1
|
Takiguchi S, Takeuchi N, Shenshin V, Gines G, Genot AJ, Nivala J, Rondelez Y, Kawano R. Harnessing DNA computing and nanopore decoding for practical applications: from informatics to microRNA-targeting diagnostics. Chem Soc Rev 2024. [PMID: 39471098 PMCID: PMC11521203 DOI: 10.1039/d3cs00396e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Indexed: 11/01/2024]
Abstract
DNA computing represents a subfield of molecular computing with the potential to become a significant area of next-generation computation due to the high programmability inherent in the sequence-dependent molecular behaviour of DNA. Recent studies in DNA computing have extended from mathematical informatics to biomedical applications, with a particular focus on diagnostics that exploit the biocompatibility of DNA molecules. The output of DNA computing devices is encoded in nucleic acid molecules, which must then be decoded into human-recognizable signals for practical applications. Nanopore technology, which utilizes an electrical and label-free decoding approach, provides a unique platform to bridge DNA and electronic computing for practical use. In this tutorial review, we summarise the fundamental knowledge, technologies, and methodologies of DNA computing (logic gates, circuits, neural networks, and non-DNA input circuity). We then focus on nanopore-based decoding, and highlight recent advances in medical diagnostics targeting microRNAs as biomarkers. Finally, we conclude with the potential and challenges for the practical implementation of these techniques. We hope that this tutorial will provide a comprehensive insight and enable the general reader to grasp the fundamental principles and diverse applications of DNA computing and nanopore decoding, and will inspire a wide range of scientists to explore and push the boundaries of these technologies.
Collapse
Affiliation(s)
- Sotaro Takiguchi
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei-shi, Tokyo 184-8588, Japan.
| | - Nanami Takeuchi
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei-shi, Tokyo 184-8588, Japan.
| | - Vasily Shenshin
- Laboratoire Gulliver, CNRS, ESPCI Paris, PSL Research University, 10 rue Vauquelin, Paris, 75005, France.
| | - Guillaume Gines
- Laboratoire Gulliver, CNRS, ESPCI Paris, PSL Research University, 10 rue Vauquelin, Paris, 75005, France.
| | - Anthony J Genot
- LIMMS, CNRS-Institute of Industrial Science, University of Tokyo, Meguro-ku, Tokyo, 153-8505, Japan.
| | - Jeff Nivala
- Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, WA, USA.
- Molecular Engineering and Sciences Institute, University of Washington, Seattle, WA, USA
| | - Yannick Rondelez
- Laboratoire Gulliver, CNRS, ESPCI Paris, PSL Research University, 10 rue Vauquelin, Paris, 75005, France.
| | - Ryuji Kawano
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei-shi, Tokyo 184-8588, Japan.
| |
Collapse
|
2
|
Albada B. Functionalized DNA secondary structures and nanostructures for specific protein modifications. Trends Biochem Sci 2024:S0968-0004(24)00208-1. [PMID: 39443210 DOI: 10.1016/j.tibs.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/03/2024] [Accepted: 09/13/2024] [Indexed: 10/25/2024]
Abstract
The development of non-biological applications of DNA has not only resulted in delicately shaped DNA-based nano-objects with complex functions but also spawned their use for novel catalytic applications. From the multitude of applications of DNAzymes that operate on a relatively simple substrate, we have witnessed the emergence of multifunctional catalytically active DNA-based nanostructures for one of the most challenging tasks known to a chemist: the controlled and precise modification of a wild-type protein in its natural environment. By incorporating various elements associated with post-translational modification (PTM) writer enzymes into complex nanostructures, it is now possible to chemically modify a specific protein in cell lysates under the influence of an externally added trigger, clearly illustrating the promising future for this approach.
Collapse
Affiliation(s)
- Bauke Albada
- Laboratory of Organic Chemistry, Wageningen University and Research, Stippeneng 4, 6708, WE, Wageningen, The Netherlands.
| |
Collapse
|
3
|
Paul R, Paul R, Dutta D, Dash J. pH-dependent complex formation with TAR RNA and DNA: application towards logic gates. Analyst 2024; 149:1976-1980. [PMID: 38465447 DOI: 10.1039/d4an00074a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Nucleic acid-based logic gates have shown great potential in biotechnology, medicine as well as diagnostics. Herein, we have constructed pH-responsive logic devices by utilizing HIV-1 TAR hairpins in combination with a thiazole peptide that exhibits turn-on fluorescence upon interacting with TAR RNA or DNA. Based on this, INHIBIT-AND and YES-INHIBIT-AND logic gates were constructed in parallel. The pH alteration leads to conformational changes of the hairpin structure, enabling the construction of a multi-reset reusable logic system which could be developed for in vitro sensing of the HIV-1 viral RNA.
Collapse
Affiliation(s)
- Rakesh Paul
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700032, West Bengal, India.
| | - Raj Paul
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700032, West Bengal, India.
| | - Debasish Dutta
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700032, West Bengal, India.
| | - Jyotirmayee Dash
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700032, West Bengal, India.
| |
Collapse
|
4
|
Takezawa Y, Mori K, Huang WE, Nishiyama K, Xing T, Nakama T, Shionoya M. Metal-mediated DNA strand displacement and molecular device operations based on base-pair switching of 5-hydroxyuracil nucleobases. Nat Commun 2023; 14:4759. [PMID: 37620299 PMCID: PMC10449808 DOI: 10.1038/s41467-023-40353-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 07/13/2023] [Indexed: 08/26/2023] Open
Abstract
Rational design of self-assembled DNA nanostructures has become one of the fastest-growing research areas in molecular science. Particular attention is focused on the development of dynamic DNA nanodevices whose configuration and function are regulated by specific chemical inputs. Herein, we demonstrate the concept of metal-mediated base-pair switching to induce inter- and intramolecular DNA strand displacement in a metal-responsive manner. The 5-hydroxyuracil (UOH) nucleobase is employed as a metal-responsive unit, forming both a hydrogen-bonded UOH-A base pair and a metal-mediated UOH-GdIII-UOH base pair. Metal-mediated strand displacement reactions are demonstrated under isothermal conditions based on the base-pair switching between UOH-A and UOH-GdIII-UOH. Furthermore, metal-responsive DNA tweezers and allosteric DNAzymes are developed as typical models for DNA nanodevices simply by incorporating UOH bases into the sequence. The metal-mediated base-pair switching will become a versatile strategy for constructing stimuli-responsive DNA nanostructures, expanding the scope of dynamic DNA nanotechnology.
Collapse
Affiliation(s)
- Yusuke Takezawa
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| | - Keita Mori
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Wei-En Huang
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Kotaro Nishiyama
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Tong Xing
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Takahiro Nakama
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Mitsuhiko Shionoya
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| |
Collapse
|
5
|
Chen B, Yu X, Gao T, Wu Y, Zhang X, Li S. Selection of allosteric dnazymes that can sense phenylalanine by expression-SELEX. Nucleic Acids Res 2023; 51:e66. [PMID: 37207331 PMCID: PMC10287898 DOI: 10.1093/nar/gkad424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 04/13/2023] [Accepted: 05/10/2023] [Indexed: 05/21/2023] Open
Abstract
Aptamers are ligand-binding RNA or DNA molecules and have been widely examined as biosensors, diagnostic tools, and therapeutic agents. The application of aptamers as biosensors commonly requires an expression platform to produce a signal to report the aptamer-ligand binding event. Traditionally, aptamer selection and expression platform integration are two independent steps and the aptamer selection requires the immobilization of either the aptamer or the ligand. These drawbacks can be easily overcome through the selection of allosteric DNAzymes (aptazymes). Herein, we used the technique of Expression-SELEX developed in our laboratory to select for aptazymes that can be specifically activated by low concentrations of l-phenylalanine. We chose a previous DNA-cleaving DNAzyme known as II-R1 as the expression platform for its low cleavage rate and used stringent selection conditions to drive the selection of high-performance aptazyme candidates. Three aptazymes were chosen for detailed characterization and these DNAzymes were found to exhibit a dissociation constant for l-phenylalanine as low as 4.8 μM, a catalytic rate constant improvement as high as 20 000-fold in the presence of l-phenylalanine, and the ability to discriminate against closely related l-phenylalanine analogs including d-phenylalanine. This work has established the Expression-SELEX as an effective SELEX method to enrich high-quality ligand-responsive aptazymes.
