1
|
Wang Z, Huang D, Liu Y, Lin H, Zhang Z, Ablez A, Zhuang T, Du K, Li J, Huang X. Vacancy Effect on the Luminescent and Water Responsive Properties of Vacancy-Ordered Double Perovskite Derivatives. Angew Chem Int Ed Engl 2024:e202412346. [PMID: 39136171 DOI: 10.1002/anie.202412346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Indexed: 11/01/2024]
Abstract
Vacancy-ordered perovskites and derivatives represent an important subclass of hybrid metal halides with promise in applications including light emitting devices and photovoltaics. Understanding the vacancy-property relationship is crucial for designing related task-specific materials, yet research in this field remains sporadic. For the first time, we use the Connolly surface to quantitatively calculate the volume of vacancy (V□, □=vacancy) in vacancy-ordered double perovskite derivatives (VDPDs). A relationship between void fraction and the structure, photoluminescent properties and humidity stability was established based on zero-dimensional (0-D) [N(alkyl)4]2Sb□Cl5□'-type VDPDs. Compared with the more commonly studied A2M(IV)X6□-type double perovskite (A=cation, M=metal ion, X=halide), [N(alkyl)4]2Sb□Cl5□' features double vacancy sites. Our results demonstrate an inverse relationship between the photoluminescent quantum yield and V□ in 0-D VDPDs. Additionally, structural transformation from A2SbCl5 to A3Sb2Cl9 was first reported, during which the novel 'gate-opening' gas adsorption phenomenon was observed in VDPDs for the first time, as evidenced by 'S'-shaped sorption isotherms for water vapor, indicating a cation-controlled water-vapor response behavior. A mixed-cation strategy was developed to modulate the humidity stability of VDPDs. Characterized by controllable water-responsive behavior and unique 'on-off-on' luminescent switching, A2M(III)□X5□'-type materials show great promise for multi-level information anti-counterfeiting applications.
Collapse
Affiliation(s)
- Zeping Wang
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter, The Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, 7098 Liuxian Boulevard, Shenzhen, Guangdong, 518055, P. R. China
- Department of Chemistry and Chemical Biology, Rutgers University, 123 Bevier Road, Piscataway, NJ 08854, USA
| | - Dandan Huang
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter, The Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- College of Chemistry, FuZhou University, Fuzhou, Fujian, 350007, P. R. China
| | - Yi Liu
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter, The Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- College of Chemistry, FuZhou University, Fuzhou, Fujian, 350007, P. R. China
| | - Haowei Lin
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter, The Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- College of Chemistry, FuZhou University, Fuzhou, Fujian, 350007, P. R. China
| | - Zhizhuan Zhang
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter, The Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Abdusalam Ablez
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter, The Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- College of Chemistry, FuZhou University, Fuzhou, Fujian, 350007, P. R. China
| | - Tinghui Zhuang
- College of Chemistry, FuZhou University, Fuzhou, Fujian, 350007, P. R. China
| | - Kezhao Du
- College of Chemistry and Materials Science Fujian Provincial Key Laboratory of Polymer Materials & Advanced Materials Oriented Chemical Engineering, Fujian Normal University, Fuzhou, Fujian, 350007, P. R. China
| | - Jing Li
- Department of Chemistry and Chemical Biology, Rutgers University, 123 Bevier Road, Piscataway, NJ 08854, USA
| | - Xiaoying Huang
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter, The Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| |
Collapse
|
2
|
Kong L, Peng H, Wei Q, Liang Q, Zhao J, Zou B. Efficient tunable white emission and multiple reversible photoluminescence switching in organic Tin(IV) chlorides via regulating the host lattice environment of antimony ions for multifunctional applications. J Colloid Interface Sci 2024; 666:560-571. [PMID: 38613978 DOI: 10.1016/j.jcis.2024.04.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/25/2024] [Accepted: 04/08/2024] [Indexed: 04/15/2024]
Abstract
The host lattice environments of Sb3+ has a great influence on its photophysical properties. Here, we synthesized three zero-dimensional organic metal halides of (TPA)2SbCl5 (1), Sb3+-doped (TPA)SnCl5(H2O)·2H2O (Sb3+-2), and Sb3+-doped (TPA)2SnCl6 (Sb3+-3). Compared with the intense orange emission of 1, Sb3+-3 has smaller lattice distortion, thus effectively suppressing the exciton transformation from singlet to triplet self-trapped exciton (STE) states, which makes Sb3+-3 has stronger singlet STE emission and further bring a white emission with a photoluminescence quantum efficiency (PLQE) of 93.4%. Conversely, the non-emission can be observed in Sb3+-2 even though it has a similar [SbCl5]2- structure to 1, which should be due to its indirect bandgap characteristics and the effective non-radiative relaxation caused by H2O in the lattice. Interestingly, the non-emission of Sb3+-2 can convert into the bright emission of Sb3+-3 under TPACl DMF solution treatment. Meanwhile, the white emission under 315 nm excitation of Sb3+-3 can change into orange emission upon 365 nm irradiation, and the luminescence can be further quenched by the treatment of HCl. Therefore, a triple-mode reversible luminescence switch of off-onI-onII-off can be achieved. Finally, we demonstrated the applications of Sb3+-doped compounds in single-component white light illumination, latent fingerprint detection, fluorescent anti-counterfeiting, and information encryption.
Collapse
Affiliation(s)
- Linghang Kong
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, and School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Hui Peng
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, and School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China.
| | - Qilin Wei
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Qihua Liang
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, and School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Jialong Zhao
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, and School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Bingsuo Zou
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, and School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China.
| |
Collapse
|
3
|
Zhao X, Wang N, Quan M, Hou A, Liu K, Cui Y, Zhao J, Liu Q. High External Quantum Efficiency and Dual-Band Emission of (C 7H 18N) 3Sb 2Cl 9 for Sensitivity Temperature Sensing. Inorg Chem 2024; 63:10705-10712. [PMID: 38809172 DOI: 10.1021/acs.inorgchem.4c01220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Organic-inorganic hybrid halides have gained attention for their ease of processing and remarkable optoelectronic properties. However, the relationship between the structure and optical properties requires further exploration. In this study, the butyltrimethylammonium cation (C7H18N+) was chosen, and seven compounds were synthesized: (C7H18N)3Sb2X9 (X = Cl, Br), (C7H18N)3Bi2X9 (X = Cl, Br, I), and (C7H18N)(C2H8N)MBr5 (M = Sb, Bi). Crystals with a single organic cation exhibit a zero-dimensional structure, while the introduction of dimethylamine ions increases the crystal dimensionality from zero-dimensional (C7H18N)3Sb2Br9 to one-dimensional (C7H18N)(C2H8N)SbBr5. Under 372 nm excitation, (C7H18N)3Sb2Cl9 showed broad orange-red single-band emission with a high photoluminescence quantum yield of 88.4% and an external quantum efficiency of up to 56.9%. A white light-emitting diode based on (C7H18N)3Sb2Cl9 achieved a high color rendering index of 96.3. Moreover, dual-band emission was observed in (C7H18N)3Sb2Cl9 under 308 nm excitation, which exhibits an absolute temperature sensitivity of 1.96 × 10-3 K-1 (320 K), and a flexible film was prepared by incorporating polydimethylsiloxane. This shows the promise of hybrid metal halides as photoluminescent materials and their possibilities for temperature sensing.
Collapse
Affiliation(s)
- Xianlong Zhao
- The Beijing Municipal Key Laboratory of New Energy Materials and Technologies, School of Materials Sciences and Engineering and Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Na Wang
- The Beijing Municipal Key Laboratory of New Energy Materials and Technologies, School of Materials Sciences and Engineering and Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Mingzhen Quan
- The Beijing Municipal Key Laboratory of New Energy Materials and Technologies, School of Materials Sciences and Engineering and Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - An Hou
- The Beijing Municipal Key Laboratory of New Energy Materials and Technologies, School of Materials Sciences and Engineering and Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Kunjie Liu
- The Beijing Municipal Key Laboratory of New Energy Materials and Technologies, School of Materials Sciences and Engineering and Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yibo Cui
- The Beijing Municipal Key Laboratory of New Energy Materials and Technologies, School of Materials Sciences and Engineering and Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Jing Zhao
- The Beijing Municipal Key Laboratory of New Energy Materials and Technologies, School of Materials Sciences and Engineering and Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Quanlin Liu
- The Beijing Municipal Key Laboratory of New Energy Materials and Technologies, School of Materials Sciences and Engineering and Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
4
|
Liao JF, Zhang Z, Zhou L, Tang Z, Xing G. Achieving Near-Unity Red Light Photoluminescence in Antimony Halide Crystals via Polyhedron Regulation. Angew Chem Int Ed Engl 2024; 63:e202404100. [PMID: 38616169 DOI: 10.1002/anie.202404100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 04/16/2024]
Abstract
Exploration of efficient red emitting antimony hybrid halide with large Stokes shift and zero self-absorption is highly desirable due to its enormous potential for applications in solid light emitting, and active optical waveguides. However, it is still challenging and rarely reported. Herein, a series of (TMS)2SbCl5 (TMS=triphenylsulfonium cation) crystals have been prepared with diverse [SbCl5]2- configurations and distinctive emission color. Among them, cubic-phase (TMS)2SbCl5 shows bright red emission with a large Stokes shift of 312 nm. In contrast, monoclinic and orthorhombic (TMS)2SbCl5 crystals deliver efficient yellow and orange emission, respectively. Comprehensive structural investigations reveal that larger Stokes shift and longer-wavelength emission of cubic (TMS)2SbCl5 can be attributed to the larger lattice volume and longer Sb⋅⋅⋅Sb distance, which favor sufficient structural aberration freedom at excited states. Together with robust stability, (TMS)2SbCl5 crystal family has been applied as optical waveguide with ultralow loss coefficient of 3.67 ⋅ 10-4 dB μm-1, and shows superior performance in white-light emission and anti-counterfeiting. In short, our study provides a novel and fundamental perspective to structure-property-application relationship of antimony hybrid halides, which will contribute to future rational design of high-performance emissive metal halides.
