) is currently attracting great attention because formate is a highly valuable commodity chemical that is already used in a wide range of applications (e.g., formic acid fuel cells, tanning, rubber production, preservatives, and antibacterial agents). Herein, we demonstrate highly selective production of formate through CO2RR from a CO2-saturated aqueous bicarbonate solution using a porous In55Cu45 alloy as the electrocatalyst. This novel high-surface-area material was produced by means of an electrodeposition process utilizing the dynamic hydrogen bubble template approach. Faradaic efficiencies (FEs) of formate production (FEformate) never fell below 90% within a relatively broad potential window of approximately 400 mV, ranging from -0.8 to -1.2 V vs the reversible hydrogen electrode (RHE). A maximum FEformate of 96.8%, corresponding to a partial current density of jformate = -8.9 mA cm-2, was yielded at -1.0 V vs RHE. The experimental findings suggested a CO2RR mechanism involving stabilization of the HCOO* intermediate on the In55Cu45 alloy surface in combination with effective suppression of the parasitic hydrogen evolution reaction. What makes this CO2RR alloy catalyst particularly valuable is its stability against degradation and chemical poisoning. An almost constant formate efficiency of ∼94% was maintained in an extended 30 h electrolysis experiment, whereas pure In film catalysts (the reference benchmark system) showed a pronounced decrease in formate efficiency from 82% to 50% under similar experimental conditions. The identical location scanning electron microscopy approach was applied to demonstrate the structural stability of the applied In55Cu45 alloy foam catalysts at various length scales. We demonstrate that the proposed catalyst concept could be transferred to technically relevant support materials (e.g., carbon cloth gas diffusion electrode) without altering its excellent figures of merit.
Collapse
Affiliation(s)
- Motiar Rahaman
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, Bern 3012, Switzerland
| | - Kiran Kiran
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, Bern 3012, Switzerland
| | - Ivan Zelocualtecatl Montiel
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, Bern 3012, Switzerland
| | - Abhijit Dutta
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, Bern 3012, Switzerland
| | - Peter Broekmann
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, Bern 3012, Switzerland
| |
Collapse
|
45
|
Electrochemical growth mechanism of nanoporous platinum layers. Commun Chem 2021; 4:98. [PMID: 36697537 PMCID: PMC9814644 DOI: 10.1038/s42004-021-00535-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 05/28/2021] [Indexed: 01/28/2023] Open
Abstract
Porous platinum is a frequently used catalyst material in electrosynthesis and a robust broadband absorber in thermoelectrics. Pore size distribution and localization determine its properties by a large extent. However, the pore formation mechanism during the growth of the material remains unclear. In this work we elucidate the mechanism underlying electrochemical growth of nanoporous platinum layers and its control by ionic concentration and current density during electrolysis. The electrode kinetics and reduction steps of PtCl4 on platinum electrodes are investigated by cyclic voltammetry and impedance measurements. Cyclic voltammograms show three reduction steps: two steps relate to the platinum cation reduction, and one step relates to the hydrogen reduction. Hydrogen is not involved in the reduction of PtCl4, however it enables the formation of nanopores in the layers. These findings contribute to the understanding of electrochemical growth of nanoporous platinum layers in isopropanol with thickness of 100 nm to 500 nm.
Collapse
|
46
|
Yu X, Yang J, Sui Z, Wang M. Effects of ultrasonic field on structure evolution of Ni film electrodeposited by bubble template method for hydrogen evolution electrocatalysis. J Solid State Electrochem 2021. [DOI: 10.1007/s10008-021-04980-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
47
|
Patnaik SG, Pech D. Low Temperature Deposition of Highly Cyclable Porous Prussian Blue Cathode for Lithium-Ion Microbattery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2101615. [PMID: 34028184 DOI: 10.1002/smll.202101615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/06/2021] [Indexed: 06/12/2023]
Abstract
Small dimension Li-ion microbatteries are of great interest for embedded microsystems and on-chip electronics. However, the deposition of fully crystallized cathode thin film generally requires high temperature synthesis or annealing, incompatible with microfabrication processes of integrated Si devices. In this work, a low temperature deposition process of a porous Prussian blue-based cathode on Si wafers is reported. The active material is electrodeposited under aqueous conditions using a pulsed deposition protocol on a porous dendritic metallic current collector that ensures good electronic conductivity of the composite. The high voltage cathodes exhibit a huge areal capacity of ≈650 μAh cm-2 and are able to withstand more than 2000 cycles at 0.25 mA cm-2 rate. The application of these electrode composites with porous Sn based alloying anodes is also demonstrated for the first time in full cell configuration, with high areal energy of 3.1 J cm-2 and more than 95% reversible capacity. This outstanding performance can be attributed to uniform deposition of Prussian blue materials on conductive matrix, which maintains electronic conductivity while simultaneously providing mechanical integrity to the electrode. This finding opens new horizons in the monolithic integration of energy storage components compatible with the semiconductor industry for self-powered microsystems.