Collapse
Affiliation(s)
- Binfen Chen
- Medical School, Huaqiao University, Xiamen 361021, P.R. China
| | - Xinmei Yu
- Medical School, Huaqiao University, Xiamen 361021, P.R. China
| | - Ting Gao
- Medical School, Huaqiao University, Xiamen 361021, P.R. China
| | - Yaoyao Wu
- Medical School, Huaqiao University, Xiamen 361021, P.R. China
| | - Xiaojun Zhang
- Chemical Engineering Institute, Huaqiao University, Xiamen 361021, P.R. China
| | - Sanshu Li
- Medical School, Engineering Research Center of Molecular Medicine of Ministry of Education, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, Institute of Genomics, Huaqiao University, Xiamen 361021, P.R. China
| |
Collapse
|
6
|
Pan J, Deng F, Liu Z, Zeng L, Chen J. Construction of molecular logic gates using heavy metal ions as inputs based on catalytic hairpin assembly and CRISPR-Cas12a. Talanta 2023; 255:124210. [PMID: 36566557 DOI: 10.1016/j.talanta.2022.124210] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/18/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
We successfully constructed several molecular logic gates using heavy metal ions as inputs based on catalytic hairpin assembly (CHA) and CRISPR-Cas12a. The corresponding DNAzymes were used to recognize heavy metal ions (Hg2+, Cd2+, Pb2+, and Mn2+). The specific cleavage between heavy metal ions and DNAzymes leads to the release of the trigger DNA, which can be used to activate CHA through logic computation. The CHA-generated DNA duplexes contain the protospacer adjacent motifs (PAM) sequence, which can be distinguished by CRISPR-Cas12a. The hybridization interactions between the duplexes and gRNA will activate the trans-cleavage capability of Cas12a, which can cleave the single-stranded DNA (ssDNA) reporter. The separation of the fluorescence group and quench group in ssDNA will generate a high fluorescence signal for readout. Using Hg2+ and Cd2+ as the two inputs, several basic logic gates were constructed, including OR, AND, and INHIBT. Using Hg2+, Cd2+, Pb2+, and Mn2+ as the four inputs, cascaded logic gates were further fabricated. With the advantages of scalability, versatility, and logic computing capability, our proposed molecular logic gates can provide an intelligent sensing system for heavy metal ions monitoring.
Collapse
Affiliation(s)
- Jiafeng Pan
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China
| | - Fang Deng
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China
| | - Zhi Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Lingwen Zeng
- Guangdong Langyuan Biotechnology Co., LTD, Foshan, 528313, China; School of Food Science and Engineering, Foshan University, Foshan 528231, China
| | - Junhua Chen
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China.
| |
Collapse
|
7
|
Hu Y, Li C, Hu M, Zhang Z, Fu R, Tang X, Wu T. Allosteric Nucleic Acid Enzyme: A Versatile Stimuli-Responsive Tool for Molecular Computing and Biosensing Nanodevices. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2300207. [PMID: 36978231 DOI: 10.1002/smll.202300207] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/09/2023] [Indexed: 06/18/2023]
Abstract
Allostery is a naturally occurring mechanism in which effector binding induces the modulation and fine control of a related biomolecule function. Deoxyribozyme (DNAzyme) with catalytic activity and substrate recognition ability is ideal to be regulated by allosteric strategies. However, the current regulations frequently confront various obstacles, such as severe activity decay, signal leakage, and limited effectors. In this work, a rational regulation strategy for developing versatile effectors-responsive allosteric nucleic acid enzyme (ANAzyme) by introducing an allosteric domain in response to diverse effectors is established. The enzyme-like activity of this re-engineered ANAzyme can be modulated in a more predictable and fine way compared with the previous DNAzyme regulation strategies. Based on the allosteric strategy, the construction of allosterically coregulatory nanodevices and a series of basic logic gates and logic circuits are achieved, demonstrating that the proposed ANAzyme-regulated strategy showed great potential in molecular computing. Given these facts, the rational design of ANAzyme with the allosteric domain presented here can expand the available toolbox to develop a variety of stimuli-responsive allosteric DNA materials, including molecular machines, computing systems, biosensing platforms, and gene-silencing tools.
Collapse
Affiliation(s)
- Yuqiang Hu
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, P. R. China
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, P. R. China
| | - Changjiang Li
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, P. R. China
| | - Minghao Hu
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, P. R. China
| | - Zhen Zhang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, P. R. China
| | - Ruolan Fu
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, P. R. China
| | - Xinjing Tang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, P. R. China
| | - Tongbo Wu
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, P. R. China
| |
Collapse
|
8
|
Wang J, Zhang X, Shi P, Cao B, Wang B. A DNA Finite-State Machine Based on the Programmable Allosteric Strategy of DNAzyme. Int J Mol Sci 2023; 24:ijms24043588. [PMID: 36834996 PMCID: PMC9963683 DOI: 10.3390/ijms24043588] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 02/16/2023] Open
Abstract
Living organisms can produce corresponding functions by responding to external and internal stimuli, and this irritability plays a pivotal role in nature. Inspired by such natural temporal responses, the development and design of nanodevices with the ability to process time-related information could facilitate the development of molecular information processing systems. Here, we proposed a DNA finite-state machine that can dynamically respond to sequential stimuli signals. To build this state machine, a programmable allosteric strategy of DNAzyme was developed. This strategy performs the programmable control of DNAzyme conformation using a reconfigurable DNA hairpin. Based on this strategy, we first implemented a finite-state machine with two states. Through the modular design of the strategy, we further realized the finite-state machine with five states. The DNA finite-state machine endows molecular information systems with the ability of reversible logic control and order detection, which can be extended to more complex DNA computing and nanomachines to promote the development of dynamic nanotechnology.
Collapse
Affiliation(s)
- Jun Wang
- Key Laboratory of Advanced Design and Intelligent Computing, Ministry of Education, School of Software Engineering, Dalian University, Dalian 116622, China
| | - Xiaokang Zhang
- School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Peijun Shi
- School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Ben Cao
- School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Bin Wang
- Key Laboratory of Advanced Design and Intelligent Computing, Ministry of Education, School of Software Engineering, Dalian University, Dalian 116622, China
- Correspondence: ; Tel.: +86-0411-87402106
| |
Collapse
|
9
|
Pine AC, Brooke GN, Marco A. A computational approach to identify efficient RNA cleaving 10-23 DNAzymes. NAR Genom Bioinform 2023; 5:lqac098. [PMID: 36632612 PMCID: PMC9830538 DOI: 10.1093/nargab/lqac098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/30/2022] [Accepted: 01/06/2023] [Indexed: 01/11/2023] Open
Abstract
DNAzymes are short pieces of DNA with catalytic activity, capable of cleaving RNA. DNAzymes have multiple applications as biosensors and in therapeutics. The high specificity and low toxicity of these molecules make them particularly suitable as therapeutics, and clinical trials have shown that they are effective in patients. However, the development of DNAzymes has been limited due to the lack of specific tools to identify efficient molecules, and users often resort to time-consuming/costly large-scale screens. Here, we propose a computational methodology to identify 10-23 DNAzymes that can be used to triage thousands of potential molecules, specific to a target RNA, to identify those that are predicted to be efficient. The method is based on a logistic regression and can be trained to incorporate additional DNAzyme efficiency data, improving its performance with time. We first trained the method with published data, and then we validated, and further refined it, by testing additional newly synthesized DNAzymes in the laboratory. We found that although binding free energy between the DNAzyme and its RNA target is the primary determinant of efficiency, other factors such as internal structure of the DNAzyme also have an important effect. A program implementing the proposed method is publicly available.
