1
|
Firmanti MI, Ha JW. Elucidating refractive index sensitivity on subradiant, superradiant, and fano resonance modes in single palladium-coated gold nanorods. Sci Rep 2024; 14:20182. [PMID: 39215073 PMCID: PMC11364640 DOI: 10.1038/s41598-024-71141-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024] Open
Abstract
Herein, we investigated the distinctive scattering properties exhibited by single gold nanorods coated with palladium (AuNRs@Pd), with variations in the Pd shell thicknesses and morphologies. AuNRs@Pd were synthesized through bottom-up epitaxial Pd growth using two different concentrations of Pd precursor. These single AuNRs@Pd displayed the characteristic of subradiant and superradiant localized surface plasmon resonance peaks, characterized by a noticeable gap marked by a Fano dip. We revealed the effect of local refractive index (RI) on the subradiant and superradiant peak energies, as well as the Fano dip in the scattering spectra of AuNRs@Pd with different Pd shell thicknesses. We demonstrated the applicability of the inflection points (IFs) method on detecting peaks and dip changes across different RIs. Thin AuNRs@Pd1mM displayed more pronounced sensitivity to peak shifts in response to variations in local RIs compared to thick AuNRs@Pd2mM. In contrast, thick AuNRs@Pd2mM exhibited greater sensitivity to changes in curvature near the subradiant and superradiant peak energies rather than peak shift sensitivity across different local RIs. Moreover, the Fano dip shift was more noticeable in thick AuNRs@Pd2mM compared to thin AuNRs@Pd1mM across different local RIs. Therefore, we provided new insight into the RI sensitivity on subradiant, superradiant, and Fano resonance modes in single AuNRs@Pd.
Collapse
Affiliation(s)
- Metya Indah Firmanti
- Department of Chemistry, University of Ulsan, 93 Daehak-ro, Nam-gu, Ulsan, 44610, South Korea
| | - Ji Won Ha
- Department of Chemistry, University of Ulsan, 93 Daehak-ro, Nam-gu, Ulsan, 44610, South Korea.
- Energy Harvest-Storage Research Center (EHSRC), University of Ulsan, 93 Daehak-ro, Nam-gu, Ulsan, South Korea.
| |
Collapse
|
2
|
Basnayake Pussepitiyalage V, Chou CY, Harris MT, Loesch-Fries LS, Hemmati S. Electroless Deposition of Noble Metals on Rod-Shape Plant Viruses in Various Aqueous Metal Precursor Solutions. ACS OMEGA 2024; 9:35420-35430. [PMID: 39184522 PMCID: PMC11339813 DOI: 10.1021/acsomega.4c01391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 07/24/2024] [Accepted: 08/01/2024] [Indexed: 08/27/2024]
Abstract
The challenge of synthesizing noble metal nanostructures sustainably has encouraged researchers to explore biological routes for nanostructure production, such as biotemplating. Plant viruses with rod-shape morphology, such as tobacco mosaic virus (TMV) and barley stripe mosaic virus (BSMV), offer promising biotemplates to produce metal nanorods. TMV and BSMV can be incubated in aqueous metal precursor solutions to mineralize metals on the coat proteins (CPs) of the viruses. Previous studies have primarily examined palladium (Pd) mineralization on TMV and BSMV using Na2PdCl4 as the Pd precursor. There is limited scientific literature on the effect of using alternative Pd precursor solutions besides Na2PdCl4 such as K2PdCl4 and PdCl2 to mineralize Pd on TMV and BSMV. Past attempts at mineralizing other noble metals such as platinum (Pt) and gold (Au) required an initial layer of Pd to be deposited on the TMV and BSMV biotemplates. In this study, we aimed to expand the understanding of using alternative Pd precursor solutions to mineralize Pd on TMV and BSMV. Additionally, the deposition of Pt and Au onto TMV and BSMV without the need for an initial Pd mineralization layer was achieved using alternative Pt and Au precursors, including K2PtCl4 and AuCl3, respectively. Pd, Pt, and Au were successfully deposited on TMV and BSMV by incubation in aqueous solutions of Na2PdCl4, K2PdCl4, PdCl2, K2PtCl4, and AuCl3. Kinetic studies were also conducted using ultraviolet-visible (UV-vis) spectroscopy to examine the rates at which Pd, Pt, and Au precursor ions were reduced during the mineralization process, mimicking their adsorption onto TMV and BSMV CPs. BSMV adsorbed noble metal precursor ions faster than TMV as determined by UV-vis spectroscopy. While palladium nanorods (PdNRs) offer high electrical conductivity desirable for electronic applications, Pd-coated TMV and BSMV may face limitations due to their organic cores, potentially compromising conductivity. To address this, one approach is to convert the organic core into conductive amorphous carbon through thermal annealing. In this study, in situ transmission electron microscopy was utilized to thermally anneal Pd-TMV2Cys, thereby transforming them into PdNRs with amorphous carbon cores.
