1
|
Kashapov R, Razuvayeva Y, Fedorova E, Zakharova L. The role of macrocycles in supramolecular assembly with polymers. SOFT MATTER 2024; 20:8549-8560. [PMID: 39470183 DOI: 10.1039/d4sm01053a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Recently, supramolecular self-assembly has attracted the attention of researchers worldwide because it enables the creation of nanostructures with unique properties without additional costs. Spontaneous organization of molecules allows the design and development of new nanostructures that can interact with drugs and living cells and generate a response. Therefore, supramolecular structures have enormous potential and can be in demand in various fields of healthcare and ecology. One of the widely used building blocks of such supramolecular assemblies is polymers. This review examines the joint aggregation behavior of various macrocycles (cyclodextrins, calixarenes, cucurbiturils, porphyrins, and pillararenes) with polymers, the functional properties of these supramolecular systems and their potential applications.
Collapse
Affiliation(s)
- Ruslan Kashapov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str. 8, 420088, Kazan, Russian Federation.
| | - Yuliya Razuvayeva
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str. 8, 420088, Kazan, Russian Federation.
| | - Elena Fedorova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str. 8, 420088, Kazan, Russian Federation.
| | - Lucia Zakharova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str. 8, 420088, Kazan, Russian Federation.
| |
Collapse
|
2
|
Huang C, Liu YC, Oh H, Guo DS, Nau WM, Hennig A. Cellular Uptake of Cell-Penetrating Peptides Activated by Amphiphilic p-Sulfonatocalix[4]arenes. Chemistry 2024; 30:e202400174. [PMID: 38456376 DOI: 10.1002/chem.202400174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/05/2024] [Accepted: 03/08/2024] [Indexed: 03/09/2024]
Abstract
We report the synthesis of a series of amphiphilic p-sulfonatocalix[4]arenes with varying alkyl chain lengths (CX4-Cn) and their application as efficient counterion activators for membrane transport of cell-penetrating peptides (CPPs). The enhanced membrane activity is confirmed with the carboxyfluorescein (CF) assay in vesicles and by the direct cytosolic delivery of CPPs into CHO-K1, HCT 116, and KTC-1 cells enabling excellent cellular uptake of the CPPs into two cancer cell lines. Intracellular delivery was confirmed by fluorescence microscopy after CPP entry into live cells mediated by CX4-Cn, which was also quantified after cell lysis by fluorescence spectroscopy. The results present the first systematic exploration of structure-activity relationships for calixarene-based counterion activators and show that CX4-Cn are exceptionally effective in cellular delivery of CPPs. The dodecyl derivative, CX4-C12, serves as best activator. A first mechanistic insight is provided by efficient CPP uptake at 4 °C and in the presence of the endocytosis inhibitor dynasore, which indicates a direct translocation of the CPP-counterion complexes into the cytosol and highlights the potential benefits of CX4-Cn for efficient and direct translocation of CPPs and CPP-conjugated cargo molecules into the cytosol of live cells.
Collapse
Affiliation(s)
- Chusen Huang
- School of Science, Constructor University, Campus Ring 1, 28759, Bremen, Germany
- The Education Ministry Key Laboratory of Resource Chemistry, Department of Chemistry, Shanghai Normal University, 100 Guilin Road, Shanghai, 200234, China
| | - Yan-Cen Liu
- School of Science, Constructor University, Campus Ring 1, 28759, Bremen, Germany
| | - Hyeyoung Oh
- School of Science, Constructor University, Campus Ring 1, 28759, Bremen, Germany
| | - Dong-Sheng Guo
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials, Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Werner M Nau
- School of Science, Constructor University, Campus Ring 1, 28759, Bremen, Germany
| | - Andreas Hennig
- School of Science, Constructor University, Campus Ring 1, 28759, Bremen, Germany
- Center for Cellular Nanoanalytics (CellNanOs) and Department of Biology and Chemistry, Universität Osnabrück, Barbarastraße 7, 49069, Osnabrück, Germany
| |
Collapse
|
3
|
Kageyama K, Oohora K, Hayashi T. A polyacrylamide gel containing an engineered hexameric hemoprotein as a cross-linking unit toward redox-responsive materials. RSC Adv 2023; 13:34610-34617. [PMID: 38024977 PMCID: PMC10680017 DOI: 10.1039/d3ra05897b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/20/2023] [Indexed: 12/01/2023] Open
Abstract
Hydrogels containing synthetic polymers and supramolecular cross-linking units are expected to exhibit unique functions and properties. The heme-heme pocket interaction in hemeproteins may be useful for development of a cross-linking unit because heme binding depends on the redox states of the iron center. In this work, hexameric tyrosine-coordinated hemoprotein (HTHP) is employed as a cross-linking unit in a polyacrylamide gel to create redox-responsive hydrogels. First, redox-dependent stability of the heme-heme pocket interaction in HTHP was evaluated, and it was found that the heme affinity dramatically decreases in the Fe(ii) state. Second, the polymerization of acrylamide and engineered HTHP possessing acryloyl group-tethering heme moieties provided a polyacrylamide gel containing HTHP as a cross-linking unit. A reduction-triggered gel-sol transition in the presence of apomyoglobin was observed. Furthermore, the mechanical properties of the gels containing the engineered HTHP and methylene bisacrylamide were evaluated by a tensile test, and the Young's modulus value was determined to be 14 kPa, which is higher than that of the control gel containing only methylene bisacrylamide (8.5 kPa). Compression tests of the gels revealed redox-responsive mechanical behavior, resulting in a decrease in the compressive modulus upon the addition of a reductant. This behavior is qualitatively consistent with the redox-responsive heme binding of HTHP in a solution state. This finding is expected to contribute to the development of redox-responsive materials for biomedical and biological applications.