Collapse
Affiliation(s)
- Angela C Pine
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK
| | - Greg N Brooke
- Correspondence may also be addressed to Greg N. Brooke.
| | - Antonio Marco
- To whom correspondence should be addressed. Tel: +44 1206 87 3339;
| |
Collapse
|
10
|
Lu JY, Jiang Q, Lei JJ, He YX, Huang WT. Molecular ‘email’: Electrochemical aptasensing of fish pathogens, molecular information encoding, encryption and hiding applications. Anal Chim Acta 2022; 1232:340483. [DOI: 10.1016/j.aca.2022.340483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 09/30/2022] [Accepted: 10/03/2022] [Indexed: 11/01/2022]
|
11
|
Cascaded dissipative DNAzyme-driven layered networks guide transient replication of coded-strands as gene models. Nat Commun 2022; 13:4414. [PMID: 35906232 PMCID: PMC9338015 DOI: 10.1038/s41467-022-32148-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 07/18/2022] [Indexed: 11/30/2022] Open
Abstract
Dynamic, transient, out-of-equilibrium networks guide cellular genetic, metabolic or signaling processes. Designing synthetic networks emulating natural processes imposes important challenges including the ordered connectivity of transient reaction modules, engineering of the appropriate balance between production and depletion of reaction constituents, and coupling of the reaction modules with emerging chemical functions dictated by the networks. Here we introduce the assembly of three coupled reaction modules executing a cascaded dynamic process leading to the transient formation and depletion of three different Mg2+-ion-dependent DNAzymes. The transient operation of the DNAzyme in one layer triggers the dynamic activation of the DNAzyme in the subsequent layer, leading to a three-layer transient catalytic cascade. The kinetics of the transient cascade is computationally simulated. The cascaded network is coupled to a polymerization/nicking DNA machinery guiding transient synthesis of three coded strands acting as “gene models”, and to the rolling circle polymerization machinery leading to the transient synthesis of fluorescent Zn(II)-PPIX/G-quadruplex chains or hemin/G-quadruplex catalytic wires. A reaction network executing a cascaded transient formation and depletion of three different catalytic strands is introduced. The system is coupled to the secondary temporal synthesis of different coded strands as gene models.
Collapse
|
12
|
Abstract
Regulatory processes in biology can be re-conceptualized in terms of logic gates, analogous to those in computer science. Frequently, biological systems need to respond to multiple, sometimes conflicting, inputs to provide the correct output. The language of logic gates can then be used to model complex signal transduction and metabolic processes. Advances in synthetic biology in turn can be used to construct new logic gates, which find a variety of biotechnology applications including in the production of high value chemicals, biosensing, and drug delivery. In this review, we focus on advances in the construction of logic gates that take advantage of biological catalysts, including both protein-based and nucleic acid-based enzymes. These catalyst-based biomolecular logic gates can read a variety of molecular inputs and provide chemical, optical, and electrical outputs, allowing them to interface with other types of biomolecular logic gates or even extend to inorganic systems. Continued advances in molecular modeling and engineering will facilitate the construction of new logic gates, further expanding the utility of biomolecular computing.
Collapse
|
13
|
He S, Cui R, Zhang Y, Yang Y, Xu Z, Wang S, Dang P, Dang K, Ye Q, Liu Y. Design and Realization of Triple dsDNA Nanocomputing Circuits in Microfluidic Chips. ACS APPLIED MATERIALS & INTERFACES 2022; 14:10721-10728. [PMID: 35188362 DOI: 10.1021/acsami.1c24220] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
DNA logic gates, nanocomputing circuits, have already implemented basic computations and shown great signal potential for nano logic material application. However, the reaction temperature and computing speed still limit its development. Performing complicated computations requires a more stable component and a better computing platform. We proposed a more stable design of logic gates based on a triple, double-stranded, DNA (T-dsDNA) structure. We demonstrated a half adder and a full adder using these DNA nanocircuits and performed the computations in a microfluidic chip device at room temperature. When the solutions were mixed in the device, we obtained the expected results in real time, which suggested that the T-dsDNA combined microfluidic chip provides a concise strategy for large DNA nanocircuits.
Collapse
Affiliation(s)
- Songlin He
- School of Medicine, Nankai University, Tianjin 300071, People's Republic of China
- Institute of Orthopedics, the First Medical Center, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics; Key Laboratory of Musculoskeletal Trauma & War Injuries PLA; No. 28 Fuxing Road, Haidian District, Beijing 100853, People's Republic of China
| | - Ruiming Cui
- Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education, School of Physics and TEDA Applied Physics, Nankai University, Tianjin 300071, People's Republic of China
| | - Yao Zhang
- School of Medicine, Nankai University, Tianjin 300071, People's Republic of China
| | - Yongkang Yang
- School of Medicine, Nankai University, Tianjin 300071, People's Republic of China
| | - Ziheng Xu
- School of Medicine, Nankai University, Tianjin 300071, People's Republic of China
| | - Shuoyu Wang
- School of Medicine, Nankai University, Tianjin 300071, People's Republic of China
| | - Pingxiu Dang
- School of Medicine, Nankai University, Tianjin 300071, People's Republic of China
| | - Kexin Dang
- Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education, School of Physics and TEDA Applied Physics, Nankai University, Tianjin 300071, People's Republic of China
| | - Qing Ye
- Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education, School of Physics and TEDA Applied Physics, Nankai University, Tianjin 300071, People's Republic of China
- Nankai University Eye Institute, Nankai University, Tianjin 300071, People's Republic of China
| | - Yin Liu
- School of Medicine, Nankai University, Tianjin 300071, People's Republic of China
- Nankai University Eye Institute, Nankai University, Tianjin 300071, People's Republic of China
| |
Collapse
|
14
|
Wang C, O'Hagan MP, Li Z, Zhang J, Ma X, Tian H, Willner I. Photoresponsive DNA materials and their applications. Chem Soc Rev 2022; 51:720-760. [PMID: 34985085 DOI: 10.1039/d1cs00688f] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Photoresponsive nucleic acids attract growing interest as functional constituents in materials science. Integration of photoisomerizable units into DNA strands provides an ideal handle for the reversible reconfiguration of nucleic acid architectures by light irradiation, triggering changes in the chemical and structural properties of the nanostructures that can be exploited in the development of photoresponsive functional devices such as machines, origami structures and ion channels, as well as environmentally adaptable 'smart' materials including nanoparticle aggregates and hydrogels. Moreover, photoresponsive DNA components allow control over the composition of dynamic supramolecular ensembles that mimic native networks. Beyond this, the modification of nucleic acids with photosensitizer functionality enables these biopolymers to act as scaffolds for spatial organization of electron transfer reactions mimicking natural photosynthesis. This review provides a comprehensive overview of these exciting developments in the design of photoresponsive DNA materials, and showcases a range of applications in catalysis, sensing and drug delivery/release. The key challenges facing the development of the field in the coming years are addressed, and exciting emergent research directions are identified.
Collapse
Affiliation(s)
- Chen Wang
- Institute of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| | - Michael P O'Hagan
- Institute of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| | - Ziyuan Li
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, Frontiers Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Junji Zhang
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, Frontiers Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Xiang Ma
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, Frontiers Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - He Tian
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, Frontiers Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Itamar Willner
- Institute of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| |
Collapse
|
15
|
Xing C, Zheng X, Zhang Q. Constructing DNA logic circuits based on the toehold preemption mechanism. RSC Adv 2021; 12:338-345. [PMID: 35424506 PMCID: PMC8978688 DOI: 10.1039/d1ra08687a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 12/14/2021] [Indexed: 11/21/2022] Open
Abstract
Strand displacement technology and ribozyme digestion technology have enriched the intelligent toolbox of molecular computing and provided more methods for the construction of DNA logic circuits. In recent years, DNA logic circuits have developed rapidly, and their scalability and accuracy in molecular computing and information processing have been fully demonstrated. However, existing DNA logic circuits still have some problems such as high complexity of DNA strands (number of DNA strands) hindering the expansion of practical computing tasks. In view of the above problems, we presented a toehold preemption mechanism and applied it to construct DNA logic circuits using E6-type DNAzymes, such as half adder circuit, half subtractor circuit, and 4-bit square root logic circuit. Different from the dual-track logic expressions, all the signals in the circuits of this study were monorail which substantially reduced the number of DNA strands in the DNA logic circuits. The presented preemption mechanism provides a way to simplify the implementation of large and complex DNA integrated circuits.