Collapse
Affiliation(s)
- Sai Gourang Patnaik
- LAAS-CNRS, Université de Toulouse, CNRS, 7 avenue du colonel Roche, Toulouse, 31400, France
| | - David Pech
- LAAS-CNRS, Université de Toulouse, CNRS, 7 avenue du colonel Roche, Toulouse, 31400, France
| |
Collapse
|
48
|
Kumar A, Gonçalves JM, Furtado VL, Araki K, Angnes L, Bouvet M, Bertotti M, Meunier‐Prest R. Mass Transport in Nanoporous Gold and Correlation with Surface Pores for EC
1
Mechanism: Case of Ascorbic Acid. ChemElectroChem 2021. [DOI: 10.1002/celc.202100440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Abhishek Kumar
- Institut de Chimie Moléculaire de l'Université de Bourgogne UMR CNRS 6302 Université Bourgogne Franche-Comté 9 Avenue Alain Savary Dijon Cedex 21078 France
- Department of Fundamental Chemistry Institute of Chemistry University of São Paulo Av. Prof. Lineu Prestes, 748 05508-000 São Paulo, SP Brazil
| | - Josue M. Gonçalves
- Department of Fundamental Chemistry Institute of Chemistry University of São Paulo Av. Prof. Lineu Prestes, 748 05508-000 São Paulo, SP Brazil
| | - Vinicius L. Furtado
- Department of Fundamental Chemistry Institute of Chemistry University of São Paulo Av. Prof. Lineu Prestes, 748 05508-000 São Paulo, SP Brazil
| | - Koiti Araki
- Department of Fundamental Chemistry Institute of Chemistry University of São Paulo Av. Prof. Lineu Prestes, 748 05508-000 São Paulo, SP Brazil
| | - Lucio Angnes
- Department of Fundamental Chemistry Institute of Chemistry University of São Paulo Av. Prof. Lineu Prestes, 748 05508-000 São Paulo, SP Brazil
| | - Marcel Bouvet
- Institut de Chimie Moléculaire de l'Université de Bourgogne UMR CNRS 6302 Université Bourgogne Franche-Comté 9 Avenue Alain Savary Dijon Cedex 21078 France
| | - Mauro Bertotti
- Department of Fundamental Chemistry Institute of Chemistry University of São Paulo Av. Prof. Lineu Prestes, 748 05508-000 São Paulo, SP Brazil
| | - Rita Meunier‐Prest
- Institut de Chimie Moléculaire de l'Université de Bourgogne UMR CNRS 6302 Université Bourgogne Franche-Comté 9 Avenue Alain Savary Dijon Cedex 21078 France
| |
Collapse
|
49
|
Linnemann J, Kanokkanchana K, Tschulik K. Design Strategies for Electrocatalysts from an Electrochemist’s Perspective. ACS Catal 2021. [DOI: 10.1021/acscatal.0c04118] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Julia Linnemann
- Faculty of Chemistry and Biochemistry, Analytical Chemistry II, Ruhr University Bochum, Universitätsstr. 150, ZEMOS, 44801 Bochum, Germany
| | - Kannasoot Kanokkanchana
- Faculty of Chemistry and Biochemistry, Analytical Chemistry II, Ruhr University Bochum, Universitätsstr. 150, ZEMOS, 44801 Bochum, Germany
| | - Kristina Tschulik
- Faculty of Chemistry and Biochemistry, Analytical Chemistry II, Ruhr University Bochum, Universitätsstr. 150, ZEMOS, 44801 Bochum, Germany
| |
Collapse
|
50
|
Dutta A, Zelocualtecatl Montiel I, Kiran K, Rieder A, Grozovski V, Gut L, Broekmann P. A Tandem (Bi2O3 → Bimet) Catalyst for Highly Efficient ec-CO2 Conversion into Formate: Operando Raman Spectroscopic Evidence for a Reaction Pathway Change. ACS Catal 2021. [DOI: 10.1021/acscatal.0c05317] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Abhijit Dutta
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, Bern 3012 Switzerland
| | | | - Kiran Kiran
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, Bern 3012 Switzerland
| | - Alain Rieder
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, Bern 3012 Switzerland
| | - Vitali Grozovski
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, Bern 3012 Switzerland
| | - Lukas Gut
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, Bern 3012 Switzerland
| | - Peter Broekmann
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, Bern 3012 Switzerland
| |
Collapse
|