1
|
Huang J, Xie X, Zheng W, Xu L, Yan J, Wu Y, Yang M, Yan Y. In silico design of multipoint mutants for enhanced performance of Thermomyces lanuginosus lipase for efficient biodiesel production. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:33. [PMID: 38402206 PMCID: PMC10894483 DOI: 10.1186/s13068-024-02478-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 02/15/2024] [Indexed: 02/26/2024]
Abstract
BACKGROUND Biodiesel, an emerging sustainable and renewable clean energy, has garnered considerable attention as an alternative to fossil fuels. Although lipases are promising catalysts for biodiesel production, their efficiency in industrial-scale application still requires improvement. RESULTS In this study, a novel strategy for multi-site mutagenesis in the binding pocket was developed via FuncLib (for mutant enzyme design) and Rosetta Cartesian_ddg (for free energy calculation) to improve the reaction rate and yield of lipase-catalyzed biodiesel production. Thermomyces lanuginosus lipase (TLL) with high activity and thermostability was obtained using the Pichia pastoris expression system. The specific activities of the mutants M11 and M21 (each with 5 and 4 mutations) were 1.50- and 3.10-fold higher, respectively, than those of the wild-type (wt-TLL). Their corresponding melting temperature profiles increased by 10.53 and 6.01 °C, [Formula: see text] (the temperature at which the activity is reduced to 50% after 15 min incubation) increased from 60.88 to 68.46 °C and 66.30 °C, and the optimum temperatures shifted from 45 to 50 °C. After incubation in 60% methanol for 1 h, the mutants M11 and M21 retained more than 60% activity, and 45% higher activity than that of wt-TLL. Molecular dynamics simulations indicated that the increase in thermostability could be explained by reduced atomic fluctuation, and the improved catalytic properties were attributed to a reduced binding free energy and newly formed hydrophobic interaction. Yields of biodiesel production catalyzed by mutants M11 and M21 for 48 h at an elevated temperature (50 °C) were 94.03% and 98.56%, respectively, markedly higher than that of the wt-TLL (88.56%) at its optimal temperature (45 °C) by transesterification of soybean oil. CONCLUSIONS An integrating strategy was first adopted to realize the co-evolution of catalytic efficiency and thermostability of lipase. Two promising mutants M11 and M21 with excellent properties exhibited great potential for practical applications for in biodiesel production.
Collapse
Affiliation(s)
- Jinsha Huang
- Key Laboratory of Molecular Biophysics, Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Xiaoman Xie
- Key Laboratory of Molecular Biophysics, Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Wanlin Zheng
- Key Laboratory of Molecular Biophysics, Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Li Xu
- Key Laboratory of Molecular Biophysics, Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, People's Republic of China.
| | - Jinyong Yan
- Key Laboratory of Molecular Biophysics, Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Ying Wu
- Key Laboratory of Molecular Biophysics, Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Min Yang
- Key Laboratory of Molecular Biophysics, Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Yunjun Yan
- Key Laboratory of Molecular Biophysics, Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, People's Republic of China.
| |
Collapse
|
2
|
Zhang Y, Gao Y, Chen J, Yu F, Bao Y. Overexpression and truncation of a novel cold-adapted lipase with improved enzymatic characteristics. Protein Expr Purif 2024; 214:106376. [PMID: 37839629 DOI: 10.1016/j.pep.2023.106376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 09/18/2023] [Accepted: 09/24/2023] [Indexed: 10/17/2023]
Abstract
The novel cold-adapted lipase (Lip ZC12) derived from Psychrobacter sp. ZY124 exhibited higher catalytic activity at 20-40 °C, the whole gene was then sequenced, analyzed, and overexpressed. However, its intrinsic structural characteristics lead to a decreased affinity toward the substrate, thus limiting the improvement of catalytic efficiency. Modeling the homologous structure and simulating the binding process of Lip ZC12 with the substrate. It was found that truncated lid (lip-Δlid) could not only increase the kcat, but also significantly enhance the substrate affinity, the substrate affinity and catalytic efficiency of Lip ZC12 modified by lid truncation were significantly improved. The results revealed that the kcat/Km value of lip-Δlid was 1.6 times higher than that of free lipase. This improved catalytic performance of cold-adapted lipase, and these findings laid an important foundation for further application.