Collapse
Affiliation(s)
- Cuicui Xing
- Key Laboratory of Advanced Design and Intelligent Computing, Dalian University, Ministry of Education Dalian 116622 China
| | - Xuedong Zheng
- College of Computer Science, Shenyang Aerospace University Shenyang 110136 China
| | - Qiang Zhang
- Key Laboratory of Advanced Design and Intelligent Computing, Dalian University, Ministry of Education Dalian 116622 China
- School of Computer Science and Technology, Dalian University of Technology Dalian 116024 China
| |
Collapse
|
16
|
Xu S, Liu Y, Zhou S, Zhang Q, Kasabov NK. DNA Matrix Operation Based on the Mechanism of the DNAzyme Binding to Auxiliary Strands to Cleave the Substrate. Biomolecules 2021; 11:1797. [PMID: 34944442 PMCID: PMC8698824 DOI: 10.3390/biom11121797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/21/2021] [Accepted: 11/27/2021] [Indexed: 11/16/2022] Open
Abstract
Numerical computation is a focus of DNA computing, and matrix operations are among the most basic and frequently used operations in numerical computation. As an important computing tool, matrix operations are often used to deal with intensive computing tasks. During calculation, the speed and accuracy of matrix operations directly affect the performance of the entire computing system. Therefore, it is important to find a way to perform matrix calculations that can ensure the speed of calculations and improve the accuracy. This paper proposes a DNA matrix operation method based on the mechanism of the DNAzyme binding to auxiliary strands to cleave the substrate. In this mechanism, the DNAzyme binding substrate requires the connection of two auxiliary strands. Without any of the two auxiliary strands, the DNAzyme does not cleave the substrate. Based on this mechanism, the multiplication operation of two matrices is realized; the two types of auxiliary strands are used as elements of the two matrices, to participate in the operation, and then are combined with the DNAzyme to cut the substrate and output the result of the matrix operation. This research provides a new method of matrix operations and provides ideas for more complex computing systems.
Collapse
Affiliation(s)
- Shaoxia Xu
- Key Laboratory of Advanced Design and Intelligent Computing, Dalian University, Dalian 116622, China;
| | - Yuan Liu
- School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, China;
| | - Shihua Zhou
- Key Laboratory of Advanced Design and Intelligent Computing, Dalian University, Dalian 116622, China;
| | - Qiang Zhang
- Key Laboratory of Advanced Design and Intelligent Computing, Dalian University, Dalian 116622, China;
- School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, China;
| | - Nikola K. Kasabov
- Knowledge Engineering and Discovery Research Institute, Auckland University of Technology, Auckland 1010, New Zealand;
- Intelligent Systems Research Center, Ulster University, Londonderry BT52 1SA, UK
| |
Collapse
|
17
|
Development of Synthetic DNA Circuit and Networks for Molecular Information Processing. NANOMATERIALS 2021; 11:nano11112955. [PMID: 34835719 PMCID: PMC8625377 DOI: 10.3390/nano11112955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/25/2021] [Accepted: 10/25/2021] [Indexed: 11/23/2022]
Abstract
Deoxyribonucleic acid (DNA), a genetic material, encodes all living information and living characteristics, e.g., in cell, DNA signaling circuits control the transcription activities of specific genes. In recent years, various DNA circuits have been developed to implement a wide range of signaling and for regulating gene network functions. In particular, a synthetic DNA circuit, with a programmable design and easy construction, has become a crucial method through which to simulate and regulate DNA signaling networks. Importantly, the construction of a hierarchical DNA circuit provides a useful tool for regulating gene networks and for processing molecular information. Moreover, via their robust and modular properties, DNA circuits can amplify weak signals and establish programmable cascade systems, which are particularly suitable for the applications of biosensing and detecting. Furthermore, a biological enzyme can also be used to provide diverse circuit regulation elements. Currently, studies regarding the mechanisms and applications of synthetic DNA circuit are important for the establishment of more advanced artificial gene regulation systems and intelligent molecular sensing tools. We therefore summarize recent relevant research progress, contributing to the development of nanotechnology-based synthetic DNA circuits. By summarizing the current highlights and the development of synthetic DNA circuits, this paper provides additional insights for future DNA circuit development and provides a foundation for the construction of more advanced DNA circuits.
Collapse
|
18
|
Wang J, Li Z, Zhou Z, Ouyang Y, Zhang J, Ma X, Tian H, Willner I. DNAzyme- and light-induced dissipative and gated DNA networks. Chem Sci 2021; 12:11204-11212. [PMID: 34522318 PMCID: PMC8386649 DOI: 10.1039/d1sc02091a] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 07/20/2021] [Indexed: 12/20/2022] Open
Abstract
Nucleic acid-based dissipative, out-of-equilibrium systems are introduced as functional assemblies emulating transient dissipative biological transformations. One system involves a Pb2+-ion-dependent DNAzyme fuel strand-driven network leading to the transient cleavage of the fuel strand to “waste” products. Applying the Pb2+-ion-dependent DNAzyme to two competitive fuel strand-driven systems yields two parallel operating networks. Blocking the competitively operating networks with selective inhibitors leads, however, to gated transient operation of dictated networks, yielding gated catalytic operations. A second system introduces a “non-waste” generating out-of-equilibrium, dissipative network driven by light. The system consists of a trans-azobenzene-functionalized photoactive module that is reconfigured by light to an intermediary state consisting of cis-azobenzene units that are thermally recovered to the original trans-azobenzene-modified module. The cyclic transient photoinduced operation of the device is demonstrated. The kinetic simulation of the systems allows the prediction of the transient behavior of the networks under different auxiliary conditions. Functional DNA modules are triggered in the presence of appropriate inhibitors to yield transient gated catalytic functions, and a photoresponsive DNA module leads to “waste-free” operation of transient, dissipative dynamic transitions.![]()
Collapse
Affiliation(s)
- Jianbang Wang
- Institute of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem Jerusalem 91904 Israel
| | - Zhenzhen Li
- Institute of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem Jerusalem 91904 Israel
| | - Zhixin Zhou
- Institute of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem Jerusalem 91904 Israel
| | - Yu Ouyang
- Institute of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem Jerusalem 91904 Israel
| | - Junji Zhang
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, Frontiers Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology Shanghai 200237 P. R. China
| | - Xiang Ma
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, Frontiers Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology Shanghai 200237 P. R. China
| | - He Tian
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, Frontiers Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology Shanghai 200237 P. R. China
| | - Itamar Willner
- Institute of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem Jerusalem 91904 Israel
| |
Collapse
|
19
|
Abstract
This article provides a comprehensive review of biosensing with DNAzymes, providing an overview of different sensing applications while highlighting major progress and seminal contributions to the field of portable biosensor devices and point-of-care diagnostics. Specifically, the field of functional nucleic acids is introduced, with a specific focus on DNAzymes. The incorporation of DNAzymes into bioassays is then described, followed by a detailed overview of recent advances in the development of in vivo sensing platforms and portable sensors incorporating DNAzymes for molecular recognition. Finally, a critical perspective on the field, and a summary of where DNAzyme-based devices may make the biggest impact are provided.
Collapse
Affiliation(s)
- Erin M McConnell
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S 4K1, Canada.
| | | | | | | | | | | |
Collapse
|
20
|
Lu S, Shen J, Fan C, Li Q, Yang X. DNA Assembly-Based Stimuli-Responsive Systems. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2100328. [PMID: 34258165 PMCID: PMC8261508 DOI: 10.1002/advs.202100328] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/05/2021] [Indexed: 05/06/2023]
Abstract
Stimuli-responsive designs with exogenous stimuli enable remote and reversible control of DNA nanostructures, which break many limitations of static nanostructures and inspired development of dynamic DNA nanotechnology. Moreover, the introduction of various types of organic molecules, polymers, chemical bonds, and chemical reactions with stimuli-responsive properties development has greatly expand the application scope of dynamic DNA nanotechnology. Here, DNA assembly-based stimuli-responsive systems are reviewed, with the focus on response units and mechanisms that depend on different exogenous stimuli (DNA strand, pH, light, temperature, electricity, metal ions, etc.), and their applications in fields of nanofabrication (DNA architectures, hybrid architectures, nanomachines, and constitutional dynamic networks) and biomedical research (biosensing, bioimaging, therapeutics, and theranostics) are discussed. Finally, the opportunities and challenges for DNA assembly-based stimuli-responsive systems are overviewed and discussed.