Collapse
Affiliation(s)
- Kazuki Kageyama
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University Suita 565-0871 Japan
| | - Koji Oohora
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University Suita 565-0871 Japan
| | - Takashi Hayashi
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University Suita 565-0871 Japan
| |
Collapse
|
4
|
Huang H, Dong Z, Ren X, Jia B, Li G, Zhou S, Zhao X, Wang W. High-strength hydrogels: Fabrication, reinforcement mechanisms, and applications. NANO RESEARCH 2023; 16:3475-3515. [DOI: 10.1007/s12274-022-5129-1] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 09/28/2022] [Accepted: 09/29/2022] [Indexed: 01/06/2025]
|
5
|
Li Y, Duan YM, Chen GH, Hu HR, Han XN, Wang KP, Hu ZQ, Chen CF. Pagoda[ n]arenes ( n = 4, 5): Extremely Strong Binders for the Tropylium Cation. Org Lett 2023; 25:364-368. [PMID: 36625525 DOI: 10.1021/acs.orglett.2c04077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Herein, host-guest complexation between pagoda[n]arenes (n = 4, P4; n = 5, P5) and tropylium cation (G) was investigated in detail. It was found that both P4 and P5 showed surprisingly strong binding affinities toward the tropylium cation with association constants of more than 107 M-1 for the 1:1 host-guest complexes. The theoretical calculations showed different host-guest complexion ways for complexes G@P4 and G@P5 and the strong π···π interactions and multiple C-H···π interactions play a very important role in the formation of these stable complexes, respectively. Moreover, the switchable processes of guest binding and release in the complexes can be effectively controlled by redox stimuli, and they can be also visible by the color and fluorescence changes.
Collapse
Affiliation(s)
- Ying Li
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yi-Meng Duan
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Gui-Hua Chen
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Hao-Ran Hu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xiao-Ni Han
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Kun-Peng Wang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Zhi-Qiang Hu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Chuan-Feng Chen
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
6
|
Morozova YE, Myaldzina KR, Antipin IS. Structural Rearrangements in Macrocyclic Amphiphile–Poly(acrylic acid) Associates. COLLOID JOURNAL 2022. [DOI: 10.1134/s1061933x22600282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
7
|
Morozova JE, Shumatbaeva AM, Antipin IS. Colloidal Solutions of Supramolecular para/meta-Cyclophane–Polyelectrolyte Complexes: Examples, Properties, and Application. COLLOID JOURNAL 2022. [DOI: 10.1134/s1061933x2270003x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
8
|
Kashapov RR, Mirgorodskaya AB, Kuznetsov DM, Razuvaeva YS, Zakharova LY. Nanosized Supramolecular Systems: From Colloidal Surfactants to Amphiphilic Macrocycles and Superamphiphiles. COLLOID JOURNAL 2022. [DOI: 10.1134/s1061933x22700016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
9
|
Tian JH, Hu XY, Hu ZY, Tian HW, Li JJ, Pan YC, Li HB, Guo DS. A facile way to construct sensor array library via supramolecular chemistry for discriminating complex systems. Nat Commun 2022; 13:4293. [PMID: 35879312 PMCID: PMC9314354 DOI: 10.1038/s41467-022-31986-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 07/13/2022] [Indexed: 12/15/2022] Open
Abstract
Differential sensing, which discriminates analytes via pattern recognition by sensor arrays, plays an important role in our understanding of many chemical and biological systems. However, it remains challenging to develop new methods to build a sensor unit library without incurring a high workload of synthesis. Herein, we propose a supramolecular approach to construct a sensor unit library by taking full advantage of recognition and assembly. Ten sensor arrays are developed by replacing the building block combinations, adjusting the ratio between system components, and changing the environment. Using proteins as model analytes, we examine the discriminative abilities of these supramolecular sensor arrays. Then the practical applicability for discriminating complex analytes is further demonstrated using honey as an example. This sensor array construction strategy is simple, tunable, and capable of developing many sensor units with as few syntheses as possible.
Collapse
Affiliation(s)
- Jia-Hong Tian
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| | - Xin-Yue Hu
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| | - Zong-Ying Hu
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| | - Han-Wen Tian
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| | - Juan-Juan Li
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| | - Yu-Chen Pan
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| | - Hua-Bin Li
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| | - Dong-Sheng Guo
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
10
|
Tian HW, Xu Z, Li HB, Hu XY, Guo DS. Study on assembling compactness of amphiphilic calixarenes by fluorescence anisotropy. Supramol Chem 2022. [DOI: 10.1080/10610278.2022.2087523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Han-Wen Tian
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, China
| | - Zhe Xu
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, China
| | - Hua-Bin Li
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, China
| | - Xin-Yue Hu
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, China
| | - Dong-Sheng Guo
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, China
| |
Collapse
|
11
|
Morozova JE, Myaldzina CR, Voloshina AD, Lyubina AP, Amerhanova SK, Syakaev VV, Ziganshina AY, Antipin IS. Сalixresorcine cavitands bearing lipophilic cationic fragments in the construction of mitochondrial-targeting supramolecular nanoparticles. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
12
|
Nag R, Rao CP. Calixarene-mediated host-guest interactions leading to supramolecular assemblies: visualization by microscopy. Chem Commun (Camb) 2022; 58:6044-6063. [PMID: 35510609 DOI: 10.1039/d2cc01850k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Host-guest chemistry, particularly of supramolecules, has been an intriguing topic for researchers for a long time due to its multiplicative applications ranging from chemical to biological to materials science. Supramolecules, such as calixarenes, are excellent host molecular systems due to their controllable cavity along with the ease of functionalization both at the lower and upper rims. The host-guest interactions involving calixarenes have been primarily studied using physical methods, such as absorption, fluorescence and nuclear magnetic resonance spectroscopy, isothermal titration calorimetry and mass spectrometry. The corresponding literature as disseminated through review articles triggered broadening of the spectrum of research. Depending upon the nature of the derivatization, the supramolecular conjugates of calixarenes have been shown to form different morphologies of micro and nanometric size as reported in the literature. Pertinent research performed in our own group was based on atomic force microscopy, transmission electron microscopy and scanning electron microscopy studies. The literature reveals that such morphologies are modified in the presence of guest species. Thus, the supramolecular host-guest complexation of calixarenes leading to the formation of various architectures has been studied using both spectroscopy and microscopy techniques to obtain complimentary data. However, there are no review articles that provide discussions on this exciting area of supramolecular science involving microscopy. Therefore, in the present article, for the first time, we have brought together the research reported in the literature during the past decade, including ours, in demonstrating the supramolecular architectures formed from the host-guest interactions extended by the conjugates of calixarenes, and their applications using microscopy. The scope of this article spans across various features of interaction in these systems: (i) in solution, (ii) at the air-water interface and (iii) on solid surfaces. The application domain includes sensing of organic explosives and drugs, exhibiting antibacterial activity, supramolecular self-assembly or co-assembly resulting in gels, micelles and vesicles, and the consequent aggregation-induced emission and a few others.