Collapse
Affiliation(s)
| | - Che-yu Chou
- Davidson
School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Michael T. Harris
- Davidson
School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - L. Sue Loesch-Fries
- Botany
and Plant Pathology, Purdue University, West Lafayette, Indiana 47907, United States
| | - Shohreh Hemmati
- School
of Mathematics and Natural Sciences, The
University of Southern Mississippi, Hattiesburg, Mississippi 39406, United States
| |
Collapse
|
3
|
Bao Y, Oluwafemi A. Recent advances in surface modified gold nanorods and their improved sensing performance. Chem Commun (Camb) 2024; 60:469-481. [PMID: 38105689 DOI: 10.1039/d3cc04056a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Gold nanorods (AuNRs) have received tremendous attention recently in the fields of sensing and detection applications due to their unique characteristic of surface plasmon resonance. Surface modification of the AuNRs is a necessary path to effectively utilize their properties for these applications. In this Article, we have focused both on demonstrating the recent advances in methods for surface functionalization of AuNRs as well as their use for improved sensing performance using various techniques. The main surface modification methods discussed include ligand exchange with the assistance of a thiol-group, the layer by layer assembly method, and depositing inorganic materials with the desired surface and morphology. Covered techniques that can then be applied for using these functionalized AuNRs include colourimetric sensing, refractive index sensing and surface enhance Raman scattering sensing. Finally, the outlook on the future development of surface modified AuNRs for improved sensing performance is considered.
Collapse
Affiliation(s)
- Ying Bao
- Department of Chemistry, Western Washington University, Bellingham, Washington, 98225, USA.
| | - Ayomide Oluwafemi
- Department of Chemistry, Western Washington University, Bellingham, Washington, 98225, USA.
| |
Collapse
|
4
|
Zhu J, Dai J, Xu Y, Liu X, Wang Z, Liu H, Li G. Photo-enhanced dehydrogenation of formic acid on Pd-based hybrid plasmonic nanostructures. NANOSCALE ADVANCES 2023; 5:6819-6829. [PMID: 38059022 PMCID: PMC10696931 DOI: 10.1039/d3na00663h] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 11/07/2023] [Indexed: 12/08/2023]
Abstract
Coupling visible light with Pd-based hybrid plasmonic nanostructures has effectively enhanced formic acid (FA) dehydrogenation at room temperature. Unlike conventional heating to achieve higher product yield, the plasmonic effect supplies a unique surface environment through the local electromagnetic field and hot charge carriers, avoiding unfavorable energy consumption and attenuated selectivity. In this minireview, we summarized the latest advances in plasmon-enhanced FA dehydrogenation, including geometry/size-dependent dehydrogenation activities, and further catalytic enhancement by coupling local surface plasmon resonance (LSPR) with Fermi level engineering or alloying effect. Furthermore, some representative cases were taken to interpret the mechanisms of hot charge carriers and the local electromagnetic field on molecular adsorption/activation. Finally, a summary of current limitations and future directions was outlined from the perspectives of mechanism and materials design for the field of plasmon-enhanced FA decomposition.