Collapse
Affiliation(s)
- Jin-Feng Liao
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Macau, 999078, P. R. China
| | - Zhipeng Zhang
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Macau, 999078, P. R. China
| | - Lei Zhou
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, P. R. China
| | - Zikang Tang
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Macau, 999078, P. R. China
| | - Guichuan Xing
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Macau, 999078, P. R. China
| |
Collapse
|
5
|
Rowińska M, Stefańska D, Bednarchuk TJ, Zaręba JK, Jakubas R, Gągor A. Polymorphism and Red Photoluminescence Emission from 5s 2 Electron Pairs of Sb(III) in a New One-Dimensional Organic-Inorganic Hybrid Based on Methylhydrazine: MHy 2SbI 5. Molecules 2024; 29:455. [PMID: 38257367 PMCID: PMC10821241 DOI: 10.3390/molecules29020455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
We explore the crystal structure and luminescent properties of a new 1D organic-inorganic hybrid, MHy2SbI5, based on methylhydrazine. The compound reveals the red photoluminescence (PL) originating from the 5s2 electron pairs of Sb(III) as well as complex structural behavior. MHy2SbI5 crystalizes in two polymorphic forms (I and II) with distinct thermal properties and structural characteristics. Polymorph I adopts the acentric P212121 chiral space group confirmed by SHG, and, despite a thermally activated disorder of MHy, does not show any phase transitions, while polymorph II undergoes reversible low-temperature phase transition and high-temperature reconstructive transformation to polymorph I. The crystal structures of both forms consist of 1D perovskite zig-zag chains of corner-sharing SbI6 octahedra. The intriguing phase transition behavior of II is associated with the unstable arrangement of the [SbI5]2-∞ chains in the structure. The energy band gap (Eg) values, estimated based on the UV-Vis absorption spectra, indicate that both polymorphs have band gaps, with Eg values of 2.01 eV for polymorph I and 2.12 eV for polymorph II.
Collapse
Affiliation(s)
- Magdalena Rowińska
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okólna 2, 50-422 Wrocław, Poland (T.J.B.)
| | - Dagmara Stefańska
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okólna 2, 50-422 Wrocław, Poland (T.J.B.)
| | - Tamara J. Bednarchuk
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okólna 2, 50-422 Wrocław, Poland (T.J.B.)
| | - Jan K. Zaręba
- Advanced Materials Engineering and Modelling Group, Wrocław University of Science and Technology, Wyb. Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Ryszard Jakubas
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland
| | - Anna Gągor
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okólna 2, 50-422 Wrocław, Poland (T.J.B.)
| |
Collapse
|
6
|
Hou R, Shen C, Chen H, Meng L, Xu L, Wang J, Wang D. Temperature-Induced Reversible Photoluminescence Switching and Ultraviolet-Pumped Light-Emitting Diode Applications of a Perovskite (C 6H 10N 2) 2MnCl 6·2H 2O Crystal. Inorg Chem 2024; 63:803-811. [PMID: 38113036 DOI: 10.1021/acs.inorgchem.3c03812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Zero-dimensional (0D) organic-inorganic hybrid halides present many fascinating photophysical properties for promising optoelectronic applications such as light-emitting diodes (LEDs), X-ray imaging, photodetectors, and anticounterfeiting. Herein, a centimeter-sized single crystal (C6H10N2)2MnCl6·2H2O with a 0D perovskite structure was obtained via a solvent evaporation method. A bright red emission at 618 nm with a larger Stokes shift of more than 300 nm and a long fluorescence lifetime of 6.21 ms were measured. Notably, a reversible PL switching from red emission to nonluminescence has been presented in the cycles of heating-cooling processes from RT to 100 °C. Furthermore, the temperature-induced luminescence shows a quick recovery after 20 conversion cycles, exhibiting excellent stability and temperature sensing. According to the structural and theoretical analyses, the temperature-induced luminescence is primarily due to hydrogen-bonding interactions between (MnCl6)4- and H2O molecules. Particularly, a temperature anticounterfeiting application has been designed based on its reversible temperature-dependent PL switching. Importantly, the ultraviolet-pumped LEDs fabricated by (C6H10N2)2MnCl6·2H2O single crystals are perfectly achieved. Anyway, this work clearly demonstrates that 0D Mn-based perovskite with temperature-dependent PL switching greatly extends its potential applications in electro-optical display, temperature sensing, and anticounterfeiting devices.
Collapse
Affiliation(s)
- Ruoxian Hou
- School of Physics and Physical Engineering, Shandong Provincial Key Laboratory of Laser Polarization and Information Technology, Qufu Normal University, Qufu 273165, China
| | - Chuanying Shen
- School of Physics and Physical Engineering, Shandong Provincial Key Laboratory of Laser Polarization and Information Technology, Qufu Normal University, Qufu 273165, China
| | - Hanzhang Chen
- School of Physics and Physical Engineering, Shandong Provincial Key Laboratory of Laser Polarization and Information Technology, Qufu Normal University, Qufu 273165, China
| | - Lingqiang Meng
- School of Advanced Materials, Shenzhen Graduate School, Peking University, Shenzhen 518055, China
| | - Longyun Xu
- School of Materials and Chemical Engineering, Henan University of Urban Construction, Pingdingshan 467000, China
| | - Jiyang Wang
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan 250100, P. R. China
| | - Duanliang Wang
- School of Physics and Physical Engineering, Shandong Provincial Key Laboratory of Laser Polarization and Information Technology, Qufu Normal University, Qufu 273165, China
| |
Collapse
|
7
|
Zhang R, Xie H, Zhao Q, Tang Z, Yang C, Su B. Zero-Dimensional Hybrid Antimony Chloride with Near-Unity Broad-Band Orange-Red Emission toward Solid-State Lighting. Inorg Chem 2023; 62:19771-19779. [PMID: 37988061 DOI: 10.1021/acs.inorgchem.3c03295] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Zero-dimensional (0D) hybrid metal halides are attractive owing to their distinctive structure as well as photoluminescence (PL) characteristics. To discover 0D hybrid metal halides with high photoluminescence quantum yield and good stability is of great significance for white light-emitting diodes (LEDs). Herein, a novel hybrid antimony chloride (CTP)2SbCl5 is synthesized, which shows a bright broad-band orange-red emission peaking at 620 nm under the low energy excitation (365 nm), achieving an excellent photoluminescence quantum yield of 96.8%. In addition, (CTP)2SbCl5 shows an additional emission peaking at 470 nm when excited at high energy (323 nm). PL spectra and density functional theory results demonstrate that the observed dual-band emission originates from the singlet and triplet self-trapped excitons confined in isolated [SbCl5]2- square pyramids. Moreover, (CTP)2SbCl5 presents relatively superior air stability, and the PL intensity still maintains 78% of the initial PL intensity when exposed to the air for above 2 weeks. Benefiting from high-efficiency PL emission and good stability of (CTP)2SbCl5, a stable warm white LED device with a 92.3% color rendering index was prepared by coating blue phosphor BaMgAl10O17:Eu2+, green (Sr,Ba)2SiO4:Eu2+, and orange-red (CTP)2SbCl5 on a 365 nm LED chip. This work provides an efficient luminescent material and also demonstrates the potential application of 0D hybrid antimony chloride in solid-state lighting.
Collapse
Affiliation(s)
- Ruiqing Zhang
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, PR China
| | - Huidong Xie
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, PR China
| | - Qiyu Zhao
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, PR China
| | - Zuobin Tang
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, PR China
| | - Chang Yang
- Engineering Comprehensive Training Center, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, PR China
| | - Binbin Su
- Department of Materials Science and Engineering, Xi'an University of Science and Technology, Xi'an, Shaanxi 710054, PR China
| |
Collapse
|
8
|
Hao J, An R, Li Y, Wang K, Song S, Feng J, Wang X, Zhang H. Facile synthesis of Sb 3+-doped (Bmim) 2InCl 5(H 2O) through a grinding method for light-emitting diodes. Dalton Trans 2023; 52:6799-6803. [PMID: 37133366 DOI: 10.1039/d3dt00673e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Organic-inorganic metal hybrid halides (OIMHs) as a new kind of photoelectric material have gained much attention in recent years because of their excellent performance in solid-state lighting applications. However, the preparation of most OIMHs is complex and requires a long preparation time in addition to the solvent providing the reaction environment. This greatly limits their further applications. Here, we synthesized zero-dimensional lead-free OIMH (Bmim)2InCl5(H2O) (Bmim = 1-butyl-3-methylimidazolium) by a facile grinding method at room temperature. Through Sb3+ doping, Sb3+:(Bmim)2InCl5(H2O) shows a bright broadband emission centered at 618 nm under UV excitation, which could be attributed to the self-trapped exciton (STE) emission of Sb3+ ions. To explore their ability in the field of solid-state lighting, a white-light-emitting diode (WLED) device based on Sb3+:(Bmim)2InCl5(H2O) with a high color rendering index of 90 was fabricated. This work enriches In3+-based OIMHs and provides a new direction for the simple fabrication of OIMHs.
Collapse
Affiliation(s)
- Jiayue Hao
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China.
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China.
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| | - Ran An
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| | - Yao Li
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| | - Ke Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| | - Shuyan Song
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China.
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| | - Jing Feng
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China.
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China.
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| | - Xinyu Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| | - Hongjie Zhang
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China.
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| |
Collapse
|
9
|
Chai CY, Han XB, Liu CD, Fan CC, Liang BD, Zhang W. Circularly Polarized Luminescence in Zero-Dimensional Antimony Halides: Structural Distortion Controlled Luminescence Thermometer. J Phys Chem Lett 2023; 14:4063-4070. [PMID: 37094225 DOI: 10.1021/acs.jpclett.3c00693] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Materials emitting circularly polarized luminescence (CPL) have been intensively studied for their promising applications in various fields. However, developing tunable and responsive CPL materials in a wide wavelength range remains a great challenge. Here, a pair of chiral (R,R/S,S-DCDA)3Sb2Cl12 (DCDA = dimethyl-1,2-cyclohexanediamine divalent cation) shows efficient broadband yellow emission with a photoluminescence (PL) quantum yield of 27.6% with a CPL asymmetry factor of 3 × 10-3. The associated chiroptical activity is attributed to the efficient chiral transfer as well as the self-trapped exciton emission originating from the large distortion of the inorganic blocks. Notably, (R,R/S,S-DCDA)3Sb2Cl12 exhibits a large red-shift emission exceeding 100 nm upon lowering temperature. An excellent linear correlation of the PL wavelength on temperature indicates that the compounds can be used as PL thermometers, which originates from a temperature-dependent linear structural distortion of the [SbCl6] emitter. This work inspires the potential utilization of CPL-emitting materials as responsive light sources.