Collapse
Affiliation(s)
- Yue Zhang
- School of Biological Engineering, Dalian Polytechnic University, Dalian, 116034, China.
| | - Yu Gao
- School of Biological Engineering, Dalian Polytechnic University, Dalian, 116034, China
| | - Jiahui Chen
- School of Biological Engineering, Dalian Polytechnic University, Dalian, 116034, China
| | - Fang Yu
- School of Biological Engineering, Dalian Polytechnic University, Dalian, 116034, China
| | - Yongming Bao
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China.
| |
Collapse
|
3
|
Fernandez-Lopez L, Roda S, Robles-Martín A, Muñoz-Tafalla R, Almendral D, Ferrer M, Guallar V. Enhancing the Hydrolytic Activity of a Lipase towards Larger Triglycerides through Lid Domain Engineering. Int J Mol Sci 2023; 24:13768. [PMID: 37762071 PMCID: PMC10530837 DOI: 10.3390/ijms241813768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/23/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023] Open
Abstract
Lipases have valuable potential for industrial use, particularly those mostly active against water-insoluble substrates, such as triglycerides composed of long-carbon chain fatty acids. However, in most cases, engineered variants often need to be constructed to achieve optimal performance for such substrates. Protein engineering techniques have been reported as strategies for improving lipase characteristics by introducing specific mutations in the cap domain of esterases or in the lid domain of lipases or through lid domain swapping. Here, we improved the lipase activity of a lipase (WP_075743487.1, or LipMRD) retrieved from the Marine Metagenomics MarRef Database and assigned to the Actinoalloteichus genus. The improvement was achieved through site-directed mutagenesis and by substituting its lid domain (FRGTEITQIKDWLTDA) with that of Rhizopus delemar lipase (previously R. oryzae; UniProt accession number, I1BGQ3) (FRGTNSFRSAITDIVF). The results demonstrated that the redesigned mutants gain activity against bulkier triglycerides, such as glyceryl tridecanoate and tridodecanoate, olive oil, coconut oil, and palm oil. Residue W89 (LipMRD numbering) appears to be key to the increase in lipase activity, an increase that was also achieved with lid swapping. This study reinforces the importance of the lid domains and their amino acid compositions in determining the substrate specificity of lipases, but the generalization of the lid domain swapping between lipases or the introduction of specific mutations in the lid domain to improve lipase activity may require further investigation.
Collapse
Affiliation(s)
- Laura Fernandez-Lopez
- Instituto de Catalisis y Petroleoquimica (ICP), CSIC, 28049 Madrid, Spain; (L.F.-L.); (D.A.)
| | - Sergi Roda
- Department of Life Sciences, Barcelona Supercomputing Center (BSC), 08034 Barcelona, Spain; (S.R.); (A.R.-M.); (R.M.-T.)
| | - Ana Robles-Martín
- Department of Life Sciences, Barcelona Supercomputing Center (BSC), 08034 Barcelona, Spain; (S.R.); (A.R.-M.); (R.M.-T.)
- PhD Programme, Faculty of Pharmacy and Food Science, Universitat de Barcelona (UB), 08007 Barcelona, Spain
| | - Rubén Muñoz-Tafalla
- Department of Life Sciences, Barcelona Supercomputing Center (BSC), 08034 Barcelona, Spain; (S.R.); (A.R.-M.); (R.M.-T.)
- PhD Programme, Faculty of Pharmacy and Food Science, Universitat de Barcelona (UB), 08007 Barcelona, Spain
| | - David Almendral
- Instituto de Catalisis y Petroleoquimica (ICP), CSIC, 28049 Madrid, Spain; (L.F.-L.); (D.A.)
| | - Manuel Ferrer
- Instituto de Catalisis y Petroleoquimica (ICP), CSIC, 28049 Madrid, Spain; (L.F.-L.); (D.A.)
| | - Víctor Guallar
- Department of Life Sciences, Barcelona Supercomputing Center (BSC), 08034 Barcelona, Spain; (S.R.); (A.R.-M.); (R.M.-T.)