Collapse
Affiliation(s)
- Jiannan Zhu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology Wuhan 430074 PR China
| | - Jiawei Dai
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology Wuhan 430074 PR China
| | - You Xu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology Wuhan 430074 PR China
| | - Xiaoling Liu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology Wuhan 430074 PR China
| | - Zhengyun Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology Wuhan 430074 PR China
| | - Hongfang Liu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology Wuhan 430074 PR China
| | - Guangfang Li
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology Wuhan 430074 PR China
- Shenzhen Huazhong University of Science and Technology Research Institute Shenzhen 518000 PR China
| |
Collapse
|
5
|
Yun Q, Xu J, Wei T, Ruan Q, Zhu X, Kan C. Synthesis of Pd nanorod arrays on Au nanoframes for excellent ethanol electrooxidation. NANOSCALE 2022; 14:736-743. [PMID: 34939638 DOI: 10.1039/d1nr05987d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Au-Pd hollow nanostructures have attracted a lot of attention because of their excellent ethanol electrooxidation performance. Herein, we report a facile preparation of Au nanoframe@Pd array electrocatalysts in the presence of cetylpyridinium chloride. The reduced Pd atoms were directed to mainly deposit on the surface of the Au nanoframes in the form of rods, leading to the formation of Au nanoframe@Pd arrays with a super-large specific surface area. The red shift and damping of the plasmon peak were ascribed to the deposition of the Pd arrays on the surface of the Au nanoframes and nanobipyramids, which was verified by electrodynamic simulations. Surfactants, temperature and reaction time determine the growth process and thereby the architecture of the obtained Au-Pd hollow nanostructures. Compared with the Au nanoframe@Pd nanostructures and Au nanobipyramid@Pd arrays, the Au nanoframe@Pd arrays exhibit an enhanced electrocatalytic performance towards ethanol electrooxidation due to an abundance of catalytic active sites. The Au NF@Pd arrays display 4.1 times higher specific activity and 13.7 times higher mass activity than the commercial Pd/C electrocatalyst. Moreover, the nanostructure shows improved stability towards the ethanol oxidation reaction. This study enriches the manufacturing technology to increase the active sites of noble metal nanocatalysts and promotes the development of direct ethanol fuel cells.
Collapse
Affiliation(s)
- Qinru Yun
- College of Science, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China.
| | - Juan Xu
- College of Science, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China.
| | - Tingcha Wei
- College of Science, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China.
- Key Laboratory of Aerospace Information Materials and Physics (NUAA), MIIT, Nanjing 211106, China
| | - Qifeng Ruan
- Engineering Product Development, Singapore University of Technology and Design, Singapore 487372
| | - Xingzhong Zhu
- College of Science, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China.
- Key Laboratory of Aerospace Information Materials and Physics (NUAA), MIIT, Nanjing 211106, China
| | - Caixia Kan
- College of Science, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China.
- Key Laboratory of Aerospace Information Materials and Physics (NUAA), MIIT, Nanjing 211106, China
| |
Collapse
|
6
|
Ivanchenko M, Evangelista AJ, Jing H. Palladium-rich plasmonic nanorattles with enhanced LSPRs via successive galvanic replacement mediated by co-reduction. RSC Adv 2021; 11:40112-40119. [PMID: 35494128 PMCID: PMC9044558 DOI: 10.1039/d1ra06109g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 12/10/2021] [Indexed: 12/17/2022] Open
Abstract
Catalytic transformations under light irradiation have been extensively demonstrated by the excitation of the localized surface plasmon resonances (LSPRs) in noble metal-based nanoparticles. To fully harness the potential of noble metal-based nanocatalysts, it is fundamentally imperative to explore hybrid nano-systems with the most desirable enhanced LSPRs and intrinsic catalytic activities. Pd-containing hollow multimetallic nanostructures transformed from the sacrificial template of Ag via galvanic replacement reaction (GRR) offer such ideal platforms to gain quantitative insights into nanoparticle-catalyzed reactions. In this work, we successfully fabricated Pd-rich plasmonic nanorattles by means of co-reduction mediated GRR using CTAC-stabilized Au@Ag nanocuboids as templates and H2PdCl4 as a Pd precursor in the presence of ascorbic acid (AA) acting as a mild reducing agent. Successive titration of Au@Ag nanocuboids with the Pd precursor in the presence of AA modulates the rate of the