Collapse
Affiliation(s)
- Rahul Nag
- Department of Chemistry, Indian Institute of Technology Tirupati, Settipalli Post, Tirupati - 517506, Andhra Pradesh, India.
| | - Chebrolu Pulla Rao
- Department of Chemistry, Indian Institute of Technology Tirupati, Settipalli Post, Tirupati - 517506, Andhra Pradesh, India.
| |
Collapse
|
13
|
Hou XF, Zhang S, Chen X, Bisoyi HK, Xu T, Liu J, Chen D, Chen XM, Li Q. Synchronous Imaging in Golgi Apparatus and Lysosome Enabled by Amphiphilic Calixarene-Based Artificial Light-Harvesting Systems. ACS APPLIED MATERIALS & INTERFACES 2022; 14:22443-22453. [PMID: 35513893 DOI: 10.1021/acsami.2c02851] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Artificial supramolecular light-harvesting systems have expanded various properties on photoluminescence, enabling promising applications on cell imaging, especially for imaging in organelles. Supramolecular light-harvesting systems have been used for imaging in some organelles such as lysosome, Golgi apparatus, and mitochondrion, but developing a supramolecular light-harvesting platform for imaging two organelles synchronously still remains a great challenge. Here, we report a series of lower-rim dodecyl-modified sulfonato-calix[4]arene-mediated supramolecular light-harvesting platforms for efficient light-harvesting from three naphthalene diphenylvinylpyridiniums containing acceptors, Nile Red, and Nile Blue. All of the constructed supramolecular light-harvesting systems possess high light-harvesting efficiency. Furthermore, when the two acceptors are loaded simultaneously in a single light-harvesting donor system for imaging in human prostate cancer cells, organelle imaging in lysosome and Golgi apparatus can be realized at the same time with distinctive wavelength emission. Nile Red receives the light-harvesting energy from the donors, reaching orange emissions (625 nm) in lysosome while Nile Blue shows a near-infrared light-harvesting emission at 675 nm in Golgi apparatus in the same cells. Thus, the light harvesting system provides a pathway for synchronously efficient cell imaging in two distinct organelles with a single type of photoluminescent supramolecular nanoparticles.
Collapse
Affiliation(s)
- Xiao-Fang Hou
- Key Lab of High Performance Polymer Materials and Technology of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Shu Zhang
- Institute of Advanced Materials, School of Chemistry and Chemical Engineering, and Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China
| | - Xiao Chen
- Institute of Advanced Materials, School of Chemistry and Chemical Engineering, and Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China
| | - Hari Krishna Bisoyi
- Advanced Materials and Liquid Crystal Institute and Chemical Physics Interdisciplinary Program, Kent State University, Kent, Ohio 44242, United States
| | - Tianchi Xu
- Key Lab of High Performance Polymer Materials and Technology of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jiang Liu
- Key Lab of High Performance Polymer Materials and Technology of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Dongzhong Chen
- Key Lab of High Performance Polymer Materials and Technology of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xu-Man Chen
- Institute of Advanced Materials, School of Chemistry and Chemical Engineering, and Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China
| | - Quan Li
- Institute of Advanced Materials, School of Chemistry and Chemical Engineering, and Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China
- Advanced Materials and Liquid Crystal Institute and Chemical Physics Interdisciplinary Program, Kent State University, Kent, Ohio 44242, United States
| |
Collapse
|
14
|
Lu F, Chen Y, Fu B, Chen S, Wang L. Multistimuli responsive supramolecular polymer networks via host-guest complexation of pillararene-containing polymers and sulfonium salts. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.03.103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
15
|
Sharma VS, Shah PA, Sharma AS, Subba Rao Ganga V, Shrivastav PS, Prajapat V. Upper/lower rim functionalized calixarene based AIE-active liquid crystals with self-assembly behavior: Photophysical and electrochemical studies. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
16
|
Ding Y, Jiao J, Sun B, Yang Z, Lin C, Wang L. The facile preparation of p-(methoxy)calix[n]arenes (n = 6, 7, or 8) and their permethylated derivatives. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.05.045] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
17
|
Tian HW, Chang YX, Hu XY, Shah MR, Li HB, Guo DS. Supramolecular imaging of spermine in cancer cells. NANOSCALE 2021; 13:15362-15368. [PMID: 34498658 DOI: 10.1039/d1nr04328e] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
As an important biomarker, the overexpressed spermine has been widely investigated for cancer diagnosis and treatment. However, bioimaging of spermine in living cells is still a formidable challenge. Herein, we design a supramolecular imaging ensemble for spermine by the host-guest complexation of amphiphilic sulfonatocalix[5]arene (SC5A12C) assembly with lucigenin (LCG). Strong binding ability and complexation-induced fluorescence quenching properties enable SC5A12C to quench the fluorescence of LCG dramatically and to recover it completely due to the competition of overexpressed spermine in cancer cells. SC5A12C also exhibits excellent biocompatibility and promotes cellular uptake due to its ability to form ultra-stable assembly. Co-assembling folate further promotes the cellular uptake of folate receptor overexpressed cancer cells, contributing to enhanced bioimaging.
Collapse
Affiliation(s)
- Han-Wen Tian
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin 300071, China.
| | - Yu-Xuan Chang
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin 300071, China.
| | - Xin-Yue Hu
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin 300071, China.
| | - Muhammad Raza Shah
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi 75270, Pakistan
| | - Hua-Bin Li
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin 300071, China.
| | - Dong-Sheng Guo
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin 300071, China.