- Institution for Research and Advanced Studies (ICREA), 08010 Barcelona, Spain
| |
Collapse
|
4
|
Alteration of Chain-Length Selectivity and Thermostability of Rhizopus oryzae Lipase via Virtual Saturation Mutagenesis Coupled with Disulfide Bond Design. Appl Environ Microbiol 2023; 89:e0187822. [PMID: 36602359 PMCID: PMC9888275 DOI: 10.1128/aem.01878-22] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Rhizopus oryzae lipase (ROL) is one of the most important enzymes used in the food, biofuel, and pharmaceutical industries. However, the highly demanding conditions of industrial processes can reduce its stability and activity. To seek a feasible method to improve both the catalytic activity and the thermostability of this lipase, first, the structure of ROL was divided into catalytic and noncatalytic regions by identifying critical amino acids in the crevice-like binding pocket. Second, a mutant screening library aimed at improvement of ROL catalytic performance by virtual saturation mutagenesis of residues in the catalytic region was constructed based on Rosetta's Cartesian_ddg protocol. A double mutant, E265V/S267W (with an E-to-V change at residue 265 and an S-to-W change at residue 267), with markedly improved catalytic activity toward diverse chain-length fatty acid esters was identified. Then, computational design of disulfide bonds was conducted for the noncatalytic amino acids of E265V/S267W, and two potential disulfide bonds, S61C-S115C and E190C-E238C, were identified as candidates. Experimental data validated that the variant E265V/S267W/S61C-S115C/E190C-E238C had superior stability, with an increase of 8.5°C in the melting temperature and a half-life of 31.7 min at 60°C, 4.2-fold longer than that of the wild-type enzyme. Moreover, the variant improved the lipase activity toward five 4-nitrophenyl esters by 1.5 to 3.8 times, exhibiting a potential to modify the catalytic efficiency. IMPORTANCE Rhizopus oryzae lipase (ROL) is very attractive in biotechnology and industry as a safe and environmentally friendly biocatalyst. Functional expression of ROL in Escherichia coli facilitates effective high-throughput screening for positive variants. This work highlights a method to improve both selectivity and thermostability based on a combination of virtual saturation mutagenesis in the substrate pocket and disulfide bond prediction in the noncatalytic region. Using the method, ROL thermostability and activity to diverse 4-nitrophenyl esters could be substantially improved. The strategy of rational introduction of multiple mutations in different functional domains of the enzyme is a great prospect in the modification of biocatalysts.
Collapse
|
5
|
Alejaldre L, Lemay-St-Denis C, Pelletier JN, Quaglia D. Tuning Selectivity in CalA Lipase: Beyond Tunnel Engineering. Biochemistry 2023; 62:396-409. [PMID: 36580299 PMCID: PMC9851156 DOI: 10.1021/acs.biochem.2c00513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 12/15/2022] [Indexed: 12/30/2022]
Abstract
Engineering studies of Candida (Pseudozyma) antarctica lipase A (CalA) have demonstrated the potential of this enzyme in the selective hydrolysis of fatty acid esters of different chain lengths. CalA has been shown to bind substrates preferentially through an acyl-chain binding tunnel accessed via the hydrolytic active site; it has also been shown that selectivity for substrates of longer or shorter chain length can be tuned, for instance by modulating steric hindrance within the tunnel. Here we demonstrate that, whereas the tunnel region is certainly of paramount importance for substrate recognition, residues in distal regions of the enzyme can also modulate substrate selectivity. To this end, we investigate variants that carry one or more substitutions within the substrate tunnel as well as in distal regions. Combining experimental determination of the substrate selectivity using natural and synthetic substrates with computational characterization of protein dynamics and of tunnels, we deconvolute the effect of key substitutions and demonstrate that epistatic interactions contribute to procuring selectivity toward either long-chain or short/medium-chain fatty acid esters. We demonstrate that various mechanisms contribute to the diverse selectivity profiles, ranging from reshaping tunnel morphology and tunnel stabilization to obstructing the main substrate-binding tunnel, highlighting the dynamic nature of the substrate-binding region. This work provides important insights into the versatility of this robust lipase toward diverse applications.