Collapse
Affiliation(s)
- Chao-Yang Chai
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Xiang-Bin Han
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Cheng-Dong Liu
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Chang-Chun Fan
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Bei-Dou Liang
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Wen Zhang
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| |
Collapse
|
10
|
Sun C, Deng Z, Li Z, Chen Z, Zhang X, Chen J, Lu H, Canepa P, Chen R, Mao L. Achieving Near-unity Photoluminescence Quantum Yields in Organic-Inorganic Hybrid Antimony (III) Chlorides with the [SbCl 5 ] Geometry. Angew Chem Int Ed Engl 2023; 62:e202216720. [PMID: 36622348 DOI: 10.1002/anie.202216720] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 01/09/2023] [Accepted: 01/09/2023] [Indexed: 01/10/2023]
Abstract
Hybrid organic-inorganic antimony halides have attracted increasing attention due to the non-toxicity, stability, and high photoluminescence quantum yield (PLQY). To shed light on the structural factors that contribute to the high PLQY, five pairs of antimony halides with general formula A2 SbCl5 and A2 Sb2 Cl8 are synthesized via two distinct methods and characterized. The A2 SbCl5 type adopts square pyramidal [SbCl5 ] geometry with near-unity PLQY, while the A2 Sb2 Cl8 adopts seesaw dimmer [Sb2 Cl8 ] geometry with PLQY≈0 %. Through combined data analysis with the literature, we have found that A2 SbCl5 series with square pyramidal geometry generally has much longer Sb⋅⋅⋅Sb distances, leading to more expressed lone pairs of SbIII . Additional factors including Sb-Cl distance and stability of antimony chlorides may also affect PLQY. Our targeted synthesis and correlated insights provide efficient tools to precisely form highly emissive materials for optoelectronic applications.
Collapse
Affiliation(s)
- Chen Sun
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Zeyu Deng
- Department of Chemical and Biomolecular Engineering, National University of Singapore EA, Singapore, 117575, Singapore
| | - Zhiyuan Li
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Zhongwei Chen
- Department of Chemistry, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, Hong Kong
| | - Xuanyu Zhang
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Jian Chen
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Haipeng Lu
- Department of Chemistry, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, Hong Kong
| | - Pieremanuele Canepa
- Department of Chemical and Biomolecular Engineering, National University of Singapore EA, Singapore, 117575, Singapore
| | - Rui Chen
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Lingling Mao
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| |
Collapse
|
11
|
Lin H, Wei Q, Ke B, Lin W, Zhao H, Zou B. Excitation-Wavelength-Dependent Emission Behavior in (NH 4) 2SnCl 6 via Sb 3+ Dopant. J Phys Chem Lett 2023; 14:1460-1469. [PMID: 36740812 PMCID: PMC9940208 DOI: 10.1021/acs.jpclett.2c03287] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/27/2023] [Indexed: 06/09/2023]
Abstract
With high photoluminescence efficiency and a simple solution synthesis method, lead halide perovskites are expected to be a promising material for display and illumination. However, the toxicity and environmental sensitivity of lead hinder its potential applications. Here, we introduced Sb3+ ions into the lead-free perovskites derivative (NH4)2SnCl6 via a doping strategy. For the first time we synthesis the excitation-dependent perovskite with dynamically tunable fluorescence from yellow to near-infrared (NIR) emission by varying the UV excitation from 360 to 390 nm at room temperature. The DFT calculations are highly consistent no matter whether the coordination number of Sb3+ is 5 or 6. In contrasting to the early report of Sb triplet emission in the Sb doped perovskite, this material give a mixed self-trapped exciton (STE) emission. The 590 nm emission band is derived from the STE of SbCl5, and the 734 nm NIR emission band is attributed to the Sb-Sn mixed STE, which is supported by DFT calculations and spectral results. This study provides guidance for the design of perovskite phosphors with high efficiency and excitation-dependent properties.
Collapse
Affiliation(s)
- Hongjun Lin
- School of Physical Science
and Technology; State Key Laboratory of Featured Metal Materials and
Life-Cycle Safety for Composite Structures; School of Resources, Environments
and Materials, Guangxi University, Nanning530004, China
| | - Qilin Wei
- School of Physical Science
and Technology; State Key Laboratory of Featured Metal Materials and
Life-Cycle Safety for Composite Structures; School of Resources, Environments
and Materials, Guangxi University, Nanning530004, China
| | - Bao Ke
- School of Physical Science
and Technology; State Key Laboratory of Featured Metal Materials and
Life-Cycle Safety for Composite Structures; School of Resources, Environments
and Materials, Guangxi University, Nanning530004, China
| | - Wenchao Lin
- School of Physical Science
and Technology; State Key Laboratory of Featured Metal Materials and
Life-Cycle Safety for Composite Structures; School of Resources, Environments
and Materials, Guangxi University, Nanning530004, China
| | - Hualin Zhao
- School of Physical Science
and Technology; State Key Laboratory of Featured Metal Materials and
Life-Cycle Safety for Composite Structures; School of Resources, Environments
and Materials, Guangxi University, Nanning530004, China
| | - Bingsuo Zou
- School of Physical Science
and Technology; State Key Laboratory of Featured Metal Materials and
Life-Cycle Safety for Composite Structures; School of Resources, Environments
and Materials, Guangxi University, Nanning530004, China
| |
Collapse
|
12
|
Majumdar D, Roy S, Frontera A, Gomila RM, Pal TK. Crystal Engineering of Pb(II)-Salen Coordination Polymer Enforced for The Selective Fluorescence NACs Sensing Activity in a Dispersed Aqueous Medium: A Combined Experimental and Theoretical DFT Monologue. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
13
|
Peng H, He X, Wei Q, Tian Y, Lin W, Yao S, Zou B. Realizing High-Efficiency Yellow Emission of Organic Antimony Halides via Rational Structural Design. ACS APPLIED MATERIALS & INTERFACES 2022; 14:45611-45620. [PMID: 36179359 DOI: 10.1021/acsami.2c14169] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Zero-dimensional (0D) organic metal halides have captured extensive attention for their various structures and distinguished optical characteristics. However, achieving efficient emission through rational crystal structure design remains a great challenge, and how the crystal structure affects the photophysical properties of 0D metal halides is currently unclear. Herein, a rational crystal structure regulation strategy in 0D Sb(III)-based metal halides is proposed to realize near-unity photoluminescence quantum yield (PLQY). Specifically, two 0D organic Sb(III)-based compounds with different coordination configurations, namely, (C25H22P)2SbCl5 and (C25H22P)SbCl4 (C25H22P+ = benzyltriphenylphosphonium), were successfully obtained by precisely controlling the ratio of the initial raw materials. (C25H22P)2SbCl5 adopts an octahedral coordination geometry and shows highly efficient broadband yellow emission with a PLQY of 98.6%, while (C25H22P)SbCl4 exhibits a seesaw-shaped [SbCl4]- cluster and does not emit light under photoexcitation. Theoretical calculations reveal that, by rationally controlling the coordination structure, the indirect bandgap of (C25H22P)SbCl4 can be converted to the direct bandgap of (C25H22P)2SbCl5, thus ultimately boosting the emission intensity. Together with efficient emission and outstanding stability of (C25H22P)2SbCl5, a high-performance white-light emitting diode (WLED) with a high luminous efficiency of 31.2 lm W-1 is demonstrated. Our findings provide a novel strategy to regulate the coordination structure of the crystals, so as to rationally optimize the luminescence properties of organic metal halides.
Collapse
Affiliation(s)
- Hui Peng
- Guangxi Key Lab of Processing for Nonferrous Metals and Featured Materials and Key Lab of New Processing Technology for Nonferrous Metals and Materials, Ministry of Education, School of Resources, Environments and Materials, Guangxi University, Nanning530004, China
| | - Xuefei He
- Guangxi Key Lab of Processing for Nonferrous Metals and Featured Materials and Key Lab of New Processing Technology for Nonferrous Metals and Materials, Ministry of Education, School of Resources, Environments and Materials, Guangxi University, Nanning530004, China
| | - Qilin Wei
- Guangxi Key Lab of Processing for Nonferrous Metals and Featured Materials and Key Lab of New Processing Technology for Nonferrous Metals and Materials, Ministry of Education, School of Resources, Environments and Materials, Guangxi University, Nanning530004, China
| | - Ye Tian
- Guangxi Key Lab of Processing for Nonferrous Metals and Featured Materials and Key Lab of New Processing Technology for Nonferrous Metals and Materials, Ministry of Education, School of Resources, Environments and Materials, Guangxi University, Nanning530004, China
| | - Wenchao Lin
- Guangxi Key Lab of Processing for Nonferrous Metals and Featured Materials and Key Lab of New Processing Technology for Nonferrous Metals and Materials, Ministry of Education, School of Resources, Environments and Materials, Guangxi University, Nanning530004, China
| | - Shangfei Yao
- Guangxi Key Lab of Processing for Nonferrous Metals and Featured Materials and Key Lab of New Processing Technology for Nonferrous Metals and Materials, Ministry of Education, School of Resources, Environments and Materials, Guangxi University, Nanning530004, China
| | - Bingsuo Zou
- Guangxi Key Lab of Processing for Nonferrous Metals and Featured Materials and Key Lab of New Processing Technology for Nonferrous Metals and Materials, Ministry of Education, School of Resources, Environments and Materials, Guangxi University, Nanning530004, China
| |
Collapse
|
14
|
Elleuch N, Kammoun O, Lhoste J, Boujelbene M, Boudjemline A, Chaudhry IA, Elbadawi I, Boujelbene M, Abdelhedi M. Crystal structure and optoelectronic properties of a supramolecular chlorobismuthate salt templated with 4-pyridiniumthioamide. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133142] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
15
|
Molecular dimensionality and photoluminescence of hybrid metal halides. TRENDS IN CHEMISTRY 2022. [DOI: 10.1016/j.trechm.2022.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Su B, Geng S, Xiao Z, Xia Z. Highly Distorted Antimony(III) Chloride [Sb 2 Cl 8 ] 2- Dimers for Near-Infrared Luminescence up to 1070 nm. Angew Chem Int Ed Engl 2022; 61:e202208881. [PMID: 35737598 DOI: 10.1002/anie.202208881] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Indexed: 12/26/2022]
Abstract
Zero-dimensional (0D) hybrid metal halides with unique compositional and structural tunability appear as an emerging class of luminescent materials, but near-infrared (NIR) emitters therein are largely unexplored to date. This study presents three novel 0D hybrid antimony chlorines with edge-sharing [Sb2 Cl8 ]2- dimers, showing unusual room-temperature broadband NIR emission with the maximum emission wavelength up to 1070 nm. Photoluminescence studies and density functional theory calculation demonstrate that the emissions originate from the highly localized excitons, and that the confined [Sb2 Cl8 ]2- dimers in these structures show low symmetry and a large degree of structural freedom. These hybrid antimony chlorines with [Sb2 Cl8 ]2- dimers expand the range of new NIR materials in 0D metal halides.