| |
Collapse
|
18
|
NAG RAHUL, RAO CHEBROLUPULLA. Supramolecular conjugates of calixarenes in biological cells by microscopy. J CHEM SCI 2021. [DOI: 10.1007/s12039-021-01965-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
19
|
Mohamadhoseini M, Mohamadnia Z. Supramolecular self-healing materials via host-guest strategy between cyclodextrin and specific types of guest molecules. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213711] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
20
|
Tsuge A. Development of Organogelators and Ambidextrous Gelators Based on Molecular Design. J SYN ORG CHEM JPN 2021. [DOI: 10.5059/yukigoseikyokaishi.79.300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Akihiko Tsuge
- Department of Applied Chemistry, Kyushu Institute of Technology
| |
Collapse
|
21
|
A novel salt-responsive hydrogel on the base of calixresorcinarene–mPEG amide conjugate. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.125814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
22
|
|
23
|
Zhao H, Yang XH, Pan YC, Tian HW, Hu XY, Guo DS. Inhibition of insulin fibrillation by amphiphilic sulfonatocalixarene. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2020.01.042] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
24
|
Xia D, Wang P, Ji X, Khashab NM, Sessler JL, Huang F. Functional Supramolecular Polymeric Networks: The Marriage of Covalent Polymers and Macrocycle-Based Host–Guest Interactions. Chem Rev 2020; 120:6070-6123. [DOI: 10.1021/acs.chemrev.9b00839] [Citation(s) in RCA: 263] [Impact Index Per Article: 52.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Danyu Xia
- Scientific Instrument Center, Shanxi University, Taiyuan 030006, P. R. China
| | - Pi Wang
- Ministry of Education Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Taiyuan 030024, P. R. China
| | - Xiaofan Ji
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Niveen M. Khashab
- Smart Hybrid Materials (SHMS) Laboratory, Chemical Science Program, King Abdullah University of Science and Technology (KAUST), 4700 King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Jonathan L. Sessler
- Department of Chemistry, The University of Texas at Austin, 105 East 24th Street, Stop A5300, Austin, Texas 78712-1224, United States
- Center for Supramolecular Chemistry and Catalysis, Shanghai University, Shanghai 200444, P. R. China
| | - Feihe Huang
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| |
Collapse
|
25
|
Chen X, Cao Q, Bisoyi HK, Wang M, Yang H, Li Q. An Efficient Near‐Infrared Emissive Artificial Supramolecular Light‐Harvesting System for Imaging in the Golgi Apparatus. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202003427] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Xu‐Man Chen
- Institute of Advanced Materials School of Chemistry and Chemical Engineering Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research State Key Laboratory of Bioelectronics Southeast University Nanjing 211189 China
| | - Qin Cao
- Institute of Advanced Materials School of Chemistry and Chemical Engineering Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research State Key Laboratory of Bioelectronics Southeast University Nanjing 211189 China
| | - Hari Krishna Bisoyi
- Advanced Materials and Liquid Crystal Institute and Chemical Physics Interdisciplinary Program Kent State University Kent OH 44242 USA
| | - Meng Wang
- Institute of Advanced Materials School of Chemistry and Chemical Engineering Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research State Key Laboratory of Bioelectronics Southeast University Nanjing 211189 China
| | - Hong Yang
- Institute of Advanced Materials School of Chemistry and Chemical Engineering Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research State Key Laboratory of Bioelectronics Southeast University Nanjing 211189 China
| | - Quan Li
- Advanced Materials and Liquid Crystal Institute and Chemical Physics Interdisciplinary Program Kent State University Kent OH 44242 USA
| |
Collapse
|
26
|
Chen X, Cao Q, Bisoyi HK, Wang M, Yang H, Li Q. An Efficient Near‐Infrared Emissive Artificial Supramolecular Light‐Harvesting System for Imaging in the Golgi Apparatus. Angew Chem Int Ed Engl 2020; 59:10493-10497. [DOI: 10.1002/anie.202003427] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Indexed: 12/27/2022]
Affiliation(s)
- Xu‐Man Chen
- Institute of Advanced Materials School of Chemistry and Chemical Engineering Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research State Key Laboratory of Bioelectronics Southeast University Nanjing 211189 China
| | - Qin Cao
- Institute of Advanced Materials School of Chemistry and Chemical Engineering Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research State Key Laboratory of Bioelectronics Southeast University Nanjing 211189 China
| | - Hari Krishna Bisoyi
- Advanced Materials and Liquid Crystal Institute and Chemical Physics Interdisciplinary Program Kent State University Kent OH 44242 USA
| | - Meng Wang
- Institute of Advanced Materials School of Chemistry and Chemical Engineering Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research State Key Laboratory of Bioelectronics Southeast University Nanjing 211189 China
| | - Hong Yang
- Institute of Advanced Materials School of Chemistry and Chemical Engineering Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research State Key Laboratory of Bioelectronics Southeast University Nanjing 211189 China
| | - Quan Li
- Advanced Materials and Liquid Crystal Institute and Chemical Physics Interdisciplinary Program Kent State University Kent OH 44242 USA
| |
Collapse
|
27
|
Granata G, Petralia S, Forte G, Conoci S, Consoli GML. Injectable supramolecular nanohydrogel from a micellar self-assembling calix[4]arene derivative and curcumin for a sustained drug release. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 111:110842. [PMID: 32279768 DOI: 10.1016/j.msec.2020.110842] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 02/27/2020] [Accepted: 03/11/2020] [Indexed: 10/24/2022]
Abstract
In the search for soft and smart materials for nanomedicine, which is a present challenge, supramolecular nanohydrogels built on self-assembling low-molecular-weight building blocks attract interest for their structural, mechanical and functional properties. Herein, we describe a supramolecular nanohydrogel formed by a biofriendly micellar self-assembling choline-calix[4]arene derivative in the presence of curcumin, a natural and multitarget pharmacologically relevant drug. Morphology and mechanical properties of the nanohydrogel were investigated, and theoretical simulation performed to model the nanohydrogel structure. The self-healing and injectable nanohydrogel easily formed in PBS medium at physiologic pH, without using additives and organic solvents. The micellar nanohydrogel protected curcumin from rapid chemical and photochemical degradation, and slowly dissolved in curcumin-loaded micelles sustaining the drug release in a low rate. The nanohydrogel which combines the mechanical properties of a hydrogel and the benefits of a nanoscale micelle in drug delivery, appears a promising novel material for drug delivery.