Collapse
Affiliation(s)
- Lorea Alejaldre
- PROTEO,
The Québec Network for Research on Protein, Function, Engineering
and Applications, https://proteo.ca/en/
- CGCC, Center
in Green Chemistry and Catalysis, Montréal, QC, CanadaG1V 0A6
- Department
of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC, CanadaH3T 1J4
| | - Claudèle Lemay-St-Denis
- PROTEO,
The Québec Network for Research on Protein, Function, Engineering
and Applications, https://proteo.ca/en/
- CGCC, Center
in Green Chemistry and Catalysis, Montréal, QC, CanadaG1V 0A6
- Department
of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC, CanadaH3T 1J4
| | - Joelle N. Pelletier
- PROTEO,
The Québec Network for Research on Protein, Function, Engineering
and Applications, https://proteo.ca/en/
- CGCC, Center
in Green Chemistry and Catalysis, Montréal, QC, CanadaG1V 0A6
- Department
of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC, CanadaH3T 1J4
- Department
of Chemistry, Université de Montréal, Montréal, QC, CanadaH2V 0B3
| | - Daniela Quaglia
- PROTEO,
The Québec Network for Research on Protein, Function, Engineering
and Applications, https://proteo.ca/en/
- CGCC, Center
in Green Chemistry and Catalysis, Montréal, QC, CanadaG1V 0A6
- Department
of Chemistry, Université de Montréal, Montréal, QC, CanadaH2V 0B3
- Department
of Chemistry, Carleton University, Ottawa, ON, CanadaK1S 5B6
| |
Collapse
|
6
|
Hot spots-making directed evolution easier. Biotechnol Adv 2022; 56:107926. [DOI: 10.1016/j.biotechadv.2022.107926] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 01/04/2022] [Accepted: 02/07/2022] [Indexed: 01/20/2023]
|
7
|
Sodhi AS, Sharma N, Bhatia S, Verma A, Soni S, Batra N. Insights on sustainable approaches for production and applications of value added products. CHEMOSPHERE 2022; 286:131623. [PMID: 34346348 DOI: 10.1016/j.chemosphere.2021.131623] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/18/2021] [Accepted: 07/19/2021] [Indexed: 06/13/2023]
Abstract
The increasing demand for the development of sustainable strategies to utilize and process agro-industrial residues paves new paths for exploring innovative approaches in this area. Biotechnology based microbial transformations provide efficient, low cost and sustainable approaches for the production of value added products. The use of organic rich residues opens new avenues for the production of enzymes, pigments, biofuels, bioactive compounds, biopolymers etc. with vast industrial and therapeutic applications. Innovative technologies like strain improvement, enzyme immobilization, genome editing, morphological engineering, ultrasound/supercritical fluid/pulse electric field extraction, etc. can be employed. These will be helpful in achieving significant improvement in qualitative and quantitative parameters of the finished products. The global trend for the valorisation of biowaste has boosted the commercialization of these products which has transformed the markets by providing new investment opportunities. The upstream processing of raw materials using microbes poses a limitation in terms of product development and recovery which can be overcome by modifying the bioreactor design, physiological parameters or employing alternate technologies which will be discussed in this review. The other problems related to the processes include product stability, industrial applicability and cost competitiveness which needs to be addressed. This review comprehensively discusses the recent progress, avenues and challenges in the approaches aimed at valorisation of agro-industrial wastes along with possible opportunities in the bioeconomy.
Collapse
Affiliation(s)
- Abhinashi Singh Sodhi
- Department of Biotechnology, Goswami Ganesh Dutta Sanatan Dharma College, Sector-32-C, Chandigarh, 160030, India
| | - Neetu Sharma
- Department of Biotechnology, Goswami Ganesh Dutta Sanatan Dharma College, Sector-32-C, Chandigarh, 160030, India
| | - Sonu Bhatia
- Department of Biotechnology, Goswami Ganesh Dutta Sanatan Dharma College, Sector-32-C, Chandigarh, 160030, India
| | - Anoop Verma
- School of Energy and Environment, Thapar Institute of Engineering and Technology, Patiala, Punjab, India
| | - Sajeev Soni
- Department of Chemistry, Goswami Ganesh Dutta Sanatan Dharma College, Sector-32-C, Chandigarh, 160030, India
| | - Navneet Batra
- Department of Biotechnology, Goswami Ganesh Dutta Sanatan Dharma College, Sector-32-C, Chandigarh, 160030, India.