Collapse
Affiliation(s)
- Binbin Su
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, Guangdong Engineering Technology Research and Development Centre of Special Optical Fibre Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Shining Geng
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zewen Xiao
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zhiguo Xia
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, Guangdong Engineering Technology Research and Development Centre of Special Optical Fibre Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, China.,School of Physics and Optoelectronics, South China University of Technology, Guangzhou, 510641, China
| |
Collapse
|
17
|
Wang Z, Huang X. Luminescent Organic-Inorganic Hybrid Metal Halides: An Emerging Class of Stimuli-Responsive Materials. Chemistry 2022; 28:e202200609. [PMID: 35514119 DOI: 10.1002/chem.202200609] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Indexed: 11/05/2022]
Abstract
Luminescent organic-inorganic metal halides (OIMHs) are well known as a new materials family in recent years. Novel materials and applications of luminescent OIMHs have been explored by changing either the organic component or the metal halide species. Thereinto, the stimuli-responsive (SR) phenomena in OIMHs have drawn much attention recently, for not only their attractive application potential but also the helpfulness in understanding the stability of OIMHs to the external environment. Herein, the luminescent OIMHs that are sensitive to external stimuli including contact, pressure, mechanical grinding, light, heat, and gas molecules, are reviewed, with an emphasis on analyses of the structural change during the SR process. The applications of SR luminescent OIMHs in widespread fields, including gas sensing, information encryption, and rewritable luminescent paper are summarized. Finally, the challenges that deserve to be further explored in this research field are discussed, which provides certain guidance for the future study of SR luminescent OIMHs.
Collapse
Affiliation(s)
- Zeping Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, The Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Xiaoying Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, The Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| |
Collapse
|
18
|
Su B, Geng S, Xiao Z, Xia Z. Highly Distorted Antimony (III) Chloride [Sb2Cl8]2‐ Dimers for Near‐Infrared Luminescence up to 1070 nm. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Binbin Su
- SCUT: South China University of Technology school of materials science and eng CHINA
| | - Shining Geng
- HUST: Huazhong University of Science and Technology school of optoelectro CHINA
| | - Zewen Xiao
- HUST: Huazhong University of Science and Technology school of optoelectroc CHINA
| | - Zhiguo Xia
- University of Science and Technology Beijing School of materials science and engineering No. 30 Xueyuan RoadHaidian District 100083 Beijing CHINA
| |
Collapse
|
19
|
Wu N, Chen C, Lin S, Li H, He P, Zheng H. Zero-dimensional antimony(III) halides templated by ruthenium complexes: photoluminescence, thermochromism and photo/electrical performances. INORG NANO-MET CHEM 2022. [DOI: 10.1080/24701556.2022.2075387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Naixin Wu
- College of Chemical Engineering, Fuzhou University, Fuzhou, Fujian, China
- Fujian Engineering Research Center of Advanced Manufacturing Technology for Fine Chemicals, Fuzhou University, Fuzhou, Fujian, China
| | - Chun Chen
- College of Chemical Engineering, Fuzhou University, Fuzhou, Fujian, China
- Fujian Engineering Research Center of Advanced Manufacturing Technology for Fine Chemicals, Fuzhou University, Fuzhou, Fujian, China
| | - Shitong Lin
- College of Chemical Engineering, Fuzhou University, Fuzhou, Fujian, China
- Fujian Engineering Research Center of Advanced Manufacturing Technology for Fine Chemicals, Fuzhou University, Fuzhou, Fujian, China
| | - Haohong Li
- Fujian Engineering Research Center of Advanced Manufacturing Technology for Fine Chemicals, Fuzhou University, Fuzhou, Fujian, China
- College of Chemistry, Fuzhou University, Fuzhou, Fujian, China
| | - Peipei He
- Fujian Engineering Research Center of Advanced Manufacturing Technology for Fine Chemicals, Fuzhou University, Fuzhou, Fujian, China
- School of Law, Fuzhou University, Fuzhou, China
| | - Huidong Zheng
- College of Chemical Engineering, Fuzhou University, Fuzhou, Fujian, China
- Fujian Engineering Research Center of Advanced Manufacturing Technology for Fine Chemicals, Fuzhou University, Fuzhou, Fujian, China
| |
Collapse
|
20
|
Gowda AS, Lee TS, Rosko MC, Petersen JL, Castellano FN, Milsmann C. Long-Lived Photoluminescence of Molecular Group 14 Compounds through Thermally Activated Delayed Fluorescence. Inorg Chem 2022; 61:7338-7348. [PMID: 35507416 DOI: 10.1021/acs.inorgchem.2c00182] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Photoluminescent molecules exploiting the sizable spin-orbit coupling constants of main group metals and metalloids to access long-lived triplet excited states are relatively rare compared to phosphorescent transition metal complexes. Here we report the synthesis of three air- and moisture-stable group 14 compounds E(MePDPPh)2, where E = Si, Ge, or Sn and [MePDPPh]2- is the doubly deprotonated form of 2,6-bis(5-methyl-3-phenyl-1H-pyrrol-2-yl)pyridine. In solution, all three molecules exhibit exceptionally long-lived triplet excited states with lifetimes in the millisecond range and show highly efficient photoluminescence (Φ ≤ 0.49) due to competing prompt fluorescence and thermally activated delayed fluorescence at and around room temperature. Temperature-dependent steady-state emission spectra and photoluminescent lifetime measurements provided conclusive evidence for the two distinct emission pathways. Picosecond transient absorption spectroscopy allowed further analysis of the intersystem crossing (ISC) between singlet and triplet manifolds (τISC = 0.25-3.1 ns) and confirmed the expected trend of increased ISC rates for the heavier elements in otherwise isostructural compounds.
Collapse
Affiliation(s)
- Anitha S Gowda
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Tia S Lee
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States.,Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Michael C Rosko
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Jeffrey L Petersen
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Felix N Castellano
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Carsten Milsmann
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| |
Collapse
|
21
|
Peng YC, Zhou SH, Jin JC, Gu Q, Zhuang TH, Gong LK, Wang ZP, Du KZ, Huang XY. Nearly one-fold enhancement in photoluminescence quantum yield for isostructural zero-dimensional hybrid antimony(III) bromides by supramolecular interaction adjustments. Dalton Trans 2022; 51:4919-4926. [PMID: 35262109 DOI: 10.1039/d1dt04374a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Zero-dimensional (0D) organic-inorganic metal halides (OIMHs) hold promise in photoluminescence properties and related applications. Thus far, the photoluminescence quantum yields (PLQYs) of the reported 0D hybrid antimony(III) bromides (HABs) are not as high as those of the chloride analogs; therefore, the improvement of PLQY is an important issue for luminescent HABs. Herein, a supramolecular interaction adjustment strategy to improve the PLQYs of HABs is proposed. Two isostructural 0D HABs that crystallize with different lattice solvent molecules, namely [EtPPh3]2[SbBr5]·EtOH (1·EtOH-Br; EtPPh3 = ethyltriphenylphosphonium; EtOH = ethanol) and [EtPPh3]2[SbBr5]·MeCN (1·MeCN-Br; MeCN = acetonitrile), have been synthesized. Both of them exhibit typical self-trapped exciton (STE) photoluminescence (PL) with broad emission, a large Stokes shift and a long lifetime. They show deviation in deep-red emission peaks (655 nm vs. 661 nm) owing to the difference in the distortion level of [SbBr5]2- anions. Most importantly, 1·EtOH-Br exhibits a nearly one-fold enhancement in PLQY compared to 1·MeCN-Br (18.26% vs. 9.29%). Density functional theory (DFT) calculations, hydrogen bonding analysis and Hirshfeld surface analysis suggest that the PLQY enhancement is due to the structural rigidity improvement brought by hydrogen bonding adjustments between the inorganic [SbBr5]2- anions and solvent molecules. This work provides a new insight into the structure-property relationship study and PLQY improvement for 0D OIMHs.