Collapse
Affiliation(s)
- Giuseppe Granata
- Institute of Biomolecular Chemistry-C.N.R., Via P. Gaifami 18, 95126 Catania, Italy
| | | | - Giuseppe Forte
- Department of Drug Science, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| | - Sabrina Conoci
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, 98166 Messina, Italy
| | | |
Collapse
|
28
|
Affiliation(s)
- Yuliya Razuvayeva
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Kazan, Russia
| | - Ruslan Kashapov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Kazan, Russia
| | - Lucia Zakharova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Kazan, Russia
| |
Collapse
|
29
|
Wang P, Wang R, Xia D. pH-Induced Transition Between Single-Chain Macrocyclic Amphiphile and [ c2]Daisy Chain-Based Bola-Type Amphiphile and the Related Self-Assembly Behavior in Water. Front Chem 2020; 7:894. [PMID: 32039140 PMCID: PMC6992661 DOI: 10.3389/fchem.2019.00894] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 12/12/2019] [Indexed: 11/13/2022] Open
Abstract
Macrocyclic amphiphiles, a type of amphiphiles synthesized based on macrocyclic compounds, have attracted much attention over the past decades due to their unique superiority in the construction of various functional nanomaterials. The regulation of the state of macrocyclic amphiphiles by introducing stimuli-responsive motif to macrocyclic amphiphiles is an efficient way to extend their applications in diverse fields. Herein, pillararene-based macrocyclic amphiphile H1 was prepared. H1 can act as single-chain amphiphile to self-assemble into micelles in water when the pH was ≥5.0. H1 can be protonated to turn into H2 when pH changed to <5.0. Interestingly, H2 formed [c2]daisy chain-based bola-type supramolecular amphiphile. This bola-type supramolecular amphiphile self-assembled into nanosheets in water. Therefore, pH-induced transition between single-chain macrocyclic amphiphile and bola-type amphiphile and the corresponding self-assembly system based on pillararene in water were constructed.
Collapse
Affiliation(s)
- Pi Wang
- Ministry of Education Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Taiyuan, China
| | - Ruihuan Wang
- Ministry of Education Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Taiyuan, China
| | - Danyu Xia
- Scientific Instrument Center, Shanxi University, Taiyuan, China
| |
Collapse
|
30
|
Sharma VS, Sharma AS, Worthington SJB, Shah PA, Shrivastav PS. Columnar self-assembly, electrochemical and luminescence properties of basket-shaped liquid crystalline derivatives of Schiff-base-moulded p-tert-butyl-calix[4]arene. NEW J CHEM 2020. [DOI: 10.1039/d0nj04148c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new family of blue-light emitting supramolecular basket-shaped liquid crystalline compounds based on p-tert-butyl-calix[4]arene core to form self-assembly and columnar hexagonal phase.
Collapse
Affiliation(s)
- Vinay S. Sharma
- Department of Chemistry
- Faculty of Basic and Applied Science
- Madhav University
- Sirohi
- India
| | - Anuj S. Sharma
- Department of Chemistry
- School of Science
- Gujarat University
- Ahmedabad
- India
| | | | - Priyanka A. Shah
- Department of Chemistry
- School of Science
- Gujarat University
- Ahmedabad
- India
| | | |
Collapse
|
31
|
Zheng K, He C, Nour HF, Zhang Z, Yuan T, Traboulsi H, Mazher J, Trabolsi A, Fang L, Olson MA. Augmented polyhydrazone formation in water by template-assisted polymerization using dual-purpose supramolecular templates. Polym Chem 2020. [DOI: 10.1039/c9py01476d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Template-assisted polymerization using donor–acceptor supramolecular templates results in higher Mw and Mn values, decreased critical hydrogelation concentrations, and increased gel recovery velocity following shear-induced breakdown.
Collapse
|
32
|
Zhu YY, Xia HY, Yao LF, Huang DP, Song JY, He HF, Shen L, Zhao F. High-contrast mechanochromic benzothiadiazole derivatives based on a triphenylamine or a carbazole unit. RSC Adv 2019; 9:7176-7180. [PMID: 35519968 PMCID: PMC9061094 DOI: 10.1039/c9ra00141g] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 02/26/2019] [Indexed: 12/11/2022] Open
Abstract
Four triphenylamine or carbazole-based benzothiadiazole fluorescent molecules have been successfully synthesized and characterized. Interestingly, the donor–acceptor (D–A) type luminogens 1, 2, 3 and 4 showed different solid-state fluorescence. Furthermore, the four compounds exhibited reversible high-contrast mechanochromism characteristics. Four triphenylamine or carbazole-based benzothiadiazole dyes were synthesized. Interestingly, the four dyes exhibited high-contrast mechanochromism characteristics.![]()
Collapse
Affiliation(s)
- Yuan-yuan Zhu
- School of Chemistry and Chemical Engineering
- Jiangxi Science and Technology Normal University
- Nanchang 330013
- PR China
| | - Hong-ying Xia
- School of Chemistry and Chemical Engineering
- Jiangxi Science and Technology Normal University
- Nanchang 330013
- PR China
| | - Li-feng Yao
- School of Chemistry and Chemical Engineering
- Jiangxi Science and Technology Normal University
- Nanchang 330013
- PR China
| | - Dan-ping Huang
- School of Chemistry and Chemical Engineering
- Jiangxi Science and Technology Normal University
- Nanchang 330013
- PR China
| | - Jun-yan Song
- School of Chemistry and Chemical Engineering
- Jiangxi Science and Technology Normal University
- Nanchang 330013
- PR China
| | - Hai-feng He
- School of Chemistry and Chemical Engineering
- Jiangxi Science and Technology Normal University
- Nanchang 330013
- PR China
| | - Liang Shen
- School of Chemistry and Chemical Engineering
- Jiangxi Science and Technology Normal University
- Nanchang 330013
- PR China
| | - Feng Zhao
- School of Chemistry and Chemical Engineering
- Jiangxi Science and Technology Normal University
- Nanchang 330013
- PR China
| |
Collapse
|
33
|
Xiao T, Xu L, Zhou L, Sun XQ, Lin C, Wang L. Dynamic hydrogels mediated by macrocyclic host-guest interactions. J Mater Chem B 2018; 7:1526-1540. [PMID: 32254900 DOI: 10.1039/c8tb02339e] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Hydrogels have attracted increasing research interest in recent years due to their dynamic properties and potential applications in biomaterials. Concurrently, macrocycle-based host-guest interactions have played an important role in the development of supramolecular chemistry. Recently, research towards dynamic hydrogels mediated by various macrocyclic host-guest interactions has been gradually disclosed. In this review, we will outline the burgeoning progress in the development of functional hydrogels mediated by various host molecules, such as cyclodextrins, cucurbit[n]urils, calix[n]arenes, pillar[n]arenes, and other macrocycles. Smart hydrogels with outstanding properties, like biocompatibility, toughness, and self-healing, are mainly focused. We believe that this review will highlight the potential of dynamic hydrogels mediated by macrocycle-based host-guest interactions.
