1
|
Bauland J, Andrieux V, Pignon F, Frath D, Bucher C, Gibaud T. Viologen-based supramolecular crystal gels: gelation kinetics and sensitivity to temperature. SOFT MATTER 2024; 20:8278-8290. [PMID: 39387141 DOI: 10.1039/d4sm00826j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Supramolecular crystal gels, a subset of molecular gels, are formed through the self-assembly of low molecular weight gelators into interconnecting crystalline fibers, creating a three-dimensional soft solid network. This study focuses on the formation and properties of viologen-based supramolecular crystalline gels. It aims to answer key questions about the tunability of network properties and the origin of these properties through in-depth analyses of the gelation kinetics triggered by thermal quenching. Experimental investigations, including UV-Vis absorption spectroscopy, rheology, microscopy and scattering measurements, contribute to a comprehensive and self-consistent understanding of the system kinetics. We confirm that viologen-based gelators crystallize by forming nanometer radius hollow tubes that assemble into micro to millimetric spherulites. We then show that crystallization follows the Avrami theory and is based on pre-existing nuclei. We also establish that the growth is interface-controlled, leading the hollow tubes to branch into spherulites with fractal structures. Finally, we demonstrate that the gel properties can be tuned depending on the quenching temperature. Lowering the temperature results in the formation of denser and smaller spherulites. In contrast, the gel's elasticity is not significantly affected by the quench temperature, leading us to hypothesize that the densification of spherulites occurs at the expense of connectivity between spherulites.
Collapse
Affiliation(s)
- Julien Bauland
- ENS de Lyon, CNRS, Laboratoire de Physique, UMR 5672, F-69342 Lyon, France.
| | - Vivien Andrieux
- ENS de Lyon, CNRS, LCH, UMR 5182, 69342, Lyon cedex 07, France.
| | - Frédéric Pignon
- Univ. Grenoble Alpes, CNRS, Grenoble INP, LRP, F-38000 Grenoble, France
| | - Denis Frath
- ENS de Lyon, CNRS, LCH, UMR 5182, 69342, Lyon cedex 07, France.
| | | | - Thomas Gibaud
- ENS de Lyon, CNRS, Laboratoire de Physique, UMR 5672, F-69342 Lyon, France.
| |
Collapse
|
2
|
Du J, You Y, Reis RL, Kundu SC, Li J. Manipulating supramolecular gels with surfactants: Interfacial and non-interfacial mechanisms. Adv Colloid Interface Sci 2023; 318:102950. [PMID: 37352741 DOI: 10.1016/j.cis.2023.102950] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 05/03/2023] [Accepted: 06/14/2023] [Indexed: 06/25/2023]
Abstract
Gel is a class of self-supporting soft materials with applications in many fields. Fast, controllable gelation, micro/nano structure and suitable rheological properties are essential considerations for the design of gels for specific applications. Many methods can be used to control these parameters, among which the additive approach is convenient as it is a simple physical mixing process with significant advantages, such as avoidance of pH change and external energy fields (ultrasound, UV light and others). Although surfactants are widely used to control the formation of many materials, particularly nanomaterials, their effects on gelation are less known. This review summarizes the studies that utilized different surfactants to control the formation, structure, and properties of molecular and silk fibroin gels. The mechanisms of surfactants, which are interfacial and non-interfacial effects, are classified and discussed. Knowledge and technical gaps are identified, and perspectives for further research are outlined. This review is expected to inspire increasing research interest in using surfactants for designing/fabricating gels with desirable formation kinetics, structure, properties and functionalities.