| |
Collapse
|
8
|
Buruaga-Ramiro C, Valenzuela SV, Pastor FIJ, Martínez J, Diaz P. Unexplored lipolytic activity of Escherichia coli: Implications for lipase cloning. Enzyme Microb Technol 2020; 139:109590. [PMID: 32732039 DOI: 10.1016/j.enzmictec.2020.109590] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 05/05/2020] [Accepted: 05/06/2020] [Indexed: 12/11/2022]
Abstract
Recent investigations on cloned bacterial lipases performed in our laboratory revealed the presence of lipolytic activity that was not due to the cloned lipase-coding gene but was probably the result of an intrinsic activity of Escherichia coli itself. To confirm such a hypothesis, we assayed the activity of frequently used E. coli strains by fast paper tests, zymograms and spectrofluorometry. A band of Ca. 18-20 kDa showing activity on MUF-butyrate was detected in zymogram analysis of crude cell extracts in all E. coli strains assayed. Moreover, the spectrofluorometric results obtained confirmed the presence of low but significant lipolytic activity in E. coli, with strain BL21 showing the highest activity. Detailed characterization of such a lipolytic activity was performed using E. coli BL21 cell extracts, where preference for C7 substrates was found, although shorter substrates were also hydrolysed to a minor extent. Interestingly, E. coli lipolytic activity displays traits of a thermophilic enzyme, showing maximum activity at 50 °C and pH 8, an unexpected feature never described before. Kinetic and inhibition analysis were also performed showing that activity can be inhibited by several metal ions or by Triton X-100® and SDS, used in zymogram analysis. Such properties ‒ low activity, preference for medium chain-length substrates, and high operational temperature ‒ might justify why this activity had gone unexplored until now, even when many lipases and esterases have been cloned and expressed in E. coli strains in the past. From now on, lipase researchers should take into consideration the presence of such a basal lipolytic activity before starting their lipase cloning or expression experiments in E.coli.
Collapse
Affiliation(s)
- Carolina Buruaga-Ramiro
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, and Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Av. Diagonal 643, 08028 Barcelona Spain
| | - Susana V Valenzuela
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, and Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Av. Diagonal 643, 08028 Barcelona Spain
| | - F I J Pastor
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, and Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Av. Diagonal 643, 08028 Barcelona Spain
| | - Josefina Martínez
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, and Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Av. Diagonal 643, 08028 Barcelona Spain
| | - Pilar Diaz
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, and Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Av. Diagonal 643, 08028 Barcelona Spain.
| |
Collapse
|
9
|
Elatico AJJ, Nellas RB. Computational reverse engineering of the lipase from Pseudomonas aeruginosa PAO1: α-helices. J Mol Graph Model 2020; 100:107657. [PMID: 32712552 DOI: 10.1016/j.jmgm.2020.107657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 05/23/2020] [Accepted: 05/25/2020] [Indexed: 10/24/2022]
Abstract
Lipases are important enzymes in many biochemical industries, thus making them attractive targets for protein engineering to improve enzymatic properties. In this work, a ''reverse engineering'' approach was explored: disrupt secondary structures to determine their contribution to enzyme stability and activity. All the α-helices of the lipase from Pseudomonas aeruginosa PAO1 (PAL) were systematically disrupted using computational proline mutagenesis and molecular dynamics (MD) simulations. This method identified the α3 mutant (R89P), located within the vicinity of the active site, to be significantly important for stability and activity. In addition, the α6 system (L159P), part of the ''cap'' domain that regulates substrate entry into the active site, was found to be critical for activity as it pushed the lipase to adopt a completely closed conformation. The perturbation introduced by the proline mutations resulted in increased backbone flexibility that significantly decreased protein stability. Moreover, mutations within the cap domain helices - α4 (A115P), α5 (S132P, G139P), α6 (L159P), and α7 (R169P) - resulted in increased flexibility of the N-terminal region of the α5 helix, the mobile ''lid'' helix, that pushes the gorge into a partially closed conformation. The α6 mutation (L159P) further increased the flexibility of the helix-loop region at the C-terminal end of the α5 helix to push the lid into the fully closed state. Therefore, the α3 and α6 helices could be ''hot spots'' for stabilizing mutations that could improve the overall enzyme stability and activity this lipase. The insights obtained in this work may be validated experimentally in future works.