galvanic replacement reaction as well as effective diffusion of Pd into the Ag matrix, resulting in increased dimensions and enlarged cavity sizes. Reduction of oxidized Ag+ back to Ag0 by AA, along with the deposition of Pd to form homogeneously mixed bimetallic layers not only prevents LSPRs peak from damping with increasing Pd content but also ensures the enhanced catalytic activities. Through precise control of added H2PdCl4 titrant, an unconventional steep increase in extinction intensity accompanied by tunable plasmon resonances shifted towards the NIR spectral region was experimentally observed due to the increasing physical cross-sections and plasmon hybridization in hollow nanorattles. Four colloids of Pd-rich nanorattles obtained by addition of different amounts of the H2PdCl4 titrant were used as catalysts for reduction of 4-nitrothiophenol in the presence of NaBH4 monitored by SERS. Palladium-rich plasmonic nanorattles with enhanced surface plasmon resonances synthesized through successive galvanic replacement mediated by co-reduction.![]()
Collapse
Affiliation(s)
- Mariia Ivanchenko
- Department of Chemistry and Biochemistry, George Mason University, Fairfax, Virginia 22030, USA
| | - Andrew J. Evangelista
- Department of Chemistry and Biochemistry, George Mason University, Fairfax, Virginia 22030, USA
| | - Hao Jing
- Department of Chemistry and Biochemistry, George Mason University, Fairfax, Virginia 22030, USA
| |
Collapse
|
7
|
Gong S, Zhang YX, Niu Z. Recent Advances in Earth-Abundant Core/Noble-Metal Shell Nanoparticles for Electrocatalysis. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02587] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Shuyan Gong
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Yu-Xiao Zhang
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Zhiqiang Niu
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
8
|
Controllable growth of palladium on gold multipod nanoparticles and their enhanced electrochemical oxygen reduction reaction performances. J Catal 2020. [DOI: 10.1016/j.jcat.2020.04.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
9
|
Verkaaik M, Grote R, Meulendijks N, Sastre F, Weckhuysen BM, Buskens P. Suzuki‐Miyaura Cross‐Coupling Using Plasmonic Pd‐Decorated Au Nanorods as Catalyst: A Study on the Contribution of Laser Illumination. ChemCatChem 2019. [DOI: 10.1002/cctc.201901112] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Mattheus Verkaaik
- TNO Materials SolutionsHigh Tech Campus 25 Eindhoven 5656 AE The Netherlands
| | - Roos Grote
- TNO Materials SolutionsHigh Tech Campus 25 Eindhoven 5656 AE The Netherlands
| | - Nicole Meulendijks
- TNO Materials SolutionsHigh Tech Campus 25 Eindhoven 5656 AE The Netherlands
| | - Francesc Sastre
- TNO Materials SolutionsHigh Tech Campus 25 Eindhoven 5656 AE The Netherlands
| | - Bert M. Weckhuysen
- Inorganic Chemistry and Catalysis Group Debye Institute for Nanomaterials ScienceUtrecht University Universiteitsweg 99 Utrecht 3584 CG The Netherlands
| | - Pascal Buskens
- TNO Materials SolutionsHigh Tech Campus 25 Eindhoven 5656 AE The Netherlands
| |
Collapse
|
10
|
Fang C, Bi T, Ding Q, Cui Z, Yu N, Xu X, Geng B. High-Density Pd Nanorod Arrays on Au Nanocrystals for High-Performance Ethanol Electrooxidation. ACS APPLIED MATERIALS & INTERFACES 2019; 11:20117-20124. [PMID: 31070351 DOI: 10.1021/acsami.9b06182] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In the synthesis of Au/Pd bimetallic nanocrystals, a layer-by-layer growth is favored, owing to the low bonding energy between Pd atoms ( EPd-Pd) in comparison with EAu-Pd, resulting in homogeneous core/shell nanostructures. Herein, we demonstrate designed synthetic tactics to unconventional Au/Pd heterostructures through a deposition-dominant growth pathway of the newly reduced Pd atoms, which break the intrinsically favored layer-by-layer growth. Pd thus grows on Au seeds in a heterogeneous nucleation manner. The resulting anisotropic Pd nanorods array on the two basal facets and three side facets of the Au triangular seeds in a high density to form 2D/1D Au/Pd heterostructures. It is noticed that Pd nanorods align in an extremely high order. They grow almost in a row with the base of the rod located overlapped on the Au surface. This versatile approach has been also applied to other Au nanocrystal seeds, involving hexagonal nanoplates, circular nanodisks, nanorods, and nanobipyramids. Furthermore, the 2D/1D Au/Pd heterostructures exhibit an enhanced electrocatalytic performance toward ethanol oxidation in alkaline condition, owing to their unique structure and the exposure of Au. We believe that our synthetic strategy is highly valuable for the construction of multimetallic nanostructures with desired architectures and thus intriguing properties.