Collapse
Affiliation(s)
- Juan Du
- Institute for Frontier Materials, Deakin University, Geelong, Victoria 3220, Australia
| | - Yue You
- Institute for Frontier Materials, Deakin University, Geelong, Victoria 3220, Australia
| | - Rui L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark - Parque da Ciência e Tecnologia, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Subhas C Kundu
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark - Parque da Ciência e Tecnologia, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Jingliang Li
- Institute for Frontier Materials, Deakin University, Geelong, Victoria 3220, Australia.
| |
Collapse
|
3
|
El Hamoui O, Gaudin K, Battu S, Barthélémy P, Lespes G, Alies B. Self-Assembly of Nucleoside-Derived Low-Molecular-Weight Gelators: A Thermodynamics and Kinetics Study on Different Length Scales. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:297-310. [PMID: 33350837 DOI: 10.1021/acs.langmuir.0c02894] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Biocompatible materials are of paramount importance in numerous fields. Unlike chemically bridge polymer-based hydrogels, low-molecular-weight gelators can form a reversible hydrogel as their structures rely on noncovalent interaction. Although many applications with this type of hydrogel can be envisioned, we still lack their understanding due to the complexity of their self-assembly process and the difficulty in predicting their behaviors (transition temperature, gelation kinetics, the impact of solvent, etc.). In this study, we extend the investigations of a series of nucleoside-derived gelators, which only differ by subtle chemical modifications. Using a multitechnique approach, we determined their thermodynamic and kinetic features on various scale (molecular to macro) in different conditions. Monitored at the supramolecular level by circular dichroism as well as macroscopic scales by rheology and turbidimetry, we found out that the sol-gel and gel-sol transitions are greatly dependent on the concentration and on the mechanisms that are probed. Self-assembly kinetics depends on hydrogel molecules and is modulated by temperature and solvent. This fundamental study provides insight on the impact of some parameters on the gelation process, such as concentration, cooling rate, and the nature of the solvent.
Collapse
Affiliation(s)
- Omar El Hamoui
- Université de Bordeaux, INSERM U1212, UMR CNRS 5320, F-33076 Bordeaux, France
- Université de Pau et des Pays de l'Adour (E2S/UPPA) CNRS, Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux (IPREM), UMR 5254, 2 Avenue Pierre Angot, 64053 Pau Cedex, France
| | - Karen Gaudin
- Université de Bordeaux, INSERM U1212, UMR CNRS 5320, F-33076 Bordeaux, France
| | - Serge Battu
- EA3842- CAPTuR, GEIST, Faculté de Médecine, Université de Limoges, 2 rue du Dr Marcland, 87025 Limoges Cedex, France
| | - Philippe Barthélémy
- Université de Bordeaux, INSERM U1212, UMR CNRS 5320, F-33076 Bordeaux, France
| | - Gaëtane Lespes
- Université de Pau et des Pays de l'Adour (E2S/UPPA) CNRS, Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux (IPREM), UMR 5254, 2 Avenue Pierre Angot, 64053 Pau Cedex, France
| | - Bruno Alies
- Université de Bordeaux, INSERM U1212, UMR CNRS 5320, F-33076 Bordeaux, France
| |
Collapse
|
4
|
Samperi M, Pérez-García L, Amabilino DB. Quantification of energy of activation to supramolecular nanofibre formation reveals enthalpic and entropic effects and morphological consequence. Chem Sci 2019; 10:10256-10266. [PMID: 32015821 PMCID: PMC6968731 DOI: 10.1039/c9sc03280k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 09/16/2019] [Indexed: 01/17/2023] Open
Abstract
We show a self-assembly process leading to fibres from a system that starts far from equilibrium because of fast solvent - anti-solvent mixing and analyse the activation energies associated with the aggregation. It is in some ways reminiscent of diverse natural fibrous materials that have kinetic behaviour dominated by a rate limiting induction period followed by rapid growth. A full thermodynamic rationale for these systems and related synthetic ones is required for a full understanding of the driving force of their non-equilibrium self-assembly. Here we determine quantitatively the enthalpy and entropy of activation for the processes leading to the growth of fibres of this type, that contrasts with analysis of other systems where final energetic states are analysed. A dramatic effect is revealed whereby comparatively small changes in temperature or solvent composition (the ratio of water to ethanol) lead to alterations in the relative importance of enthalpy and entropy of activation and massive changes in the speed of fibre formation. The characteristics of the kinetic model adopted show a correlation with the fibre morphology of the self-assembled materials, which are isostructural according to diffraction experiments: the control of growth can lead to fibres only two bilayers thick. The crossover in behaviour is characteristic of the solvent mixture and the thermodynamic analysis points to the origins of this effect where different assembly routes are viable under only marginally different conditions.