Collapse
Affiliation(s)
- Shasha Lu
- School of Chemistry and Chemical EngineeringFrontiers Science Center for Transformative MoleculesInstitute of Translational MedicineShanghai Jiao Tong UniversityShanghai200240China
| | - Jianlei Shen
- School of Chemistry and Chemical EngineeringFrontiers Science Center for Transformative MoleculesInstitute of Translational MedicineShanghai Jiao Tong UniversityShanghai200240China
| | - Chunhai Fan
- School of Chemistry and Chemical EngineeringFrontiers Science Center for Transformative MoleculesInstitute of Translational MedicineShanghai Jiao Tong UniversityShanghai200240China
- Institute of Molecular MedicineShanghai Key Laboratory for Nucleic Acid Chemistry and NanomedicineDepartment of UrologyRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
| | - Qian Li
- School of Chemistry and Chemical EngineeringFrontiers Science Center for Transformative MoleculesInstitute of Translational MedicineShanghai Jiao Tong UniversityShanghai200240China
| | - Xiurong Yang
- School of Chemistry and Chemical EngineeringFrontiers Science Center for Transformative MoleculesInstitute of Translational MedicineShanghai Jiao Tong UniversityShanghai200240China
| |
Collapse
|
21
|
Bracaglia S, Ranallo S, Plaxco KW, Ricci F. Programmable, Multiplexed DNA Circuits Supporting Clinically Relevant, Electrochemical Antibody Detection. ACS Sens 2021; 6:2442-2448. [PMID: 34129321 PMCID: PMC8240086 DOI: 10.1021/acssensors.1c00790] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Current health emergencies have highlighted the need to have rapid, sensitive, and convenient platforms for the detection of specific antibodies. In response, we report here the design of an electrochemical DNA circuit that responds quantitatively to multiple specific antibodies. The approach employs synthetic antigen-conjugated nucleic acid strands that are rationally designed to induce a strand displacement reaction and release a redox reporter-modified strand upon the recognition of a specific target antibody. The approach is sensitive (low nanomolar detection limit), specific (no signal is observed in the presence of non-targeted antibodies), and selective (the platform can be employed in complex media, including 90% serum). The programmable nature of the strand displacement circuit makes it also versatile, and we demonstrate here the detection of five different antibodies, including three of which are clinically relevant. Using different redox reporters, we also show that the antibody-responsive circuit can be multiplexed and responds to different antibodies in the same solution without crosstalk.
Collapse
Affiliation(s)
- Sara Bracaglia
- Department of Chemical Science and Technologies, University of Rome, Tor Vergata, 00133 Rome, Italy
| | - Simona Ranallo
- Department of Chemical Science and Technologies, University of Rome, Tor Vergata, 00133 Rome, Italy
- Department of Chemistry and Biochemistry, University of California Santa Barbara, CA93106 Santa Barbara, California, United States
| | - Kevin W. Plaxco
- Department of Chemistry and Biochemistry, University of California Santa Barbara, CA93106 Santa Barbara, California, United States
| | - Francesco Ricci
- Department of Chemical Science and Technologies, University of Rome, Tor Vergata, 00133 Rome, Italy
| |
Collapse
|
22
|
Saha U, Todi K, Malhotra BD. Emerging DNA-based multifunctional nano-biomaterials towards electrochemical sensing applications. NANOSCALE 2021; 13:10305-10319. [PMID: 34086027 DOI: 10.1039/d1nr02409d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
DNA is known to be ubiquitous in nature as it is the controlling unit for genetic information storage in most living organisms. Lately, there has been a surge in studies relating to the use of DNA as a biomaterial for various biomedical applications such as biosensing, therapeutics, and drug delivery. The role of DNA as a bioreceptor in biosensors has been known for a long time. DNA-based biosensors are gradually evolving into highly sophisticated and sensitive molecular devices. The current realization of DNA-based biosensors embraces the unique structural and functional properties of DNA in the form of a biopolymer. The interesting properties of DNA, such as self-assembly, programmability, catalytic activity, dynamic behavior, and precise molecular recognition, have led to the emergence of innovative DNA assembly based electrochemical biosensors. This review article aims to cover the recent progress in the field of DNA-based electrochemical (EC) biosensors. It commences with an introduction to electrochemical biosensors and elucidates the advantages of integrating DNA-based materials into them. Besides this, we discuss the principles of EC biosensors based on different types of DNA-based materials. The article concludes by highlighting the outlook and importance of this interesting field for biomedical developments.
Collapse
Affiliation(s)
- Udiptya Saha
- Nanobioelectronics Laboratory, Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, New Delhi 110042, India.
| | - Keshav Todi
- Nanobioelectronics Laboratory, Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, New Delhi 110042, India.
| | - Bansi D Malhotra
- Nanobioelectronics Laboratory, Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, New Delhi 110042, India.
| |
Collapse
|
23
|
Xiong Y, Dai J, Zhang Y, Zhou C, Yuan H, Xiao D. A label-free fluorescent biosensor based on a catalyzed hairpin assembly for HIV DNA and lead detection. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:2391-2395. [PMID: 33972958 DOI: 10.1039/d1ay00410g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Herein, a label-free fluorescent signal amplification system based on a catalyzed hairpin assembly (CHA) is reported. In this system, two hairpin probes, H1 and H2, were well-designed in which G-quadruplex sequences were integrated into H2. The CHA reaction was triggered by target/trigger DNA and G-quadruplex sequences were released, which can bind the fluorescent amyloid dye thioflavin T (ThT) to provide fluorescence signals. At the same time, target/trigger DNA was released from the product of the CHA reaction (H1-H2), which continued to initiate the next CHA cycle, and the signal was eventually amplified. This signal amplification approach has been successfully used to develop a label-free fluorescent sensing platform for sensitive detection of human immunodeficiency virus (HIV) DNA and Pb2+.
Collapse
Affiliation(s)
- Yu Xiong
- College of Chemical Engineering, Sichuan University, Chengdu 610065, China.
| | | | | | | | | | | |
Collapse
|
24
|
Zhou Z, Wang J, Levine RD, Remacle F, Willner I. DNA-based constitutional dynamic networks as functional modules for logic gates and computing circuit operations. Chem Sci 2021; 12:5473-5483. [PMID: 34168788 PMCID: PMC8179666 DOI: 10.1039/d1sc01098k] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 03/09/2021] [Indexed: 11/21/2022] Open
Abstract
A nucleic acid-based constitutional dynamic network (CDN) is introduced as a single computational module that, in the presence of different sets of inputs, operates a variety of logic gates including a half adder, 2 : 1 multiplexer and 1 : 2 demultiplexer, a ternary multiplication matrix and a cascaded logic circuit. The CDN-based computational module leads to four logically equivalent outputs for each of the logic operations. Beyond the significance of the four logically equivalent outputs in establishing reliable and robust readout signals of the computational module, each of the outputs may be fanned out, in the presence of different inputs, to a set of different logic circuits. In addition, the ability to intercommunicate constitutional dynamic networks (CDNs) and to construct DNA-based CDNs of higher complexity provides versatile means to design computing circuits of enhanced complexity.
Collapse
Affiliation(s)
- Zhixin Zhou
- The Institute of Chemistry, The Hebrew University of Jerusalem Jerusalem 91904 Israel
| | - Jianbang Wang
- The Institute of Chemistry, The Hebrew University of Jerusalem Jerusalem 91904 Israel
| | - R D Levine
- The Institute of Chemistry, The Hebrew University of Jerusalem Jerusalem 91904 Israel
| | - Francoise Remacle
- Theoretical Physical Chemistry, UR MolSys B6c, University of Liège B4000 Liège Belgium
| | - Itamar Willner
- The Institute of Chemistry, The Hebrew University of Jerusalem Jerusalem 91904 Israel
| |
Collapse
|
25
|
Pan J, He Y, Liu Z, Chen J. Dual recognition element-controlled logic DNA circuit for COVID-19 detection based on exonuclease III and DNAzyme. Chem Commun (Camb) 2021; 57:1125-1128. [PMID: 33410447 DOI: 10.1039/d0cc06799g] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Two fragments of the COVID-19 genome (specific and homologous) were used as two inputs to construct an AND logic gate for COVID-19 detection based on exonuclease III and DNAzyme. The detection sensitivity of the assay can reach fM levels. Satisfactory recovery values were obtained in real sample analysis.
Collapse
Affiliation(s)
- Jiafeng Pan
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China.
| | - Ying He
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China.
| | - Zhi Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China.
| | - Junhua Chen
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China.
| |
Collapse
|
26
|
Nakama T, Takezawa Y, Shionoya M. Site-specific polymerase incorporation of consecutive ligand-containing nucleotides for multiple metal-mediated base pairing. Chem Commun (Camb) 2021; 57:1392-1395. [PMID: 33438690 DOI: 10.1039/d0cc07771b] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An enzymatic method has been developed for the synthesis of DNA oligomers containing consecutive artificial ligand-type nucleotides. Three hydroxypyridone ligand-containing nucleotides forming CuII-mediated unnatural base pairs were continuously incorporated at a pre-specified position by a lesion-bypass Dpo4 polymerase. This enzymatic synthesis was applied to the development of a CuII-responsive DNAzyme. Accordingly, this research will open new routes for the construction of metal-responsive DNA architectures that are manipulated by multiple metal-mediated base pairing.