Collapse
Affiliation(s)
- Tangxin Xiao
- School of Petrochemical Engineering, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, 213164, China.
| | | | | | | | | | | |
Collapse
|
34
|
Chen XM, Chen Y, Yu Q, Gu BH, Liu Y. Supramolecular Assemblies with Near-Infrared Emission Mediated in Two Stages by Cucurbituril and Amphiphilic Calixarene for Lysosome-Targeted Cell Imaging. Angew Chem Int Ed Engl 2018; 57:12519-12523. [DOI: 10.1002/anie.201807373] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Indexed: 01/06/2023]
Affiliation(s)
- Xu-Man Chen
- College of Chemistry; State Key Laboratory of Elemento-Organic Chemistry; Nankai University; Tianjin 300071 P. R. China
| | - Yong Chen
- College of Chemistry; State Key Laboratory of Elemento-Organic Chemistry; Nankai University; Tianjin 300071 P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); Tianjin 300072 P. R. China
| | - Qilin Yu
- College of Chemistry; State Key Laboratory of Elemento-Organic Chemistry; Nankai University; Tianjin 300071 P. R. China
| | - Bo-Han Gu
- College of Chemistry; State Key Laboratory of Elemento-Organic Chemistry; Nankai University; Tianjin 300071 P. R. China
| | - Yu Liu
- College of Chemistry; State Key Laboratory of Elemento-Organic Chemistry; Nankai University; Tianjin 300071 P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); Tianjin 300072 P. R. China
| |
Collapse
|
35
|
Chen XM, Chen Y, Yu Q, Gu BH, Liu Y. Supramolecular Assemblies with Near-Infrared Emission Mediated in Two Stages by Cucurbituril and Amphiphilic Calixarene for Lysosome-Targeted Cell Imaging. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201807373] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Xu-Man Chen
- College of Chemistry; State Key Laboratory of Elemento-Organic Chemistry; Nankai University; Tianjin 300071 P. R. China
| | - Yong Chen
- College of Chemistry; State Key Laboratory of Elemento-Organic Chemistry; Nankai University; Tianjin 300071 P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); Tianjin 300072 P. R. China
| | - Qilin Yu
- College of Chemistry; State Key Laboratory of Elemento-Organic Chemistry; Nankai University; Tianjin 300071 P. R. China
| | - Bo-Han Gu
- College of Chemistry; State Key Laboratory of Elemento-Organic Chemistry; Nankai University; Tianjin 300071 P. R. China
| | - Yu Liu
- College of Chemistry; State Key Laboratory of Elemento-Organic Chemistry; Nankai University; Tianjin 300071 P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); Tianjin 300072 P. R. China
| |
Collapse
|
36
|
Wang Z, Cui H, Sun Z, Roch LM, Goldner AN, Nour HF, Sue ACH, Baldridge KK, Olson MA. Melatonin-directed micellization: a case for tryptophan metabolites and their classical bioisosteres as templates for the self-assembly of bipyridinium-based supramolecular amphiphiles in water. SOFT MATTER 2018; 14:2893-2905. [PMID: 29589034 DOI: 10.1039/c8sm00136g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The bulk solution properties of amphiphilic formulations are derivative of their self-assembly into higher ordered supramolecular assemblies known as micelles and of their ordering at the air-water interface. Exerting control over the surface-active properties of amphiphiles and their propensity to aggregate in pure water is most often fine-tuned by covalent modification of their molecular structure. Nevertheless structural constraints which limit the performance of amphiphiles do emerge when trying to develop more sophisticated systems which undergo for example, shape-defined controlled assembly and/or respond to external stimuli. In this regard, the template-modulated assembly of the so-called "supramolecular amphiphiles" continues to make progress ordering molecules that otherwise have very little to no driving force to aggregate in a prescribed manner in aqueous solutions. Herein we describe the template-modulated micellization and ordering at the air-water interface of bipyridinium-based supramolecular amphiphiles triggered by host-guest interactions with high specificity for the neurotransmitter melatonin over its biosynthetic synthon l-tryptophan and the thermodynamic parameters governing the template-modulated micellization process. When bound to the bipyridinium units of micellized surfactant molecules, melatonin effectively serves as "molecular glue" capable of lowering the CMC by 52% as compared to untemplated solutions. Analysis of this system suggests that a hallmark of donor-acceptor template-modulated micellization in water is a strong positively correlated temperature dependence of the CMC and the absence of a U-shaped CMC-temperature curve. Our findings make a case for the incorporation of l-tryptophan-based metabolites and their classical synthetic pharmaceutical bioisosteres as potential targets/components of donor-acceptor CT-based supramolecular amphiphile systems/materials operating in water.
Collapse
Affiliation(s)
- Zhenzhen Wang
- Health Sciences Platform, Tianjin University, Building 24, Tianjin 300072, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Morozova JE, Syakaev VV, Shalaeva YV, Ermakova AM, Nizameev IR, Kadirov MK, Kazakova EK, Konovalov AI. The supramolecular polymer complexes with oppositely charged calixresorcinarene: hydrophobic domain formation and synergistic binding modes. SOFT MATTER 2018; 14:1799-1810. [PMID: 29442125 DOI: 10.1039/c8sm00015h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The association of branched polyethyleneimine (PEI) with a series of octacarboxy-calixresorcinarenes bearing different low-rim substituents leads to the formation of nanosized supramolecular complexes. The PEI-macrocycle complexes have fine-tunable sizes regulated by variations in the self-association capacity of the calixresorcinarenes. In the supramolecular complexes, hydrophobic fragments of the polymer and calixresorcinarenes form cooperative hydrophobic domains which provide synergistic enhancement of guest molecule binding. The formation of the supramolecular complexes was investigated by NMR FT-PGSE, NMR 2D NOESY, DLS and TEM methods. In addition, fluorimetry and UV-vis methods were used with the help of optical probes, namely water-soluble Crystal Violet and water-insoluble Orange OT. The investigation demonstrates the first example of the formation of cooperative hydrophobic domains in supramolecular polyelectrolyte-macrocycle complexes which enhance the binding of both water-soluble and water-insoluble organic compounds. The presented supramolecular systems have potential as sensory and drug delivery systems.