Collapse
Affiliation(s)
- Adam Jo J Elatico
- Institute of Chemistry, College of Science, University of the Philippines Diliman, Quezon City, Philippines
| | - Ricky B Nellas
- Institute of Chemistry, College of Science, University of the Philippines Diliman, Quezon City, Philippines.
| |
Collapse
|
10
|
Abstract
Microbial lipases represent one of the most important groups of biotechnological biocatalysts. However, the high-level production of lipases requires an understanding of the molecular mechanisms of gene expression, folding, and secretion processes. Stable, selective, and productive lipase is essential for modern chemical industries, as most lipases cannot work in different process conditions. However, the screening and isolation of a new lipase with desired and specific properties would be time consuming, and costly, so researchers typically modify an available lipase with a certain potential for minimizing cost. Improving enzyme properties is associated with altering the enzymatic structure by changing one or several amino acids in the protein sequence. This review detailed the main sources, classification, structural properties, and mutagenic approaches, such as rational design (site direct mutagenesis, iterative saturation mutagenesis) and direct evolution (error prone PCR, DNA shuffling), for achieving modification goals. Here, both techniques were reviewed, with different results for lipase engineering, with a particular focus on improving or changing lipase specificity. Changing the amino acid sequences of the binding pocket or lid region of the lipase led to remarkable enzyme substrate specificity and enantioselectivity improvement. Site-directed mutagenesis is one of the appropriate methods to alter the enzyme sequence, as compared to random mutagenesis, such as error-prone PCR. This contribution has summarized and evaluated several experimental studies on modifying the substrate specificity of lipases.
Collapse
|
11
|
Korany AH, Abouhmad A, Bakeer W, Essam T, Amin MA, Hatti-Kaul R, Dishisha T. Comparative Structural Analysis of Different Mycobacteriophage-Derived Mycolylarabinogalactan Esterases (Lysin B). Biomolecules 2019; 10:E45. [PMID: 31892223 PMCID: PMC7022511 DOI: 10.3390/biom10010045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 12/02/2019] [Accepted: 12/25/2019] [Indexed: 01/14/2023] Open
Abstract
Mycobacteriophage endolysins have emerged as a potential alternative to the current antimycobacterial agents. This study focuses on mycolylarabinogalactan hydrolase (LysB) enzymes of the α/β-hydrolase family, which disrupt the unique mycolic acid layer of mycobacterium cell wall. Multiple sequence alignment and structural analysis studies showed LysB-D29, the only enzyme with a solved three-dimensional structure, to share several common features with esterases (lacking lid domain) and lipases (acting on long chain lipids). Sequence and structural comparisons of 30 LysB homology models showed great variation in domain organizations and total protein length with major differences in the loop-5 motif harboring the catalytic histidine residue. Docking of different p-nitrophenyl ligands (C4-C18) to LysB-3D models revealed that the differences in length and residues of loop-5 contributed towards wide diversity of active site conformations (long tunnels, deep and superficial funnels, shallow bowls, and a narrow buried cave) resembling that of lipases, cutinases, and esterases. A set of seven LysB enzymes were recombinantly produced; their activity against p-nitrophenyl esters could be related to their active site conformation and acyl binding site. LysB-D29 (long tunnel) showed the highest activity with long chain p-nitrophenyl palmitate followed by LysB-Omega (shallow bowl) and LysB-Saal (deep funnel).
Collapse
Affiliation(s)
- Ahmed H. Korany
- Department of Microbiology and Immunology, Faculty of Pharmacy, Nahda University, Beni-Suef 62513, Egypt; (A.H.K.); (W.B.)
| | - Adel Abouhmad
- Biotechnology, Department of Chemistry, Center for Chemistry and Chemical Engineering, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden;
- Department of Microbiology and Immunology, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt
| | - Walid Bakeer
- Department of Microbiology and Immunology, Faculty of Pharmacy, Nahda University, Beni-Suef 62513, Egypt; (A.H.K.); (W.B.)