Collapse
Affiliation(s)
- Takahiro Nakama
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | | | | |
Collapse
|
27
|
Magri DC. Logical sensing with fluorescent molecular logic gates based on photoinduced electron transfer. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213598] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
28
|
|
29
|
Logic Gates Based on DNA Aptamers. Pharmaceuticals (Basel) 2020; 13:ph13110417. [PMID: 33238657 PMCID: PMC7700249 DOI: 10.3390/ph13110417] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 02/08/2023] Open
Abstract
DNA bio-computing is an emerging trend in modern science that is based on interactions among biomolecules. Special types of DNAs are aptamers that are capable of selectively forming complexes with target compounds. This review is devoted to a discussion of logic gates based on aptamers for the purposes of medicine and analytical chemistry. The review considers different approaches to the creation of logic gates and identifies the general algorithms of their creation, as well as describes the methods of obtaining an output signal which can be divided into optical and electrochemical. Aptameric logic gates based on DNA origami and DNA nanorobots are also shown. The information presented in this article can be useful when creating new logic gates using existing aptamers and aptamers that will be selected in the future.
Collapse
|
30
|
Zhang X, Zhang Q, Liu Y, Wei X. A DNAzyme-mediated logic gate system based on Ag(I)-cysteine. Analyst 2020; 145:6572-6578. [PMID: 32780055 DOI: 10.1039/d0an01315c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Ag+ plays an important role in DNA mismatch technology due to its affinity for cytosine in DNA. This article introduces a strategy to control the enzyme digesting reaction by utilizing the characteristics of C-Ag+-C mismatches, effectively regulating and controlling the activity of the E6 DNAzyme via changing the structure of its conservative domain. We designed a series of basic logic gates, a "Yes" Gate, an "Or" Gate and an "Inhibit" Gate. Cysteine (Cys) can combine with Ag+, reducing the concentration of Ag+ in solution, thus restraining the C-Ag+-C mismatch effect. Based on this principle, we regard Cys as a threshold, and designed a type of "Inhibit" Gate based on input quantity by changing the concentration of Ag+, thus generating different statues of logic output. On this basis, the E6 DNAzyme and Ag10c DNAzyme can be integrated into new systems with the function of logic operation circuit based on the control of Ag+ concentration in solution. This system could represent three different states of logical expression by controlling the quantity of Ag+ and Cys.
Collapse
Affiliation(s)
- Xun Zhang
- School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, China.
| | - Qiang Zhang
- School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, China.
| | - Yuan Liu
- School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, China.
| | - Xiaopeng Wei
- School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
31
|
Wang Y, Wei Y, Zhang Y, Wang L, Dong Y. Enzyme-free and DNA-based universal platform for the construction of various logic devices based on graphene oxide and G-quadruplex. Comput Biol Chem 2020; 89:107374. [PMID: 32987286 DOI: 10.1016/j.compbiolchem.2020.107374] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 08/22/2020] [Accepted: 09/10/2020] [Indexed: 11/16/2022]
Abstract
In the fields of biocomputing and biomolecular, DNA molecules are applicable to be regarded as data of logical computing platform that uses elaborate logic gates to perform a variety of tasks. Graphene oxide (GO) is a type of novel nanomaterial, which brings new research focus to materials science and biosensors due to its special selectivity and excellent quenching ability. G-quadruplex as a unique DNA structure stimulates the intelligent application of DNA assembly on the strength of its exceptional binding activity. In this paper, we report a universal logic device assisted with GO and G-quadruplex under an enzyme-free condition. Integrated with the quenching ability of GO to the TAMRA (fluorophore, Carboxytetramethylrhodamine) and the enhancement of fluorescence intensity produced by the peculiar binding of G-quadruplex to the NMM (N-methylmesoporphyrin IX), a series of basic binary logic gates (AND. OR. INHIBIT. XOR) have been designed and verified through biological experiments. Given the modularity and programmability of this strategy, two advanced logic gates (half adder and half subtractor) were realized on the basis of the same work platform. The fluorescence signals generated from different input combinations possessed satisfactory results, which provided proof of feasibility. We believe that the proposed universal logical platform that operates at the nanoscale is expected to be utilized for future applications in molecular computing as well as disease diagnosis.
Collapse
Affiliation(s)
- Yue Wang
- School of Computer Science, Shaanxi Normal University, Xi'an, 710119, China
| | - Yani Wei
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Yingying Zhang
- School of Computer Science, Shaanxi Normal University, Xi'an, 710119, China
| | - Luhui Wang
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Yafei Dong
- School of Computer Science, Shaanxi Normal University, Xi'an, 710119, China; College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China.
| |
Collapse
|
32
|
Wang S, Yue L, Wulf V, Lilienthal S, Willner I. Dissipative Constitutional Dynamic Networks for Tunable Transient Responses and Catalytic Functions. J Am Chem Soc 2020; 142:17480-17488. [DOI: 10.1021/jacs.0c06977] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Shan Wang
- Institute of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Liang Yue
- Institute of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Verena Wulf
- Department of Biomedical Engineering, Faculty of Engineering, Tel-Aviv University, Tel Aviv 6997801, Israel
| | - Sivan Lilienthal
- Institute of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Itamar Willner
- Institute of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
33
|
Takezawa Y, Hu L, Nakama T, Shionoya M. Sharp Switching of DNAzyme Activity through the Formation of a Cu
II
‐Mediated Carboxyimidazole Base Pair. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202009579] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Yusuke Takezawa
- Department of Chemistry Graduate School of Science The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| | - Lingyun Hu
- Department of Chemistry Graduate School of Science The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| | - Takahiro Nakama
- Department of Chemistry Graduate School of Science The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| | - Mitsuhiko Shionoya
- Department of Chemistry Graduate School of Science The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| |
Collapse
|
34
|
Takezawa Y, Hu L, Nakama T, Shionoya M. Sharp Switching of DNAzyme Activity through the Formation of a Cu
II
‐Mediated Carboxyimidazole Base Pair. Angew Chem Int Ed Engl 2020; 59:21488-21492. [DOI: 10.1002/anie.202009579] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Indexed: 12/18/2022]
Affiliation(s)
- Yusuke Takezawa
- Department of Chemistry Graduate School of Science The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| | - Lingyun Hu
- Department of Chemistry Graduate School of Science The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| | - Takahiro Nakama
- Department of Chemistry Graduate School of Science The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| | - Mitsuhiko Shionoya
- Department of Chemistry Graduate School of Science The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| |
Collapse
|
35
|
Zhang X, Yang Q, Lang Y, Jiang X, Wu P. Rationale of 3,3',5,5'-Tetramethylbenzidine as the Chromogenic Substrate in Colorimetric Analysis. Anal Chem 2020; 92:12400-12406. [PMID: 32794705 DOI: 10.1021/acs.analchem.0c02149] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Horseradish peroxidase (HRP)-based assays feature particular interests because of the simple colorimetric readout. In these assays, 3,3',5,5'-tetramethylbenzidine (TMB) is the most widely used chromogenic substrates for HRP. The later research in nanozyme and DNAzyme also used TMB (the chosen substrate) because they are both HRP-mimics. It should be noted that the substrate of HRP is not just limited to TMB but, in fact, a broad range of benzidine derivatives. However, except decreased carcinogenicity due to tetrasubstitution of benzidine, the rationale for the chosen substrate TMB is not clear yet. Here, we addressed such a fundamental issue from the chemistry point of view. Nine benzidine derivatives featuring varied properties (different substitution groups and varied number of substitutions) were selected and investigated with four typical TMB-involved chromogenic systems. Among the existing benzidine substrates that are used for peroxidase-based assays, TMB exhibited the highest sensitivity, better color purity of colored products, and reasonable stability of oxidation products. Moreover, two tetrasubstituted benzidine derivatives other than TMB (4OCH3 and 2OCH32CH3) were synthesized for comparison. It turned out that the performances (sensitivity, color purity, and stability of the colored products) of TMB are still superior, thus chemically confirming its status of "the chosen substrate" in colorimetric assays.