Collapse
Affiliation(s)
- Mario Samperi
- School of Pharmacy , University of Nottingham , University Park , NG7 2RD , UK
- The GSK Carbon Neutral Laboratories for Sustainable Chemistry , University of Nottingham , Triumph Road , NG7 2TU , UK .
- School of Chemistry , University of Nottingham , University Park , NG7 2RD , UK
| | - Lluïsa Pérez-García
- School of Pharmacy , University of Nottingham , University Park , NG7 2RD , UK
| | - David B Amabilino
- The GSK Carbon Neutral Laboratories for Sustainable Chemistry , University of Nottingham , Triumph Road , NG7 2TU , UK .
- School of Chemistry , University of Nottingham , University Park , NG7 2RD , UK
| |
Collapse
|
5
|
Chen JY, Komeily-Nia Z, Fan LP, Li ZY, Yuan B, Tang B, Li JL. Manipulating the fractal fiber network of a molecular gel with surfactants. J Colloid Interface Sci 2018; 526:356-365. [DOI: 10.1016/j.jcis.2018.05.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 05/01/2018] [Accepted: 05/04/2018] [Indexed: 01/01/2023]
|
6
|
Ruíz-Olles J, Smith DK. Diffusion across a gel-gel interface - molecular-scale mobility of self-assembled 'solid-like' gel nanofibres in multi-component supramolecular organogels. Chem Sci 2018; 9:5541-5550. [PMID: 30061985 PMCID: PMC6048691 DOI: 10.1039/c8sc01071d] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 05/16/2018] [Indexed: 02/01/2023] Open
Abstract
This paper explores macroscopic-scale diffusion of the molecular-scale building blocks of two-component self-assembled organogel nanofibres using a diffusion cell in which two different gels are in contact with one another. Both components of the 'solid-like' nanofibres (lysine peptide dendron acids and amines) can diffuse through these gels and across a gel-gel interface, although diffusion is significantly slower than that of a non-interactive additive in the 'liquid-like' phase of the gel. Amine diffusion was probed by bringing similar gels with different amines into contact. Dendron acid diffusion was tested by bringing similar gels with enantiomeric dendrons into contact. Surprisingly, dendron and amine diffusion rates were similar, even though the peptide dendron is more intimately hydrogen bonded in the self-assembled nanofibres. It is proposed that thermal disassembly of the acid-amine complex delivers both components into the liquid-like phase, allowing them to diffuse via a decomplexation/recomplexation mechanism. This is a rare observation in which molecules assembled into solid-like gel nanofibres are mobile - in dynamic equilibrium with the liquid-like phase. Gel nanofibre diffusion and reorganisation are vital in understanding dynamic materials processes such as metastability, self-healing and adaptability.
Collapse
Affiliation(s)
- Jorge Ruíz-Olles
- Department of Chemistry , University of York , Heslington , York , YO10 5DD , UK .
| | - David K Smith
- Department of Chemistry , University of York , Heslington , York , YO10 5DD , UK .
| |
Collapse
|
7
|
Che X, Zhang C, Bai B, Zhang T, Zhang C, Wang H, Li M. Lamellar-cubic transition of a dihydrazide derivative and its effect on the gel stability. SOFT MATTER 2018; 14:3536-3540. [PMID: 29676769 DOI: 10.1039/c8sm00227d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
N,N'-Bis(4-n-alkyloxybenzoyl)hydrazine (4D16) was demonstrated to show three different aggregates, i.e. a crystalline cubic phase and two kinds of lamellar structure with layer spacings of 34.20 Å (termed the L1 structure) and 40.85 Å (L2 structure) depending on the type of solvents. Lamellar (L1)-crystalline cubic transition during heating was confirmed for 4D16 showing the L1 structure. 4D16 organogels in cyclohexane and benzene exhibited either a mixture of the L1 structure and the crystalline cubic phase or only one of the two structures. 4D16 gels prepared at a higher concentration or a lower incubation temperature consisted of more lamellar L1 structures compared to those obtained at a lower concentration or a higher incubation temperature. Annealing of the as-prepared 4D16 gels at certain temperatures for different time periods caused gradual lamellar L1-cubic transition, and thus increased the content of the cubic phase in the gels, which showed lower Tgel compared to those of the as-prepared ones. The existence of the cubic phase in 4D16 gels in cyclohexane and benzene destabilized the gels.