- Department of Microbiology and Immunology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 26511, Egypt;
| | - Tamer Essam
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt; (T.E.); (M.A.A.)
| | - Magdy A. Amin
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt; (T.E.); (M.A.A.)
| | - Rajni Hatti-Kaul
- Biotechnology, Department of Chemistry, Center for Chemistry and Chemical Engineering, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden;
| | - Tarek Dishisha
- Department of Microbiology and Immunology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 26511, Egypt;
| |
Collapse
|
12
|
Shift in Bacillus sp. JR3 esterase LipJ activity profile after addition of essential residues from family I.5 thermophilic lipases. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2019.01.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
13
|
Al-Limoun MO, Khleifat KM, Alsharafa KY, Qaralleh HN, Alrawashdeh SA. Purification and characterization of a mesophilic organic solvent tolerant lipase produced by Acinetobacter sp. K5b4. BIOCATAL BIOTRANSFOR 2018. [DOI: 10.1080/10242422.2018.1506445] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
| | | | | | - Haitham N. Qaralleh
- Department of Medical Laboratory Sciences, Mutah University, Mutah, Karak, Jordan
| | | |
Collapse
|
14
|
Infanzón B, Sotelo PH, Martínez J, Diaz P. Rational evolution of the unusual Y-type oxyanion hole of Rhodococcus sp. CR53 lipase LipR. Enzyme Microb Technol 2017; 108:26-33. [PMID: 29108624 DOI: 10.1016/j.enzmictec.2017.09.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 08/26/2017] [Accepted: 09/02/2017] [Indexed: 01/10/2023]
Abstract
Rhodococcus sp CR-53 lipase LipR was the first characterized member of bacterial lipase family X. Interestingly, LipR displays some similarity with α/β-hydrolases of the C. antartica lipase A (CAL-A)-like superfamily (abH38), bearing a Y-type oxyanion hole, never found before among bacterial lipases. In order to explore this unusual Y-type oxyanion hole, and to improve LipR performance, two modification strategies based on site directed or saturation mutagenesis were addressed. Initially, a small library of mutants was designed to convert LipR Y-type oxyanion hole (YDS) into one closer to those most frequently found in bacteria (GGG(X)). However, activity was completely lost in all mutants obtained, indicating that the Y-type oxyanion hole of LipR is required for activity. A second approach was addressed to modify the two main oxyanion hole residues Tyr110 and Asp111, previously described for CAL-A as the most relevant amino acids involved in stabilization of the enzyme-substrate complex. A saturation mutagenesis library was prepared for each residue (Tyr110 and Asp111), and activity of the resulting variants was assayed on different chain length substrates. No functional LipR variants could be obtained when Tyr110 was replaced by any other amino acids, indicating that this is a crucial residue for catalysis. However, among the Asp111 variants obtained, LipR D111G produced a functional enzyme. Interestingly, this LipR-YGS variant showed less activity than wild type LipR on short- or mid- chain substrates but displayed a 5.6-fold increased activity on long chain length substrates. Analysis of the 3D model and in silico docking studies of this enzyme variant suggest that substitution of Asp by Gly produces a wider entrance tunnel that would allow for a better and tight accommodation of larger substrates, thus justifying the experimental results obtained.
Collapse
Affiliation(s)
- Belén Infanzón
- Department of Genetics, Microbiology & Statistics, University of Barcelona, Av. Diagonal 643, 08028-Barcelona, Spain
| | - Pablo H Sotelo
- Department of Biotechnology, Facultad de Ciencias Químicas, Universidad Nacional de Asunción, Campus Universitario, P.0. Box 1055, San Lorenzo, Paraguay
| | - Josefina Martínez
- Department of Genetics, Microbiology & Statistics, University of Barcelona, Av. Diagonal 643, 08028-Barcelona, Spain; Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Spain
| | - Pilar Diaz
- Department of Genetics, Microbiology & Statistics, University of Barcelona, Av. Diagonal 643, 08028-Barcelona, Spain; Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Spain.