Collapse
Affiliation(s)
- Ying-Chen Peng
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Sheng-Hua Zhou
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jian-Ce Jin
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qi Gu
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ting-Hui Zhuang
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China. .,College of Chemistry and Materials Science, Fujian Key Laboratory of Polymer Materials, Fujian Normal University, 32 Shangsan Road, Fuzhou 350007, China.
| | - Liao-Kuo Gong
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.
| | - Ze-Ping Wang
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.
| | - Ke-Zhao Du
- College of Chemistry and Materials Science, Fujian Key Laboratory of Polymer Materials, Fujian Normal University, 32 Shangsan Road, Fuzhou 350007, China.
| | - Xiao-Ying Huang
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
22
|
Photophysical properties of ammonium, pyrrolidinium, piperidinium, imidazolium, and pyridinium as a guide to prepare ionic-organic hybrid materials. Heliyon 2022; 8:e09121. [PMID: 35846445 PMCID: PMC9280383 DOI: 10.1016/j.heliyon.2022.e09121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 12/28/2021] [Accepted: 03/11/2022] [Indexed: 11/24/2022] Open
|
23
|
Grasser MA, Finzel K, Ruck M. The Layered Semiconductor Cu(Sb
2
S
3
)[AlCl
4
]. Z Anorg Allg Chem 2022. [DOI: 10.1002/zaac.202200021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Matthias A. Grasser
- Faculty of Chemistry and Food Chemistry Technische Universität Dresden 01069 Dresden Germany
| | - Kati Finzel
- Faculty of Chemistry and Food Chemistry Technische Universität Dresden 01069 Dresden Germany
| | - Michael Ruck
- Faculty of Chemistry and Food Chemistry Technische Universität Dresden 01069 Dresden Germany
- Max Planck Institute for Chemical Physics of Solids Nöthnitzer Str. 40 01187 Dresden Germany
| |
Collapse
|
24
|
Luo JB, Wei JH, Zhang ZZ, Kuang DB. Water-Molecule-Induced Emission Transformation of Zero-Dimension Antimony-Based Metal Halide. Inorg Chem 2021; 61:338-345. [PMID: 34927416 DOI: 10.1021/acs.inorgchem.1c02871] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Low-dimensional organic-inorganic metal halides have recently emerged as a class of promising luminescent materials. However, the intrinsic toxicity of lead would strongly hamper future application. Herein, we synthesized a new type of lead-free zero-dimensional (0D) antimony-based organic-inorganic metal halide single crystals, (PPZ)2SbCl7·5H2O (PPZ = 1-phenylpiperazine), which features a broadband emission at 720 nm. Ultrafast transient absorption and temperature-dependent photoluminescence (PL) spectra are combined to investigate the PL mechanism, revealing that self-trapped exciton recombination was involved. Furthermore, it is interesting that (PPZ)2SbCl7·5H2O material shows reversible PL emission transformation between red light (720 nm) and yellow light (590 nm) as water molecules are inserted or removed from the lattice. Such reversible emission transformation phenomenon renders the (PPZ)2SbCl7·5H2O as a potential low-cost water sensing material.
Collapse
Affiliation(s)
- Jian-Bin Luo
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Jun-Hua Wei
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Zhi-Zhong Zhang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Dai-Bin Kuang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, People's Republic of China.,School of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, People's Republic of China
| |
Collapse
|
25
|
Photoluminescent ionic metal halides based on s2 typed ions and aprotic ionic liquid cations. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214185] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
26
|
Jin JC, Zhuang TH, Lin YP, Lin BY, Jiang J, Du KZ, Huang XY. Ionic indium(III) chloride hybrids incorporating a 2,2'-bipyrimidine ligand: studies on photoluminescence and structural transformation. Dalton Trans 2021; 50:16406-16413. [PMID: 34734938 DOI: 10.1039/d1dt03264j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Although luminescent indium(III) based halide perovskites have been widely investigated, the study of emissive indium(III) halide hybrids is limited. Three indium(III) chloride hybrids based on a bpym ligand were synthesized, namely [EPy]2[InCl4(bpym)InCl4]·DMF (1), [EPy]2[InCl4(bpym)InCl4] (2), and [BPy]2[InCl4(bpym)InCl4] (3) (EPy = N-ethylpyridinium; BPy = N-butylpyridinium; bpym = 2,2'-bipyrimidine). They all exhibit a zero-dimensional structure, in which the ligand bpym interconnects two [InCl4]- to form a [InCl4(bpym)InCl4]2- anion that is further charge-compensated by the corresponding pyridinium cations. This is the first time using bpym to coordinate with an In atom. At 298 K, 1 exhibits a weak emission at 600 nm while 2 and 3 exhibit emissions peaking at 500 nm and 540 nm, respectively. Interestingly, the DMF solvent molecule in 1 can be removed by heating, thus resulting in the structural transformation of 1 into 2 together with a photoluminescence (PL) change. Density functional theory (DFT) calculations confirm that halogen-to-ligand charge-transfer (HLCT) occurs in the emission process. To the best of our knowledge, this is the first report on PL of ionic indium(III) halide hybrids incorporating organic ligands.
Collapse
Affiliation(s)
- Jian-Ce Jin
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ting-Hui Zhuang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China. .,College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou 350007, China
| | - Yang-Peng Lin
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou 350007, China
| | - Bing-Ye Lin
- Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, P.R. China
| | - Jiang Jiang
- Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, P.R. China
| | - Ke-Zhao Du
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou 350007, China
| | - Xiao-Ying Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
27
|
Peng YC, Jin JC, Gu Q, Dong Y, Zhang ZZ, Zhuang TH, Gong LK, Ma W, Wang ZP, Du KZ, Huang XY. Selective Luminescence Response of a Zero-Dimensional Hybrid Antimony(III) Halide to Solvent Molecules: Size-Effect and Supramolecular Interactions. Inorg Chem 2021; 60:17837-17845. [PMID: 34738796 DOI: 10.1021/acs.inorgchem.1c02445] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Zero-dimensional (0D) metal halides with solid-state luminescence switching (SSLS) have attracted attention as sensors and luminescent anticounterfeiting. Herein, selective solvent molecule response and accordingly luminescence switching were discovered in 0D [EtPPh3]2[SbCl5] (1, EtPPh3 = ethyltriphenylphosphonium). More than a dozen kinds of solvent molecules have been tested to find out the selection rule for molecule absorption in 1, which is demonstrated to be the size effect of guest molecules. Confirmed by crystal structural analysis, only the solvents with molecular volume less than 22.3 Å3 could be accommodated in 1 leading to the solvatochromic photoluminescence (PL). The mechanism of solvatochromic PL was also deeply studied, which was found to be closely related to the supramolecular interactions between solvent molecules and the host material. Different functional groups of the solvent molecule can affect its strength of hydrogen bonding with [SbCl5]2-, which is crucial for the distortion level of [SbCl5]2- unit and thus results in not only distinct solvatochromic PL but also distinct thermochromic PL. In addition, they all show typical self-trapped exciton triplet emissions. The additional supramolecular interactions from guest molecules can enhance the photoluminescence quantum yield to be as high as 95%.
Collapse
Affiliation(s)
- Ying-Chen Peng
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P.R. China.,University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Jian-Ce Jin
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P.R. China.,University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Qi Gu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P.R. China.,University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Yu Dong
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P.R. China.,University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Zhi-Zhuan Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P.R. China.,College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Normal University, Fuzhou, Fujian 350007, P.R. China
| | - Ting-Hui Zhuang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P.R. China.,College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Normal University, Fuzhou, Fujian 350007, P.R. China
| | - Liao-Kuo Gong
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P.R. China
| | - Wen Ma
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P.R. China
| | - Ze-Ping Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P.R. China
| | - Ke-Zhao Du
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Normal University, Fuzhou, Fujian 350007, P.R. China
| | - Xiao-Ying Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P.R. China
| |
Collapse
|
28
|
Qi Z, Chen Y, Gao H, Zhang FQ, Li SL, Zhang XM. Two SbX5-based isostructural polar 1D hybrid antimony halides with tunable broadband emission, nonlinear optics, and semiconductor properties. Sci China Chem 2021. [DOI: 10.1007/s11426-021-1076-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
29
|
Zhang Z, Lin Y, Jin J, Gong L, Peng Y, Song Y, Shen N, Wang Z, Du K, Huang X. Crystalline-Phase-Recognition-Induced Domino Phase Transition and Luminescence Switching for Advanced Information Encryption. Angew Chem Int Ed Engl 2021; 60:23373-23379. [PMID: 34402142 DOI: 10.1002/anie.202110088] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Indexed: 11/08/2022]
Abstract
Herein, a new mechanism, namely, crystalline phase recognition (CPR), is proposed for the single-crystal-to-single-crystal (SCSC) transition of metal halides. Chiral β-[Bmmim]2 SbCl5 (Bmmim=1-butyl-2,3-methylimidazolium) can recognize achiral α-[Bmmim]2 SbCl5 on the basis of a key-lock feature through intercontact of their single crystals, resulting in a domino phase transition (DPT). The concomitant photoluminescence (PL) switching enables observation of the DPT in situ. The liquid eutectic interface, stress-strain transfer, and feasible thermodynamics are key issues for the CPR. DFT calculations and PL measurements revealed that the optical absorption and emission of the isomers mainly originate from [SbCl5 ]2- anions. The structural effects (e.g., supramolecular interactions and [SbCl5 ]2- distortion) on the optical emission are clarified. As a novel type of stimuli response, the CPR-induced DPT and luminescence switching exhibit potential for application in advanced time-resolved information encryption.
Collapse
Affiliation(s)
- Zhizhuan Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, The Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China.,College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou, Fujian, 350007, P. R. China
| | - Yangpeng Lin
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou, Fujian, 350007, P. R. China
| | - Jiance Jin
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, The Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Liaokuo Gong
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, The Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Yingchen Peng
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, The Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Ying Song
- College of Chemistry and Materials, Nanning Normal University, Nanning, Guangxi, 530001, P. R. China
| | - Nannan Shen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, The Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Zeping Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, The Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Kezhao Du
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou, Fujian, 350007, P. R. China
| | - Xiaoying Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, The Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
30
|
Trifiletti V, Asker C, Tseberlidis G, Riva S, Zhao K, Tang W, Binetti S, Fenwick O. Quasi-Zero Dimensional Halide Perovskite Derivates: Synthesis, Status, and Opportunity. FRONTIERS IN ELECTRONICS 2021. [DOI: 10.3389/felec.2021.758603] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In recent decades, many technological advances have been enabled by nanoscale phenomena, giving rise to the field of nanotechnology. In particular, unique optical and electronic phenomena occur on length scales less than 10 nanometres, which enable novel applications. Halide perovskites have been the focus of intense research on their optoelectronic properties and have demonstrated impressive performance in photovoltaic devices and later in other optoelectronic technologies, such as lasers and light-emitting diodes. The most studied crystalline form is the three-dimensional one, but, recently, the exploration of the low-dimensional derivatives has enabled new sub-classes of halide perovskite materials to emerge with distinct properties. In these materials, low-dimensional metal halide structures responsible for the electronic properties are separated and partially insulated from one another by the (typically organic) cations. Confinement occurs on a crystal lattice level, enabling bulk or thin-film materials that retain a degree of low-dimensional character. In particular, quasi-zero dimensional perovskite derivatives are proving to have distinct electronic, absorption, and photoluminescence properties. They are being explored for various technologies beyond photovoltaics (e.g. thermoelectrics, lasing, photodetectors, memristors, capacitors, LEDs). This review brings together the recent literature on these zero-dimensional materials in an interdisciplinary way that can spur applications for these compounds. The synthesis methods, the electrical, optical, and chemical properties, the advances in applications, and the challenges that need to be overcome as candidates for future electronic devices have been covered.