Collapse
Affiliation(s)
- Xiangyang Che
- Key Laboratory of Automobile Materials, Ministry of Education, Institute of Materials Science and Engineering, Jilin University, Changchun 130012, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
8
|
Zhang M, Weiss RG. Mechano-Responsive, Thermo-Reversible, Luminescent Organogels Derived from a Long-Chained, Naturally Occurring Fatty Acid. Chemistry 2016; 22:8262-72. [PMID: 27135932 DOI: 10.1002/chem.201600225] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Indexed: 11/06/2022]
Abstract
The gelating ability of an α-diketo derivative of oleic acid, 9,10-dioxooctadecanoic acid (DODA), is investigated. DODA can gelate aromatic liquids and many other organic liquids. By contrast, none of the liquids examined can be gelated by the methyl ester of DODA. DODA is a more efficient gelator than stearic acid and the monoketo derivative due to its more extensive intermolecular dipole-dipole interactions. Formation of organogels of DODA can be induced by both thermal and mechanical stimuli, during which the luminescent and mechanical properties can be modulated significantly. The emission from DODA in 1-octanol exhibits a large, reversible, hypsochromic shift (≈25 nm) between its thermally cycled gel and sol states. The emission changes have been exploited to probe the kinetics of the aggregation and deaggregation processes. DODA is the simplest gelator of which we are aware that exhibits a reversible shift in the emission. Although the self-assembled fibrillar networks of the DODA gels in 1-octanol, benzonitrile, or silicone oil are crystalline, isothermal mechanical cycling between the gel and the sol states is rapid and can be repeated several times (i.e., they are thixotropic). The single-crystal structure of DODA indicates that extended intermolecular dipole-dipole interactions are crucial to the thermal and mechanical formation of DODA gels and the consequential changes in emissive and mechanical properties. From analyses of structural information, gelator packing, and morphology differences, we hypothesize that the mechanical destruction and reformation of the gel networks involves interconversion between the 3D networks and 1D fiber bundles. The thermal processes allow the fibrillar 3D networks and their 0D components (i.e., isolated molecules or small aggregates of DODA) to be interconverted. These results describe a facile approach to the design of mechano-responsive, thermo-reversible gels with control over their emission wavelengths.
Collapse
Affiliation(s)
- Mohan Zhang
- Department of Chemistry, Georgetown University, 37 & O Streets, NW, Washington DC, 20057-1227, USA
| | - Richard G Weiss
- Department of Chemistry, Georgetown University, 37 & O Streets, NW, Washington DC, 20057-1227, USA. .,Institute for Soft Matter Synthesis and Metrology, Georgetown University, 37 & O Streets, NW, Washington DC, 20057-1227, USA.