Collapse
Affiliation(s)
- Ju E Morozova
- A. E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Science, Arbuzov str. 8, 420088 Kazan, Russian Federation.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Datta S, Dey N, Bhattacharya S. Electrochemical probing of hydrogelation induced by the self-assembly of a donor-acceptor complex comprising pyranine and viologen. Chem Commun (Camb) 2018; 53:2371-2374. [PMID: 28165515 DOI: 10.1039/c6cc09465a] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A long-tailed methyl viologen (DMV) forms a co-assembly (1 : 1) with pyranine to result in pronounced hydrogelation. The systematic evolution of the hydrogel promoted by the donor-acceptor interactions could be probed electrochemically in a non-invasive manner.
Collapse
Affiliation(s)
- Sougata Datta
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, India. and Director's Research Unit (DRU), Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032, India
| | - Nilanjan Dey
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, India.
| | - Santanu Bhattacharya
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, India. and Director's Research Unit (DRU), Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032, India
| |
Collapse
|
39
|
Dimatteo R, Darling NJ, Segura T. In situ forming injectable hydrogels for drug delivery and wound repair. Adv Drug Deliv Rev 2018; 127:167-184. [PMID: 29567395 PMCID: PMC6003852 DOI: 10.1016/j.addr.2018.03.007] [Citation(s) in RCA: 529] [Impact Index Per Article: 75.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 02/18/2018] [Accepted: 03/14/2018] [Indexed: 02/06/2023]
Abstract
Hydrogels have been utilized in regenerative applications for many decades because of their biocompatibility and similarity in structure to the native extracellular matrix. Initially, these materials were formed outside of the patient and implanted using invasive surgical techniques. However, advances in synthetic chemistry and materials science have now provided researchers with a library of techniques whereby hydrogel formation can occur in situ upon delivery through standard needles. This provides an avenue to minimally invasively deliver therapeutic payloads, fill complex tissue defects, and induce the regeneration of damaged portions of the body. In this review, we highlight these injectable therapeutic hydrogel biomaterials in the context of drug delivery and tissue regeneration for skin wound repair.
Collapse
Affiliation(s)
- Robert Dimatteo
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles, 420 Westwood Plaza, Los Angeles, CA 90095, United States.
| | - Nicole J Darling
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles, 420 Westwood Plaza, Los Angeles, CA 90095, United States.
| | - Tatiana Segura
- Department of Chemical and Biomolecular Engineering, Bioengineering, and Dermatology, School of Medicine, University of California Los Angeles, 420 Westwood Plaza, Los Angeles, CA 90095, United States.
| |
Collapse
|
40
|
Li Z, Wang G, Wang Y, Li H. Reversible Phase Transition of Robust Luminescent Hybrid Hydrogels. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201712670] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Zhiqiang Li
- School of Chemical Engineering and Technology; Hebei University of Technology; GuangRong Dao 8, Hongqiao District Tianjin 300130 P. R. China
| | - Guannan Wang
- School of Chemical Engineering and Technology; Hebei University of Technology; GuangRong Dao 8, Hongqiao District Tianjin 300130 P. R. China
| | - Yige Wang
- School of Chemical Engineering and Technology; Hebei University of Technology; GuangRong Dao 8, Hongqiao District Tianjin 300130 P. R. China
| | - Huanrong Li
- School of Chemical Engineering and Technology; Hebei University of Technology; GuangRong Dao 8, Hongqiao District Tianjin 300130 P. R. China
| |
Collapse
|
41
|
Li Z, Wang G, Wang Y, Li H. Reversible Phase Transition of Robust Luminescent Hybrid Hydrogels. Angew Chem Int Ed Engl 2018; 57:2194-2198. [DOI: 10.1002/anie.201712670] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Indexed: 11/09/2022]
Affiliation(s)
- Zhiqiang Li
- School of Chemical Engineering and Technology; Hebei University of Technology; GuangRong Dao 8, Hongqiao District Tianjin 300130 P. R. China
| | - Guannan Wang
- School of Chemical Engineering and Technology; Hebei University of Technology; GuangRong Dao 8, Hongqiao District Tianjin 300130 P. R. China
| | - Yige Wang
- School of Chemical Engineering and Technology; Hebei University of Technology; GuangRong Dao 8, Hongqiao District Tianjin 300130 P. R. China
| | - Huanrong Li
- School of Chemical Engineering and Technology; Hebei University of Technology; GuangRong Dao 8, Hongqiao District Tianjin 300130 P. R. China
| |
Collapse
|
42
|
Zhao Q, Chen Y, Li SH, Liu Y. Tunable white-light emission by supramolecular self-sorting in highly swollen hydrogels. Chem Commun (Camb) 2018; 54:200-203. [DOI: 10.1039/c7cc08822a] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Fluorescence-tunable hydrogels especially emitting white-light were achieved by swelling hydrogels in solutions containing two kinds of dyes.
Collapse
Affiliation(s)
- Qian Zhao
- College of Chemistry
- State Key Laboratory of Elemento-Organic Chemistry
- Nankai University
- Tianjin 300071
- P. R. China
| | - Yong Chen
- College of Chemistry
- State Key Laboratory of Elemento-Organic Chemistry
- Nankai University
- Tianjin 300071
- P. R. China
| | - Sheng-Hua Li
- College of Chemistry
- State Key Laboratory of Elemento-Organic Chemistry
- Nankai University
- Tianjin 300071
- P. R. China
| | - Yu Liu
- College of Chemistry
- State Key Laboratory of Elemento-Organic Chemistry
- Nankai University
- Tianjin 300071
- P. R. China
| |
Collapse
|
43
|
Shen J, Wang Z, Sun D, Liu G, Yuan S, Kurmoo M, Xin X. Self-assembly of water-soluble silver nanoclusters: superstructure formation and morphological evolution. NANOSCALE 2017; 9:19191-19200. [PMID: 29186220 DOI: 10.1039/c7nr06359h] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Supramolecular self-assembly, based on non-covalent interactions, has been employed as an efficient approach to obtain various functional materials from nanometer-sized building blocks, in particular, [Ag6(mna)6]6-, mna = mercaptonicotinate (Ag6-NC). A challenging issue is how to modulate the self-assembly process through regulating the relationship between building blocks and solvents. Herein, we report the controlled self-assembly of hexanuclear silver nanoclusters into robust multilayer vesicles in different solvents, DMSO, CH3CN, EG and MeOH. Their unique luminescence enables them to be bifunctional probes to sense Fe3+ and dl-dithiothreitol (DTT). By protonating the Ag6-NC to Ag6-H-NC using hydrochloric acid (HCl), the multilayer vesicles survive in aprotic solvents, DMSO and CH3CN, but are transformed to nanowires in protic solvents, water, EG and MeOH. Our results demonstrated that the solvent-bridged H-bond plays a key role in the evolution of the morphologies from vesicles to nanowires. Moreover, the nanowires could further hierarchically self-assemble in water into hydrogels with high water content (99.5%), and with remarkable mechanical strength and self-healing properties. This study introduces a robust cluster-based building block in a supramolecular self-assembly system and reveals the significance of aprotic and protic solvents for the modulation of the morphologies of cluster-based aggregates.