Collapse
|
31
|
Zhang Z, Lin Y, Jin J, Gong L, Peng Y, Song Y, Shen N, Wang Z, Du K, Huang X. Crystalline‐Phase‐Recognition‐Induced Domino Phase Transition and Luminescence Switching for Advanced Information Encryption. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202110088] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Zhizhuan Zhang
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter The Chinese Academy of Sciences Fuzhou Fujian 350002 P. R. China
- College of Chemistry and Materials Science Fujian Provincial Key Laboratory of Polymer Materials Fujian Normal University Fuzhou Fujian 350007 P. R. China
| | - Yangpeng Lin
- College of Chemistry and Materials Science Fujian Provincial Key Laboratory of Polymer Materials Fujian Normal University Fuzhou Fujian 350007 P. R. China
| | - Jiance Jin
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter The Chinese Academy of Sciences Fuzhou Fujian 350002 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Liaokuo Gong
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter The Chinese Academy of Sciences Fuzhou Fujian 350002 P. R. China
| | - Yingchen Peng
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter The Chinese Academy of Sciences Fuzhou Fujian 350002 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Ying Song
- College of Chemistry and Materials Nanning Normal University Nanning Guangxi 530001 P. R. China
| | - Nannan Shen
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter The Chinese Academy of Sciences Fuzhou Fujian 350002 P. R. China
| | - Zeping Wang
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter The Chinese Academy of Sciences Fuzhou Fujian 350002 P. R. China
| | - Kezhao Du
- College of Chemistry and Materials Science Fujian Provincial Key Laboratory of Polymer Materials Fujian Normal University Fuzhou Fujian 350007 P. R. China
| | - Xiaoying Huang
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter The Chinese Academy of Sciences Fuzhou Fujian 350002 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
32
|
Kundu J, Das DK. Low Dimensional, Broadband, Luminescent Organic‐Inorganic Hybrid Materials for Lighting Applications. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100685] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Janardan Kundu
- Department of Chemistry Indian Institute of Science Education and Research (IISER) Tirupati Tirupati Andhra Pradesh India
| | - Deep Kumar Das
- Department of Chemistry Indian Institute of Science Education and Research (IISER) Tirupati Tirupati Andhra Pradesh India
| |
Collapse
|
33
|
Wei Q, Chang T, Zeng R, Cao S, Zhao J, Han X, Wang L, Zou B. Self-Trapped Exciton Emission in a Zero-Dimensional (TMA) 2SbCl 5·DMF Single Crystal and Molecular Dynamics Simulation of Structural Stability. J Phys Chem Lett 2021; 12:7091-7099. [PMID: 34292739 DOI: 10.1021/acs.jpclett.1c02119] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Lead-free lower-dimensional organic-inorganic metal halide materials have recently triggered intense research because of their excellent photophysical properties and chemical stability. Herein, we report a novel zero-dimensional (0D) organic-inorganic hybrid single crystal (TMA)2SbCl5·DMF (TMA = N(CH3)3, DMF= HCON(CH3)2), which exhibits typical self-trapped exciton (STE) emission with an efficient yellow emission at 630 nm and high photoluminescence quantum yield (PLQY) of 67.2%. The dual STE emission is attributed to the singlet and triplet STEs in inorganic [SbCl5]2-, respectively. Further, an ab initio molecular dynamics simulation was performed to estimate the stability of crystal structure at room temperature. The calculated excited-state structure indicates that the deformation parameter (Δd) of the excited-state structure is larger than that of the ground state, illustrating the origin of a large Stokes shift. These results indicate that these new 0D lead-free organic-inorganic hybrid metal halides are promising luminescent materials for optoelectronic applications.
Collapse
Affiliation(s)
- Qilin Wei
- School of Physical Science and Technology, MOE Key Laboratory of New Processing Technology for Non-ferrous Metals and Materials, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Guangxi University, Nanning 530004, China
| | - Tong Chang
- School of Physical Science and Technology, MOE Key Laboratory of New Processing Technology for Non-ferrous Metals and Materials, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Guangxi University, Nanning 530004, China
| | - Ruosheng Zeng
- School of Physical Science and Technology, MOE Key Laboratory of New Processing Technology for Non-ferrous Metals and Materials, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Guangxi University, Nanning 530004, China
| | - Sheng Cao
- School of Physical Science and Technology, MOE Key Laboratory of New Processing Technology for Non-ferrous Metals and Materials, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Guangxi University, Nanning 530004, China
| | - Jialong Zhao
- School of Physical Science and Technology, MOE Key Laboratory of New Processing Technology for Non-ferrous Metals and Materials, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Guangxi University, Nanning 530004, China
| | - Xinxin Han
- School of Physical Science and Technology, MOE Key Laboratory of New Processing Technology for Non-ferrous Metals and Materials, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Guangxi University, Nanning 530004, China
| | - Lishuang Wang
- School of Physical Science and Technology, MOE Key Laboratory of New Processing Technology for Non-ferrous Metals and Materials, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Guangxi University, Nanning 530004, China
| | - Bingsuo Zou
- School of Physical Science and Technology, MOE Key Laboratory of New Processing Technology for Non-ferrous Metals and Materials, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Guangxi University, Nanning 530004, China
| |
Collapse
|
34
|
Li M, Lin J, Liu K, Fan L, Wang N, Guo Z, Yuan W, Zhao J, Liu Q. Light-Emitting 0D Hybrid Metal Halide (C 3H 12N 2) 2Sb 2Cl 10 with Antimony Dimers. Inorg Chem 2021; 60:11429-11434. [PMID: 34242012 DOI: 10.1021/acs.inorgchem.1c01440] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Low-dimensional organic-inorganic metal halides (OIMHs), as emerging light-emitting materials, have aroused widespread attention owing to their unique structural tunability and photoelectric characteristics. OIMHs are also promising materials for optoelectronic equipment, light-emitting diodes, and photodetectors. In this study, (C3H12N2)2Sb2Cl10 (C3H12N22+ is an N-methylethylenediamine cation), a new zero-dimensional OIMH, has been reported, and (C3H12N2)2Sb2Cl10 possesses a P21/n space group. The (C3H12N2)2Sb2Cl10 structure contains [Sb2Cl10]4- dimers (composed of two edge-sharing [SbCl6]3- octahedra) that are surrounded by C3H12N22+ cations. The experimental band gap of (C3H12N2)2Sb2Cl10 is 3.80 eV, and density functional theory calculation demonstrates that (C3H12N2)2Sb2Cl10 possesses a direct band gap, with the edge of the band gap mainly contributed from the inorganic units. (C3H12N2)2Sb2Cl10 exhibits good ambient and thermal stability. Under 395 nm excitation at room temperature, (C3H12N2)2Sb2Cl10 exhibits a broad emission with a full width at half-maximum of ∼114 nm, peaking at 480 nm, and the broad emission was ascribed to self-trapped exciton emission.
Collapse
Affiliation(s)
- Mingyang Li
- The Beijing Municipal Key Laboratory of New Energy Materials and Technologies, School of Materials Sciences and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Jiawei Lin
- Department of Chemistry, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Kunjie Liu
- The Beijing Municipal Key Laboratory of New Energy Materials and Technologies, School of Materials Sciences and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Liubing Fan
- The Beijing Municipal Key Laboratory of New Energy Materials and Technologies, School of Materials Sciences and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Na Wang
- The Beijing Municipal Key Laboratory of New Energy Materials and Technologies, School of Materials Sciences and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Zhongnan Guo
- Department of Chemistry, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Wenxia Yuan
- Department of Chemistry, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Jing Zhao
- The Beijing Municipal Key Laboratory of New Energy Materials and Technologies, School of Materials Sciences and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Quanlin Liu
- The Beijing Municipal Key Laboratory of New Energy Materials and Technologies, School of Materials Sciences and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
35
|
Majumdar D, Dey S, Kumari A, Pal TK, Bankura K, Mishra D. Dicyanamide-intertwined assembly of two new Zn complexes based on N 2O 4-type pro-ligand: Synthesis, crystal networks, spectroscopic insights, and selective nitroaromatic turn-off fluorescence sensing. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 254:119612. [PMID: 33689999 DOI: 10.1016/j.saa.2021.119612] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 02/05/2021] [Accepted: 02/07/2021] [Indexed: 06/12/2023]
Abstract
Two new dicyanamide bridged multinuclear Zn complexes, [Zn2(L1)(µ1,5-dca)2(µ1-dca)]n (1) and [Zn2(L2)(µ1,5-dca)2(µ1-dca)]n (2) have been synthesized using N2O4-based pro-ligands (H2L1 = N,N'-bis(5-bromo-3-methoxysalicylidenimino)-1,3-diaminopropane, H2L2 = N,N'-bis(3-ethoxysalicylidene)-2,2-dimethyl-1,3-propanediamine) and characterized by microanalytical and spectroscopic techniques. Both complexes are stable in solution and solid-state. Thermogravimetric analysis (TGA) findings showed that complexes are stable at room temperature. Single-crystal X-ray diffraction (SCXRD) has proven that complexes are identical structures where two zinc metal ions are crystallographically independent. The directional properties of dicyanamide co-ligands via µ1,5 bridging have resulted in different connectivity of zinc metal ions leading to 1D templates. SCXRD revealed some notable non-covalent interactions (π⋯π, C-H····π, and H-bonding) in their solid-state crystal structures. 1-2 have strong fluorescence behaviour over pro-ligands, which may be quenched in the presence of various electron-deficient explosive nitroaromatic compounds (epNACs). Complex 2 fluorescence intensity is sharper than 1; hence the former retained high sensitivity and selectivity for trinitrophenol (TNP). The enhancement of fluorescence mechanism, detection limit (LOD), and the quenching constant (KSV) have been calculated using the Stern-Volmer equation (SV), where the KSV value for TNP is found to be 1.542 × 104 M-1. The solution phase quenching mechanism has been rationalized by (a) electrostatic interactions through charge-transfer complex, (b) photo-induced electron transfer (PET) by the HOMO-LUMO energy gap via DFT, and (c) fluorescence resonance energy transfer (FRET). Finally, complex 2 is applied as a sensor by turn-off fluorescence response to detecting TNP nitroaromatics in the DMF medium.