Collapse
Affiliation(s)
- Xiao Zhang
- State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, China.,Analytical & Testing Center, Sichuan University, Chengdu 610064, China
| | - Qin Yang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610064, China
| | - Yunhe Lang
- State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, China.,Analytical & Testing Center, Sichuan University, Chengdu 610064, China
| | - Xia Jiang
- National Engineering Research Center for Flue Gas Desulfurization, Sichuan University, Chengdu 610064, China
| | - Peng Wu
- State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, China.,Analytical & Testing Center, Sichuan University, Chengdu 610064, China.,National Engineering Research Center for Flue Gas Desulfurization, Sichuan University, Chengdu 610064, China
| |
Collapse
|
36
|
A molecular device: A DNA molecular lock driven by the nicking enzymes. Comput Struct Biotechnol J 2020; 18:2107-2116. [PMID: 32913580 PMCID: PMC7451616 DOI: 10.1016/j.csbj.2020.08.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 07/28/2020] [Accepted: 08/01/2020] [Indexed: 11/22/2022] Open
Abstract
As people are placing more and more importance on information security, how to realize the protection of information has become a hotspot of current research. As a security device, DNA molecular locks have great potential to realize information protection at the molecular level. However, building a highly secure molecular lock is still a serious challenge. Therefore, taking advantage of the DNA strand displacement and enzyme control technology, we constructed a molecular lock with a self-destructive mechanism. This molecular lock is mainly composed of logic circuits and takes nicking enzymes as inputs. To build this molecular lock, we first constructed a series of cascade circuits, including a YES–YES cascade circuit and a YES–AND cascade circuit. Then, an Inhibit logic gate was constructed to explore the inhibitory properties between different combinations of two nicking enzymes. Finally, using the characteristics of mutual inhibition between several enzymes, a DNA molecular lock driven by three nicking enzymes was constructed. In this molecular device, only the correct sequence of nicking enzymes can be input to ensure the normal operation of the molecular lock. Once the wrong password is entered, the device will be destroyed and cannot be recovered, which effectively prevents intruders from cracking the lock through exhaustive methods. The molecular lock has the function of simulating an electronic keyboard, which can realize the protection of information at the molecular level, and provides a new implementation method for building more advanced and complex molecular devices.
Collapse
|
37
|
de Luis B, García-Fernández A, Llopis-Lorente A, Villalonga R, Sancenón F, Martínez-Máñez R. A 1-to-2 demultiplexer hybrid nanocarrier for cargo delivery and activation. Chem Commun (Camb) 2020; 56:9974-9977. [PMID: 32720668 DOI: 10.1039/d0cc03803b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A biocomputing strategy implemented in hybrid nanocarriers for controlled cargo delivery is described. The nanodevice consists of enzyme-functionalized Janus Au-mesoporous silica nanoparticles, which behave as an electronic demultiplexer (DEMUX). The nanocarrier is capable of reading molecular information from the environment (lactose) and selecting one of two possible outputs (galactose production or 4-methylumbellilferone release and activation) depending on the presence of an addressing input (NAD+).
Collapse
Affiliation(s)
- Beatriz de Luis
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022 Valencia, Spain.
| | | | | | | | | | | |
Collapse
|
38
|
Lilienthal S, Fischer A, Liao WC, Cazelles R, Willner I. Single and Bilayer Polyacrylamide Hydrogel-Based Microcapsules for the Triggered Release of Loads, Logic Gate Operations, and Intercommunication between Microcapsules. ACS APPLIED MATERIALS & INTERFACES 2020; 12:31124-31136. [PMID: 32551490 DOI: 10.1021/acsami.0c06711] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
A method to assemble loaded stimuli-responsive DNA-polyacrylamide hydrogel-stabilized microcapsules is presented. The method involves coating substrate-loaded CaCO3 microparticles, functionalized with nucleic acid promoter units, and cross-linking DNA-modified polyacrylamide chains on the microcapsules, using the hybridization chain reaction (HCR) to yield the DNA-cross-linked hydrogel coating. Dissolution of the CaCO3 particles generated the substrate-loaded hydrogel-protected microcapsules. The microcapsule-hydrogel shells include engineered stimuli-responsive oligonucleotide cross-linkers that control the stiffness of the hydrogel shells, allowing the triggered release of the loads. One approach includes the incorporation of cofactor-dependent DNAzyme units into the cross-linked hydrogel layers (cofactor = Mg2+ ions, Zn2+ ions, or histidine) as stimuli-responsive units. Cleavage of the cross-linking DNAzyme substrates by the respective cofactors yields hydrogel coatings with a reduced stiffness and higher porosity that allow the release of the loads. A further approach involved the application of the HCR process to assemble the bilayer hydrogel microcapsules that are unlocked by two cooperative triggers. Bilayer microcapsules consisting of a K+ ions-stabilized G-quadruplex/18-crown-6-ether (CE) responsive layer and a Mg2+ ion DNAzyme-responsive layers are presented. Unlocking and locking of the G-quadruplex cross-linked layer by 18-crown-6-ether and K+ ions, respectively, in the presence of Mg2+ ions allow the switchable controlled release of the load. In addition, the intercommunication of two kinds of stimuli-responsive bilayer hydrogel microcapsules carrying two different loads (tetramethylrhodamine-dextran, TMR-D, and CdSe/ZnS quantum dots) is demonstrated. The intercommunication process involves the stimuli-triggered generation of "information transfer" strands from one microcapsule to another that activate the release of the loads.
Collapse
Affiliation(s)
- Sivan Lilienthal
- Institute of Chemistry, Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Amit Fischer
- Institute of Chemistry, Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Wei-Ching Liao
- Institute of Chemistry, Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Remi Cazelles
- Institute of Chemistry, Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Itamar Willner
- Institute of Chemistry, Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
39
|
Nakama T, Takezawa Y, Sasaki D, Shionoya M. Allosteric Regulation of DNAzyme Activities through Intrastrand Transformation Induced by Cu(II)-Mediated Artificial Base Pairing. J Am Chem Soc 2020; 142:10153-10162. [PMID: 32396728 DOI: 10.1021/jacs.0c03129] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Allosteric regulation is gaining increasing attention as a basis for the production of stimuli-responsive materials in many research areas including DNA nanotechnology. We expected that metal-mediated artificial base pairs, consisting of ligand-type nucleotides and a bridging metal ion, could serve as allosteric units that regulate the function of DNA molecules. In this study, we established a rational design strategy for developing CuII-responsive allosteric DNAzymes by incorporating artificial hydroxypyridone ligand-type nucleotides (H) that form a CuII-mediated base pair (H-CuII-H). We devised a new enzymatic method using a standard DNA polymerase and a ligase to prepare DNA strands containing H nucleotides. Previously reported DNAzymes were modified by introducing a H-H pair into the stem region, and the stem-loop sequences were altered so that the structure becomes catalytically inactive in the absence of CuII ions. The formation of a H-CuII-H base pair triggers intrastrand transformation from the inactive to the active structure, enabling allosteric regulation of the DNAzyme activity in response to CuII ions. The activity of the H-modified DNAzyme was reversibly switched by the addition and removal of CuII ions under isothermal conditions. Similarly, by incorporating a H-CuII-H pair into an in vitro-selected AgI-dependent DNAzyme, we have developed a DNAzyme that exhibits an AND logic-gate response to CuII and AgI ions. The rational design strategy and the easy enzymatic synthetic method presented here provide a versatile way to develop a variety of metal-responsive allosteric DNA materials, including molecular machines and logic circuits, based on metal-mediated artificial base pairing.