Collapse
Affiliation(s)
- Jinglin Shen
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
44
|
Affiliation(s)
- Han-Wen Tian
- State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials, Ministry of Education, College of Chemistry, Nankai University, Tianjin, China
| | - Yu-Chen Pan
- State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials, Ministry of Education, College of Chemistry, Nankai University, Tianjin, China
| | - Dong-Sheng Guo
- State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials, Ministry of Education, College of Chemistry, Nankai University, Tianjin, China
| |
Collapse
|
45
|
Wang KP, Chen JP, Zhang SJ, Lei Y, Zhong H, Chen S, Zhou XH, Hu ZQ. Thiophene-based rhodamine as selectivef luorescence probe for Fe(III) and Al(III) in living cells. Anal Bioanal Chem 2017; 409:5547-5554. [DOI: 10.1007/s00216-017-0490-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 06/08/2017] [Accepted: 06/22/2017] [Indexed: 12/01/2022]
|
46
|
Park KM, Roh JH, Sung G, Murray J, Kim K. Self-Healable Supramolecular Hydrogel Formed by Nor-Seco-Cucurbit[10]uril as a Supramolecular Crosslinker. Chem Asian J 2017; 12:1461-1464. [PMID: 28337859 DOI: 10.1002/asia.201700386] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Indexed: 11/06/2022]
Abstract
A supramolecular hydrogel was formed by a simple mixing of solutions of nor-seco-cucurbit[10]uril (NS-CB[10]) and adamantylamine-terminated 4-armed polyethylene glycol (AdA-4-arm-PEG). In the formation of the hydrogel, NS-CB[10] acted as a noncovalent crosslinker to form a ternary complex with two AdA moieties. The dynamic and selective nature of the host-guest interaction between NS-CB[10] and AdA enabled the supramolecular hydrogel to rapidly recover its physical properties after it was damaged. In addition, the recovered hydrogel retained its physical properties with negligible differences from those of the pristine material, even after multiple self-healing cycles. The NS-CB[10]-based hydrogel with the self-healing property may be useful for various biological applications such as drug delivery, cell therapy and tissue engineering.
Collapse
Affiliation(s)
- Kyeng Min Park
- Center for Self-assembly and Complexity (CSC), Institute for Basic Science (IBS), Pohang, 37673, Republic of Korea.,Department of Nanomaterials and Engineering, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| | - Joon Ho Roh
- Center for Self-assembly and Complexity (CSC), Institute for Basic Science (IBS), Pohang, 37673, Republic of Korea.,Department of Biomolecular Science, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| | - Gihyun Sung
- Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - James Murray
- Center for Self-assembly and Complexity (CSC), Institute for Basic Science (IBS), Pohang, 37673, Republic of Korea
| | - Kimoon Kim
- Center for Self-assembly and Complexity (CSC), Institute for Basic Science (IBS), Pohang, 37673, Republic of Korea.,Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.,Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| |
Collapse
|
47
|
Molecular recognition of sulfonatocalixarene with organic cations at the self-assembled interface: a thermodynamic investigation. CHINESE CHEM LETT 2017. [DOI: 10.1016/j.cclet.2016.12.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
48
|
Ding YZ, Gong HL, Wang KP. Highly Sensitive and Selective Turn-on Fluorescent Probe for Hg2+ Based on Rhodamine 6G-Thiourea Conjugate. J Fluoresc 2017; 27:1095-1099. [DOI: 10.1007/s10895-017-2044-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Accepted: 02/07/2017] [Indexed: 01/28/2023]
|
49
|
Li Z, Zhang YM, Wang HY, Li H, Liu Y. Mechanical Behaviors of Highly Swollen Supramolecular Hydrogels Mediated by Pseudorotaxanes. Macromolecules 2017. [DOI: 10.1021/acs.macromol.6b02459] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Zhiqiang Li
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, P. R. China
| | | | - Huan-Yu Wang
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, P. R. China
| | - Huanrong Li
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, P. R. China
| | | |
Collapse
|
50
|
Madasamy K, Gopi S, Kumaran MS, Radhakrishnan S, Velayutham D, Mareeswaran PM, Kathiresan M. A Supramolecular Investigation on the Interactions between Ethyl terminated Bis-viologen Derivatives with Sulfonato Calix[4]arenes. ChemistrySelect 2017. [DOI: 10.1002/slct.201601818] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Kanagaraj Madasamy
- Electroorganic Division; CSIR-Central Electrochemical Research Institute; Karaikudi- 630003, TamilNadu INDIA
- Academy of Scientific and Innovative Research (AcSIR); CSIR-Central Electrochemical Research Institute; Karaikudi- 630003, TamilNadu INDIA
| | - Sivalingam Gopi
- Electroorganic Division; CSIR-Central Electrochemical Research Institute; Karaikudi- 630003, TamilNadu INDIA
| | | | - Srinivasan Radhakrishnan
- Electroorganic Division; CSIR-Central Electrochemical Research Institute; Karaikudi- 630003, TamilNadu INDIA
| | - David Velayutham
- Electroorganic Division; CSIR-Central Electrochemical Research Institute; Karaikudi- 630003, TamilNadu INDIA
| | | | - Murugavel Kathiresan
- Electroorganic Division; CSIR-Central Electrochemical Research Institute; Karaikudi- 630003, TamilNadu INDIA
| |
Collapse
|