Collapse
Affiliation(s)
- Dhrubajyoti Majumdar
- Department of Chemistry, Tamralipta Mahavidyalaya, Tamluk 721636, West Bengal, India; Department of Applied Chemistry, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand 826004, India
| | - Swapan Dey
- Department of Applied Chemistry, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand 826004, India.
| | - Annu Kumari
- Department of Applied Chemistry, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand 826004, India
| | - Tapan Kumar Pal
- Department of Chemistry, Pandit Deendayal Petroleum University, Gandhinagar 382007, India.
| | - Kalipada Bankura
- Department of Chemistry, Tamralipta Mahavidyalaya, Tamluk 721636, West Bengal, India
| | - Dipankar Mishra
- Department of Chemistry, Tamralipta Mahavidyalaya, Tamluk 721636, West Bengal, India.
| |
Collapse
|
36
|
Zhang ZZ, Jin JC, Gong LK, Lin YP, Du KZ, Huang XY. Co-luminescence in a zero-dimensional organic-inorganic hybrid antimony halide with multiple coordination units. Dalton Trans 2021; 50:3586-3592. [PMID: 33620059 DOI: 10.1039/d0dt04388e] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Zero-dimensional (0D) organic-inorganic hybrid metal halides (OIMHs) containing multiple halometallate species (HMSs) have received extensive attention due to their capability to achieve multifunctional photophysical characteristics. Herein we report a lead-free 0D-OIMH compound, namely [Emim]8[SbCl6]2[SbCl5] (1, Emim = 1-ethyl-3-methylimidazolium), which is the first crystal containing two distinct mononuclear [SbXn]3-n units in one single structure. The optical absorption, temperature/excitation-variable photoluminescence (PL) and PL decay were studied. 1 exhibits a broad emission centered at 577 nm, which is analyzed to be a combination of the emissions from [SbCl6]3- and [SbCl5]2-. The structural effects including SbSb distances and polyhedral distortion of [SbXn]3-n on the PL of antimony-based 0D-OIMHs are discussed in detail. This work would provide guidance for constructing Sb-based 0D OIMHs composed of multiple halometallate species.
Collapse
Affiliation(s)
- Zhi-Zhuan Zhang
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou 350007, China. and State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.
| | - Jian-Ce Jin
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China. and University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liao-Kuo Gong
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China. and University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yang-Peng Lin
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou 350007, China.
| | - Ke-Zhao Du
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou 350007, China.
| | - Xiao-Ying Huang
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.
| |
Collapse
|
37
|
Physico-chemical characterization: Vibrational, thermal behavior, opto-electric properties and Hirshfeld surface analysis of new Bi(III) halide complexes containing 3,4-diaminopyridinium cation. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129720] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
38
|
Lin F, Wang H, Lin H, Liu W, Li J. An antimony based organic-inorganic hybrid coating material with high quantum efficiency and thermal quenching effect. Chem Commun (Camb) 2021; 57:1754-1757. [PMID: 33470253 DOI: 10.1039/d0cc07392j] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
An antimony based luminescent organic-inorganic hybrid compound H3SbCl6(L)6 (1, L = 2-(3-methyl-1H-imidazol-3-ium-1-yl)acetate) has been prepared by the solvothermal method. It emits bright green light peaking at 525 nm, with an internal quantum yield (IQY) of 73% under 360 nm excitation. The negative thermal quenching (NTQ) effect has been observed in the temperature range of 77 K to 297 K. Due to its ionic structure, compound 1 is soluble in numerous organic solvents, including methanol, dimethyl sulfoxide (DMSO), etc. The solution processability combined with high quantum efficiency makes 1 a promising candidate as a luminescent coating material for optoelectronic devices.
Collapse
Affiliation(s)
- Fang Lin
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, 7098 Liuxian Blvd, Nanshan District, Shenzhen, 518055, China
| | | | | | | | | |
Collapse
|
39
|
Li C, Wang K, Li XY, Jiang XF, Wei Q, Li JH, Wang GM. Conjugated-Polypyridine-Derivative-Derived Semiconductive Iodoplumbates with Tunable Architectures and Efficient Visible-Light-Induced Photocatalytic Property. Inorg Chem 2021; 60:2105-2111. [PMID: 33504152 DOI: 10.1021/acs.inorgchem.0c03665] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
By mediation of the pH values, three novel inorganic-organic iodoplumbate hybrids, [Me3TPT][Pb3I9] [1; Me3TPT = trimethyl-2,4,6-tris(4-pyridyl)-1,3,5-triazine], [Me3TPT]2[Pb9I24] (2), and [Me3TPT]2[Pb19I44] (3), have been achieved under solvothermal conditions. The large conjugated in situ N-alkylation polypyridine derivatives act as structure-directing agents and electron acceptors, making the materials feature adjustable structural variations with 0D, 1D, and 2D structures and a potential semiconductive performance with narrow energy gaps (1.72, 1.80, and 1.78 eV for 1-3, respectively), which result in their efficient photocatalytic activity under visible-light irradiation. Theoretical calculation reveals that the conjugated organic moieties greatly contribute to the conduction band, leading to narrow band gaps. It is expected that the work will contribute to the exploitation of novel semiconducting halometallates by employing conjugated organic species as structure-directing agents.
Collapse
Affiliation(s)
- Chen Li
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, Shandong 266071, P. R. China
| | - Kui Wang
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, Shandong 266071, P. R. China
| | - Xin-Yu Li
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, Shandong 266071, P. R. China
| | - Xiao-Fan Jiang
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, Shandong 266071, P. R. China
| | - Qi Wei
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, Shandong 266071, P. R. China
| | - Jin-Hua Li
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, Shandong 266071, P. R. China
| | - Guo-Ming Wang
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, Shandong 266071, P. R. China
| |
Collapse
|
40
|
Zhao JQ, Sun C, Yue M, Meng Y, Zhao XM, Zeng LR, Chen G, Yue CY, Lei XW. Lead chlorine cluster assembled one-dimensional halide with highly efficient broadband white-light emission. Chem Commun (Camb) 2021; 57:1218-1221. [PMID: 33416809 DOI: 10.1039/d0cc05570k] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
One new type of hybrid lead halide of [DTHPE]2Pb3Cl10 has been synthesized and characterized containing a one-dimensional (1D) wavelike [Pb3Cl10]4- chain based on a corner-shared [Pb3Cl11] cluster. Remarkably, this cluster-based 1D chain displays intrinsic broadband white light emission with a high quantum efficiency of 19.45% exceeding those of previously reported typical two-dimensional perovskites.
Collapse
Affiliation(s)
- Jian-Qiang Zhao
- Department of Chemistry and Chemical Engineering, Jining University, Qufu, Shandong 273155, P. R. China.
| | - Chen Sun
- Department of Chemistry and Chemical Engineering, Jining University, Qufu, Shandong 273155, P. R. China. and College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, P. R. China
| | - Meng Yue
- Department of Chemistry and Chemical Engineering, Jining University, Qufu, Shandong 273155, P. R. China.
| | - Yan Meng
- Department of Chemistry and Chemical Engineering, Jining University, Qufu, Shandong 273155, P. R. China.
| | - Xian-Mei Zhao
- Department of Chemistry and Chemical Engineering, Jining University, Qufu, Shandong 273155, P. R. China.
| | - Le-Ran Zeng
- Department of Chemistry and Chemical Engineering, Jining University, Qufu, Shandong 273155, P. R. China.
| | - Guang Chen
- College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, P. R. China and Laboratory of Tibetan Medicine Research & Qinghai Key Laboratory of Qinghai-Tibet Plateau Biological Resources, Northwest Institute of Plateau Biology, Chinese Academy of Science, Xining 810001, China
| | - Cheng-Yang Yue
- Department of Chemistry and Chemical Engineering, Jining University, Qufu, Shandong 273155, P. R. China.
| | - Xiao-Wu Lei
- Department of Chemistry and Chemical Engineering, Jining University, Qufu, Shandong 273155, P. R. China.
| |
Collapse
|
41
|
Jing CQ, Li JZ, Xu T, Jiang K, Zhao XJ, Wu YF, Xue NT, Jing ZH, Lei XW. Organic cations directed 1D [Pb 3Br 10] 4− chains: syntheses, crystal structures, and photoluminescence properties. CrystEngComm 2021. [DOI: 10.1039/d0ce01457e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
To diversify the luminescence properties of 1D perovskites, different organic amine cations were combined with 1D [Pb3Br10]4− chains leading to a series of A2Pb3Br10 homologues, displaying broadband near white-light emissions with highest CRI of 96.
Collapse
Affiliation(s)
- Chang-Qing Jing
- College of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu
- P. R. China
- Department of Chemistry and Chemical Engineering
| | - Jing-Zhao Li
- Department of Chemistry and Chemical Engineering
- Jining University
- Qufu
- P. R. China
| | - Te Xu
- Department of Chemistry and Chemical Engineering
- Jining University
- Qufu
- P. R. China
| | - Kuan Jiang
- Department of Chemistry and Chemical Engineering
- Jining University
- Qufu
- P. R. China
| | - Xue-Jie Zhao
- Department of Chemistry and Chemical Engineering
- Jining University
- Qufu
- P. R. China
| | - Yu-Fang Wu
- Department of Chemistry and Chemical Engineering
- Jining University
- Qufu
- P. R. China
| | - Nian-Ting Xue
- Department of Chemistry and Chemical Engineering
- Jining University
- Qufu
- P. R. China
| | - Zhi-Hong Jing
- College of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu
- P. R. China
| | - Xiao-Wu Lei
- College of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu
- P. R. China
- Department of Chemistry and Chemical Engineering
| |
Collapse
|
42
|
Abstract
This review provides in-depth insight into the structure–luminescence–application relationship of 0D all-inorganic/organic–inorganic hybrid metal halide luminescent materials.