Collapse
Affiliation(s)
- Takahiro Nakama
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yusuke Takezawa
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Daisuke Sasaki
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Mitsuhiko Shionoya
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
40
|
Liang X, Li L, Tang J, Komiyama M, Ariga K. Dynamism of Supramolecular DNA/RNA Nanoarchitectonics: From Interlocked Structures to Molecular Machines. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2020. [DOI: 10.1246/bcsj.20200012] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Xingguo Liang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, P. R. China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, P. R. China
| | - Lin Li
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, P. R. China
| | - Jiaxuan Tang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, P. R. China
| | - Makoto Komiyama
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, P. R. China
| | - Katsuhiko Ariga
- WPI-MANA, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| |
Collapse
|
41
|
Shen R, Tan J, Yuan Q. Chemically Modified Aptamers in Biological Analysis. ACS APPLIED BIO MATERIALS 2020; 3:2816-2826. [DOI: 10.1021/acsabm.0c00062] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Ruichen Shen
- Institute of Chemical Biology and Nanomedicine (ICBN), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Jie Tan
- Institute of Chemical Biology and Nanomedicine (ICBN), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Quan Yuan
- Institute of Chemical Biology and Nanomedicine (ICBN), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
42
|
Fischer A, Lilienthal S, Vázquez-González M, Fadeev M, Sohn YS, Nechushtai R, Willner I. Triggered Release of Loads from Microcapsule-in-Microcapsule Hydrogel Microcarriers: En-Route to an "Artificial Pancreas". J Am Chem Soc 2020; 142:4223-4234. [PMID: 32031792 PMCID: PMC7467680 DOI: 10.1021/jacs.9b11847] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Indexed: 12/19/2022]
Abstract
A method to assemble stimuli-responsive nucleic acid-based hydrogel-stabilized microcapsule-in-microcapsule systems is introduced. An inner aqueous compartment stabilized by a stimuli-responsive hydrogel-layer (∼150 nm) provides the inner microcapsule (diameter ∼2.5 μm). The inner microcapsule is separated from an outer aqueous compartment stabilized by an outer stimuli-responsive hydrogel layer (thickness of ∼150 nm) that yields the microcapsule-in-microcapsule system. Different loads, e.g., tetramethyl rhodamine-dextran (TMR-D) and CdSe/ZnS quantum dots (QDs), are loaded in the inner and outer aqueous compartments. The hydrogel layers exist in a higher stiffness state that prevents inter-reservoir or leakage of the loads from the respective aqueous compartments. Subjecting the inner hydrogel layer to Zn2+-ions and/or the outer hydrogel layer to acidic pH or crown ether leads to the triggered separation of the bridging units associated with the respective hydrogel layers. This results in the hydrogel layers of lower stiffness allowing either the mixing of the loads occupying the two aqueous compartments, the guided release of the load from the outer aqueous compartment, or the release of the loads from the two aqueous compartments. In addition, a pH-responsive microcapsule-in-microcapsule system is loaded with glucose oxidase (GOx) in the inner aqueous compartment and insulin in the outer aqueous compartment. Glucose permeates across the two hydrogel layers resulting in the GOx catalyzed aerobic oxidation of glucose to gluconic acid. The acidification of the microcapsule-in-microcapsule system leads to the triggered unlocking of the outer, pH-responsive hydrogel layer and to the release of insulin. The pH-stimulated release of insulin is controlled by the concentration of glucose. While at normal glucose levels, the release of insulin is practically prohibited, the dose-controlled release of insulin in the entire diabetic range is demonstrated. Also, switchable ON/OFF release of insulin is achieved highlighting an autonomous glucose-responsive microdevice operating as an "artificial pancreas" for the release of insulin.
Collapse
Affiliation(s)
- Amit Fischer
- Institute
of Chemistry, Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Sivan Lilienthal
- Institute
of Chemistry, Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Margarita Vázquez-González
- Institute
of Chemistry, Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Michael Fadeev
- Institute
of Chemistry, Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Yang Sung Sohn
- Institute
of Life Science, The Hebrew University of
Jerusalem, Jerusalem 91904, Israel
| | - Rachel Nechushtai
- Institute
of Life Science, The Hebrew University of
Jerusalem, Jerusalem 91904, Israel
| | - Itamar Willner
- Institute
of Chemistry, Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
43
|
High-performance biosensing based on autonomous enzyme-free DNA circuits. Top Curr Chem (Cham) 2020; 378:20. [DOI: 10.1007/s41061-020-0284-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 01/17/2020] [Indexed: 12/28/2022]
|
44
|
|
45
|
Takezawa Y, Nakama T, Shionoya M. Enzymatic Synthesis of Cu(II)-Responsive Deoxyribozymes through Polymerase Incorporation of Artificial Ligand-Type Nucleotides. J Am Chem Soc 2019; 141:19342-19350. [PMID: 31731834 DOI: 10.1021/jacs.9b08955] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Metal-mediated artificial base pairs, consisting of ligand-type nucleotides and a bridging metal ion, have shown promise as functional units to develop stimuli-responsive DNA materials. Although a variety of metal-mediated base pairs have been constructed with artificial ligand-type nucleotides and various metal ions, the application of such metal-mediated base pairs has been relatively poorly explored mainly due to the cumbersome chemical synthesis of artificial DNA strands. Herein we report a facile enzymatic method to synthesize DNA strands containing a ligand-type hydroxypyridone (H) nucleotide, which forms a CuII-mediated base pair (H-CuII-H). A two-step primer extension reaction using two commercially available polymerases enabled the incorporation of a H nucleotide at an internal position of oligonucleotides. The polymerase synthesis was subsequently applied to the development of metal-responsive deoxyribozymes (DNAzymes), whose catalytic activity was regulated by the formation of a single H-CuII-H base pair in its stem region. The DNAzyme activity was reversibly switched by the alternate addition and the removal of CuII ions. Furthermore, metal-dependent orthogonal activation of a CuII-responsive H-DNAzyme and a HgII-responsive T-DNAzyme was experimentally demonstrated by utilizing both H-CuII-H as well as widely explored T-HgII-T base pairs. These results suggest that the incorporation of H-CuII-H base pairs would facilitate the rational design of metal-responsive functional DNAs. Accordingly, the facile enzymatic synthesis of artificial ligand-bearing DNAs developed in this study would significantly expand the toolbox of DNA-based supramolecular chemistry and DNA nanotechnology.
Collapse
Affiliation(s)
- Yusuke Takezawa
- Department of Chemistry, Graduate School of Science , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku , Tokyo 113-0033 , Japan
| | - Takahiro Nakama
- Department of Chemistry, Graduate School of Science , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku , Tokyo 113-0033 , Japan
| | - Mitsuhiko Shionoya
- Department of Chemistry, Graduate School of Science , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku , Tokyo 113-0033 , Japan
| |
Collapse
|
46
|
Constructing Controllable Logic Circuits Based on DNAzyme Activity. Molecules 2019; 24:molecules24224134. [PMID: 31731630 PMCID: PMC6891523 DOI: 10.3390/molecules24224134] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 11/13/2019] [Accepted: 11/13/2019] [Indexed: 12/30/2022] Open
Abstract
Recently, DNA molecules have been widely used to construct advanced logic devices due to their unique properties, such as a simple structure and predictable behavior. In fact, there are still many challenges in the process of building logic circuits. Among them, the scalability of the logic circuit and the elimination of the crosstalk of the cascade circuit have become the focus of research. Inspired by biological allosteric regulation, we developed a controllable molecular logic circuit strategy based on the activity of DNAzyme. The E6 DNAzyme sequence was temporarily blocked by hairpin DNA and activated under appropriate input trigger conditions. Using a substrate with ribonucleobase (rA) modification as the detection strand, a series of binary basic logic gates (YES, AND, and INHIBIT) were implemented on the computational component platform. At the same time, we demonstrate a parallel demultiplexer and two multi-level cascade circuits (YES-YES and YES-Three input AND (YES-TAND)). In addition, the leakage of the cascade process was reduced by exploring factors such as concentration and DNA structure. The proposed DNAzyme activity regulation strategy provides great potential for the expansion of logic circuits in the future.
Collapse
|
47
|
Peng H, Newbigging AM, Reid MS, Uppal JS, Xu J, Zhang H, Le XC. Signal Amplification in Living Cells: A Review of microRNA Detection and Imaging. Anal Chem 2019; 92:292-308. [DOI: 10.1021/acs.analchem.9b04752] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Hanyong Peng
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, 10-102 Clinical
Sciences Building, Edmonton, Alberta T6G 2G3, Canada
| | - Ashley M. Newbigging
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, 10-102 Clinical
Sciences Building, Edmonton, Alberta T6G 2G3, Canada
| | - Michael S. Reid
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, 10-102 Clinical
Sciences Building, Edmonton, Alberta T6G 2G3, Canada
| | - Jagdeesh S. Uppal
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, 10-102 Clinical
Sciences Building, Edmonton, Alberta T6G 2G3, Canada
| | - Jingyang Xu
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, 10-102 Clinical
Sciences Building, Edmonton, Alberta T6G 2G3, Canada
| | - Hongquan Zhang
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, 10-102 Clinical
Sciences Building, Edmonton, Alberta T6G 2G3, Canada
| | - X. Chris Le
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, 10-102 Clinical
Sciences Building, Edmonton, Alberta T6G 2G3, Canada
| |
Collapse
|
48
|
|
49
|
Fluorometric detection of silver(I) using cytosine-Ag(I)-cytosine pair formation, DNA assembly and the AND logic operation of a multiple-component DNAzyme. Mikrochim Acta 2019; 186:522. [DOI: 10.1007/s00604-019-3615-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 06/14/2019] [Indexed: 02/07/2023]
|
50
|
An artificial DNAzyme RNA ligase shows a reaction mechanism resembling that of cellular polymerases. Nat Catal 2019. [DOI: 10.1038/s41929-019-0290-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|