| |
Collapse
|
15
|
Khan FI, Lan D, Durrani R, Huan W, Zhao Z, Wang Y. The Lid Domain in Lipases: Structural and Functional Determinant of Enzymatic Properties. Front Bioeng Biotechnol 2017; 5:16. [PMID: 28337436 PMCID: PMC5343024 DOI: 10.3389/fbioe.2017.00016] [Citation(s) in RCA: 217] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 02/22/2017] [Indexed: 01/08/2023] Open
Abstract
Lipases are important industrial enzymes. Most of the lipases operate at lipid–water interfaces enabled by a mobile lid domain located over the active site. Lid protects the active site and hence responsible for catalytic activity. In pure aqueous media, the lid is predominantly closed, whereas in the presence of a hydrophobic layer, it is partially opened. Hence, the lid controls the enzyme activity. In the present review, we have classified lipases into different groups based on the structure of lid domains. It has been observed that thermostable lipases contain larger lid domains with two or more helices, whereas mesophilic lipases tend to have smaller lids in the form of a loop or a helix. Recent developments in lipase engineering addressing the lid regions are critically reviewed here. After on, the dramatic changes in substrate selectivity, activity, and thermostability have been reported. Furthermore, improved computational models can now rationalize these observations by relating it to the mobility of the lid domain. In this contribution, we summarized and critically evaluated the most recent developments in experimental and computational research on lipase lids.
Collapse
Affiliation(s)
- Faez Iqbal Khan
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China; School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, China
| | - Dongming Lan
- School of Food Science and Engineering, South China University of Technology , Guangzhou , China
| | - Rabia Durrani
- School of Bioscience and Bioengineering, South China University of Technology , Guangzhou , China
| | - Weiqian Huan
- School of Bioscience and Bioengineering, South China University of Technology , Guangzhou , China
| | - Zexin Zhao
- School of Bioscience and Bioengineering, South China University of Technology , Guangzhou , China
| | - Yonghua Wang
- School of Food Science and Engineering, South China University of Technology , Guangzhou , China
| |
Collapse
|
16
|
Borrelli GM, Trono D. Recombinant Lipases and Phospholipases and Their Use as Biocatalysts for Industrial Applications. Int J Mol Sci 2015; 16:20774-840. [PMID: 26340621 PMCID: PMC4613230 DOI: 10.3390/ijms160920774] [Citation(s) in RCA: 195] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 07/17/2015] [Accepted: 08/11/2015] [Indexed: 11/29/2022] Open
Abstract
Lipases and phospholipases are interfacial enzymes that hydrolyze hydrophobic ester linkages of triacylglycerols and phospholipids, respectively. In addition to their role as esterases, these enzymes catalyze a plethora of other reactions; indeed, lipases also catalyze esterification, transesterification and interesterification reactions, and phospholipases also show acyltransferase, transacylase and transphosphatidylation activities. Thus, lipases and phospholipases represent versatile biocatalysts that are widely used in various industrial applications, such as for biodiesels, food, nutraceuticals, oil degumming and detergents; minor applications also include bioremediation, agriculture, cosmetics, leather and paper industries. These enzymes are ubiquitous in most living organisms, across animals, plants, yeasts, fungi and bacteria. For their greater availability and their ease of production, microbial lipases and phospholipases are preferred to those derived from animals and plants. Nevertheless, traditional purification strategies from microbe cultures have a number of disadvantages, which include non-reproducibility and low yields. Moreover, native microbial enzymes are not always suitable for biocatalytic processes. The development of molecular techniques for the production of recombinant heterologous proteins in a host system has overcome these constraints, as this allows high-level protein expression and production of new redesigned enzymes with improved catalytic properties. These can meet the requirements of specific industrial process better than the native enzymes. The purpose of this review is to give an overview of the structural and functional features of lipases and phospholipases, to describe the recent advances in optimization of the production of recombinant lipases and phospholipases, and to summarize the information available relating to their major applications in industrial processes.
Collapse
Affiliation(s)
- Grazia M Borrelli
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Centro di Ricerca per la Cerealicoltura, S.S. 673 Km 25, 200-71122 Foggia, Italy.
| | - Daniela Trono
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Centro di Ricerca per la Cerealicoltura, S.S. 673 Km 25, 200-71122 Foggia, Italy.
| |
Collapse
|