Collapse
Affiliation(s)
- Mingze Li
- The State Key Laboratory of Luminescent Materials and Devices
- Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques
- School of Materials Science and Engineering
- South China University of Technology
- Guangzhou
| | - Zhiguo Xia
- The State Key Laboratory of Luminescent Materials and Devices
- Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques
- School of Materials Science and Engineering
- South China University of Technology
- Guangzhou
| |
Collapse
|
43
|
Jin JC, Lin YP, Lin LF, Xiao C, Song Y, Shen NN, Gong LK, Zhang ZZ, Du KZ, Huang XY. 2,2′-Bipyridyl-1,1′-dioxide based bismuth(iii) bromide hybrids: studies on crystal structure and luminescence. CrystEngComm 2021. [DOI: 10.1039/d1ce00362c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The choice of organic solvents could induce inorganic–organic bromobismuthate hybrids with diverse metal–ligand linking modes.
Collapse
|
44
|
Jin JC, Lin YP, Chen DY, Lin BY, Zhuang TH, Ma W, Gong LK, Du KZ, Jiang J, Huang XY. X-ray scintillation and photoluminescence of isomorphic ionic bismuth halides with [Amim] + or [Ammim] + cations. Inorg Chem Front 2021. [DOI: 10.1039/d1qi00803j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
X-ray scintillation and cyan phosphorescence are observed for three isomorphic ionic bismuth halides.
Collapse
Affiliation(s)
- Jian-Ce Jin
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yang-Peng Lin
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Normal University, 32 Shangsan Road, Fuzhou 350007, China
| | - Da-Yi Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bing-Ye Lin
- Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, P.R. China
| | - Ting-Hui Zhuang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Normal University, 32 Shangsan Road, Fuzhou 350007, China
| | - Wen Ma
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Liao-Kuo Gong
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Ke-Zhao Du
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Normal University, 32 Shangsan Road, Fuzhou 350007, China
| | - Jiang Jiang
- Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, P.R. China
| | - Xiao-Ying Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
45
|
Majumdar D, Das D, Nag S, Bhattacharyya M, Singh DK, Parai D, Bankura K, Mishra D. A rare hetero-bimetallic Zn(II)/Ca(II) Schiff base complex: Synthesis, crystal structure, DFT, molecular docking and unveiling antimicrobial activity. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128951] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
46
|
Wang Z, Xie D, Zhang F, Yu J, Chen X, Wong CP. Controlling information duration on rewritable luminescent paper based on hybrid antimony (III) chloride/small-molecule absorbates. SCIENCE ADVANCES 2020; 6:6/48/eabc2181. [PMID: 33239292 PMCID: PMC7688339 DOI: 10.1126/sciadv.abc2181] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 10/06/2020] [Indexed: 05/19/2023]
Abstract
Controlling the duration that information lasts on paper so that it disappears as desired is crucial for information security. However, this area is rarely studied. Here, we report [TEMA]2SbCl5 (1, TEMA+ = methyltriethylammonium), [TEA]2SbCl5 (2, TEA+ = tetraethylammonium), [TEBA]2SbCl5 (3, TEBA+ = benzyltriethylammonium), and [Ph4P]2SbCl5 (4, Ph4P+ = tetraphenylphosphonium) with structure-dependent reversible photoluminescent switching induced by the absorption and thermal release of small guest molecules including H2O, methanol, and ethylene glycol. Comparing the structural disorder levels, bond lengths, and luminescent Stokes shifts of the compounds aided in understanding their selective absorption behavior. Our results indicated that the information duration on the rewritable paper coated with the title compounds is easily tuned by changing the cation of the compounds, the type of guest molecules, and laser heating power. Our study opens previously unidentified avenues for information security and extends the potential applications of rewritable paper.
Collapse
Affiliation(s)
- Zeping Wang
- Key Laboratory of Optoelectronic Technology & Systems, Education Ministry of China and College of Optoelectronic Engineering, Chongqing University, 400044 Chongqing, People's Republic of China
| | - Dingli Xie
- Key Laboratory of Optoelectronic Technology & Systems, Education Ministry of China and College of Optoelectronic Engineering, Chongqing University, 400044 Chongqing, People's Republic of China
| | - Feng Zhang
- Key Laboratory of Optoelectronic Technology & Systems, Education Ministry of China and College of Optoelectronic Engineering, Chongqing University, 400044 Chongqing, People's Republic of China
| | - Jiabing Yu
- Key Laboratory of Optoelectronic Technology & Systems, Education Ministry of China and College of Optoelectronic Engineering, Chongqing University, 400044 Chongqing, People's Republic of China
| | - Xianping Chen
- Key Laboratory of Optoelectronic Technology & Systems, Education Ministry of China and College of Optoelectronic Engineering, Chongqing University, 400044 Chongqing, People's Republic of China.
- Chongqing Pingchuang Institute of Semiconductors, Chongqing 400044, People's Republic of China
| | - Ching Ping Wong
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| |
Collapse
|
47
|
Narita T, Fujii K, Endo T, Kimura Y. Effect of cation alkyl chain length on photo-luminescence dynamics of ionic liquids containing dicyanoaurate(I) anion. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.114212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
48
|
Zhang WF, Pan WJ, Xu T, Song RY, Zhao YY, Yue CY, Lei XW. One-Dimensional Face-Shared Perovskites with Broad-Band Bluish White-Light Emissions. Inorg Chem 2020; 59:14085-14092. [PMID: 32926625 DOI: 10.1021/acs.inorgchem.0c01861] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In recent years, two-dimensional (2D) hybrid lead halide perovskites based on corner-shared [PbX6] octahedrons have received extensive attention with important potentials in single-component white-light emitting diodes (WLEDs) due to the soft and distorted crystal lattices. However, limited research focused on the one-dimensional (1D) perovskites although they possess similar structural superiorities to achieve this performance. Herein, by using different types of organic amine cations as structural direction reagents, we report one new type of hybrid 1D perovskites of APbCl3 (A = (DTHPE)0.5, DMTHP, DBN) based on the same 1D face-shared octahedral [PbCl3]- chains. Upon UV light excitation, these 1D APbCl3 perovskites exhibit intrinsic broad-band bluish white-light emissions covering entire visible light spectra with the highest photoluminescence quantum yield (PLQY) of 6.99%, which catches up with the values of previously reported 2D perovskites. Through the systematical studies of time-resolved, temperature-dependent PL emissions, theoretical calculations, and so on, these broad-band light emissions can be ascribed to the radiative transition within conjugated organic cations. The facile assembly process, intrinsic broad-band light emissions, and high PLQYs enable these 1D APbCl3 perovskites as new types of promising candidates in fabricating single-component WLEDs.
Collapse
Affiliation(s)
- Wei-Feng Zhang
- Department of Chemistry and Chemical Engineering, Jining University, Qufu, Shandong 273155, P. R. China.,College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, P. R. China
| | - Wen-Jing Pan
- Department of Chemistry and Chemical Engineering, Jining University, Qufu, Shandong 273155, P. R. China
| | - Te Xu
- Department of Chemistry and Chemical Engineering, Jining University, Qufu, Shandong 273155, P. R. China
| | - Ru-Yang Song
- Department of Chemistry and Chemical Engineering, Jining University, Qufu, Shandong 273155, P. R. China
| | - Yan-Yu Zhao
- Department of Chemistry and Chemical Engineering, Jining University, Qufu, Shandong 273155, P. R. China
| | - Cheng-Yang Yue
- Department of Chemistry and Chemical Engineering, Jining University, Qufu, Shandong 273155, P. R. China
| | - Xiao-Wu Lei
- Department of Chemistry and Chemical Engineering, Jining University, Qufu, Shandong 273155, P. R. China
| |
Collapse
|
49
|
Elleuch N, Lhoste J, Boujelbene M. Characterization, Hirshfeld surface analysis andvibrational properties of 2,6-diaminopurinium chloride tetrachloroantimonates(III) monohydrate (C5H8N6)[SbCl4]Cl·H2O. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128386] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
50
|
Iimori T, Sugawa H, Uchida N. Bright Solvent-Free Luminescent Liquid with Magnetism Composed of a Thiocyanate Complex of Ce(III). J Phys Chem B 2020; 124:8317-8322. [PMID: 32865418 DOI: 10.1021/acs.jpcb.0c04958] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Ionic liquids composed of a thiocyanate complex of Ce(III) exhibit bright cyan photoluminescence with a quantum yield close to 40% in addition to paramagnetism. The morphology of a droplet of ionic liquid changes in response to solvent vapor as a stimulus. The emission lifetime and thermal property are characterized. The Weiss temperature is evaluated from the magnetic property measurements, which indicates that antiferromagnetic exchange interaction exists between Ce(III) ions. Insight into the characteristics of the electronic transitions in the Ce(III) complex is obtained using quantum chemical calculations. Thiocyanate complexes of Ce(III) are demonstrated as promising building blocks to produce solvent-free luminescent functional materials.
Collapse
Affiliation(s)
- Toshifumi Iimori
- Graduate School of Engineering, Muroran Institute of Technology, 27-1 Mizumotocho, Muroran, Hokkaido 050-8585, Japan
| | - Hiroto Sugawa
- Graduate School of Engineering, Muroran Institute of Technology, 27-1 Mizumotocho, Muroran, Hokkaido 050-8585, Japan
| | - Nobuya Uchida
- Graduate School of Engineering, Muroran Institute of Technology, 27-1 Mizumotocho, Muroran, Hokkaido 050-8585, Japan
| |
Collapse
|