| |
Collapse
|
9
|
Zhang C, Zhang T, Ji N, Zhang Y, Bai B, Wang H, Li M. Gelation behaviour of a bent-core dihydrazide derivative: effect of incubation temperature in chloroform and toluene. SOFT MATTER 2016; 12:1525-1533. [PMID: 26659559 DOI: 10.1039/c5sm02535d] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
In this work, a new kind of gelator, 1,3-bis[(3,4-dioctyloxy phenyl) hydrazide]phenylene (BP8-C), containing two dihydrazide units as the rigid bent-core, has been synthesized and investigated. It was demonstrated that BP8-C is an efficient gelator which can gel various organic solvents, such as ethanol, benzene, toluene, chloroform, etc. Both an opaque gel (O-gel) and a transparent gel (T-gel), which is more stable, were obtained with BP8-C in chloroform at different incubation temperatures. Kinetic data based on fluorescence spectra revealed that the T-gels showed a larger Avrami parameter (n = 1.44 at 20 °C) than that of the O-gels (n = 1.21 for gelation at temperatures below 0 °C). While BP8-C did form the opaque gel in toluene, gelation took longer at lower incubation temperatures and even precipitated out below 0 °C. The kinetic Avrami analysis on sols of BP8-C with different concentrations shows a two-phrase mechanism, i.e. the n values are between 0.88 and 1.74 followed by 1.69 and 3.01 throughout the temperature range of 5 °C and 35 °C for 5.34 mg mL(-1) BP8-C in toluene, indicating that the fibers formed first and then bundled to produce compact networks. We propose that supersaturation governs the formation of gel in chloroform and that the diffusion process denominates gelation in toluene. XRD and FT-IR measurements confirmed that the xerogels prepared at different temperatures in different solvents exhibited a Col(h) structure and that there are three molecules in one columnar slice. Our results indicate that the gelation process, morphology of the gels and thus the final properties of the gels depend strongly on the preparation conditions such as temperature, solvent, concentration, etc.
Collapse
Affiliation(s)
- Chunxue Zhang
- Key Laboratory of Automobile Materials, Ministry of Education, Institute of Materials Science and Engineering, Jilin University, Changchun 130012, People's Republic of China.
| | | | | | | | | | | | | |
Collapse
|
10
|
Zhang Q, Fan J, Feng J. Exploring the crystallization-induced mesophase evolution in an olefin block copolymer through a rationally designed two-step isothermal crystallization strategy. CrystEngComm 2016. [DOI: 10.1039/c5ce02237a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
11
|
Structural and Solubility Parameter Correlations of Gelation Abilities for Dihydroxylated Derivatives of Long‐Chain, Naturally Occurring Fatty Acids. Chemistry 2015; 21:8530-43. [DOI: 10.1002/chem.201500096] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 03/30/2015] [Indexed: 11/07/2022]
|
12
|
Liu Y, Zhao WJ, Li JL, Wang RY. Distinct kinetics of molecular gelation in a confined space and its relation to the structure and property of thin gel films. Phys Chem Chem Phys 2015; 17:8258-65. [DOI: 10.1039/c4cp05715e] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Distinct kinetic feature of the molecular gelation in a confined or unconfined regime, and its relationship with the tailored fiber network structure and mechanical properties.
Collapse
Affiliation(s)
- Yu Liu
- Key Laboratory of Cluster Science of Ministry of Education
- School of Physics
- Beijing Institute of Technology
- Beijing
- China 100081
| | - Wen-Jing Zhao
- Key Laboratory of Cluster Science of Ministry of Education
- School of Physics
- Beijing Institute of Technology
- Beijing
- China 100081
| | - Jing-Liang Li
- Institute for Frontier Materials
- Deakin University
- Victoria 3216
- Australia
| | - Rong-Yao Wang
- Key Laboratory of Cluster Science of Ministry of Education
- School of Physics
- Beijing Institute of Technology
- Beijing
- China 100081
| |
Collapse
|
13
|
Rohner SS, Ruiz-Olles J, Smith DK. Speed versus stability – structure–activity effects on the assembly of two-component gels. RSC Adv 2015. [DOI: 10.1039/c5ra01256b] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Modifying the peripheral peptides dramatically changes the time required for gelation under ambient conditions, whilst an enthalpy–entropy balance means that as the temperature increases, the thermal stability of the gels is very similar.
Collapse
|
14
|
Lin N, Liu XY. Correlation between hierarchical structure of crystal networks and macroscopic performance of mesoscopic soft materials and engineering principles. Chem Soc Rev 2015. [DOI: 10.1039/c5cs00074b] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The performance of soft materials is correlated with the hierarchical crystal network structure by topology, correlation length, symmetry/ordering, and strength.
Collapse
Affiliation(s)
- Naibo Lin
- Research Institute for Biomimetics and Soft Matter
- Xiamen University
- Xiamen
- China
| | - Xiang Yang Liu
- Research Institute for Biomimetics and Soft Matter
- Xiamen University
- Xiamen
- China
- Department of Physics
| |
Collapse
|