Collapse
Affiliation(s)
- Caihong Fang
- College of Chemistry and Materials Science, The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecular-Based Materials, Center for Nano Science and Technology, Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes , Anhui Normal University , Wuhu 241000 , China
| | - Ting Bi
- College of Chemistry and Materials Science, The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecular-Based Materials, Center for Nano Science and Technology, Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes , Anhui Normal University , Wuhu 241000 , China
| | - Qian Ding
- College of Chemistry and Materials Science, The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecular-Based Materials, Center for Nano Science and Technology, Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes , Anhui Normal University , Wuhu 241000 , China
| | - Zhiqing Cui
- College of Chemistry and Materials Science, The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecular-Based Materials, Center for Nano Science and Technology, Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes , Anhui Normal University , Wuhu 241000 , China
| | - Nan Yu
- College of Chemistry and Materials Science, The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecular-Based Materials, Center for Nano Science and Technology, Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes , Anhui Normal University , Wuhu 241000 , China
| | - Xiaoxiao Xu
- College of Chemistry and Materials Science, The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecular-Based Materials, Center for Nano Science and Technology, Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes , Anhui Normal University , Wuhu 241000 , China
| | - Baoyou Geng
- College of Chemistry and Materials Science, The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecular-Based Materials, Center for Nano Science and Technology, Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes , Anhui Normal University , Wuhu 241000 , China
| |
Collapse
|
11
|
Controlled synthesis of Au@Pd core-shell nanocomposites and their application for electrochemical sensing of hydroquinone. Talanta 2019; 198:78-85. [DOI: 10.1016/j.talanta.2019.01.094] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 01/10/2019] [Accepted: 01/19/2019] [Indexed: 11/19/2022]
|
12
|
Huo D, Kim MJ, Lyu Z, Shi Y, Wiley BJ, Xia Y. One-Dimensional Metal Nanostructures: From Colloidal Syntheses to Applications. Chem Rev 2019; 119:8972-9073. [DOI: 10.1021/acs.chemrev.8b00745] [Citation(s) in RCA: 180] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Da Huo
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
| | - Myung Jun Kim
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Zhiheng Lyu
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Yifeng Shi
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Benjamin J. Wiley
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Younan Xia
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
13
|
Park SI, Song HM. Water-dispersable Pd@Au Core-Shell Nanorods Prepared with a Surfactant Mixture of CTAB and Pluronic Copolymers. CHEM LETT 2019. [DOI: 10.1246/cl.180929] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Soo Ik Park
- Department of Chemistry, Dong-A University, Busan 604-714, Korea
| | - Hyon-Min Song
- Department of Chemistry, Dong-A University, Busan 604-714, Korea
| |
Collapse
|
14
|
Song Y, Xiang C, Bi C, Wu C, He H, Du W, Huang L, Tian H, Xia H. pH-Dependent growth of atomic Pd layers on trisoctahedral gold nanoparticles to realize enhanced performance in electrocatalysis and chemical catalysis. NANOSCALE 2018; 10:22302-22311. [PMID: 30467565 DOI: 10.1039/c8nr07224h] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In this work, the controlled epitaxial growth of ultrathin Pd shells of a few atomic layers (denoted as nL) on the surfaces of gold nanoparticle (Au NP) cores of different morphologies (trisoctahedral, cubic, and spherical shapes) in the presence of cetyltrimethylammonium chloride (CTAC) was achieved by regulating the pH value of the aqueous CTAC solution and finely tuning the amount of the Pd precursor. It was found that the critical shell thickness for epitaxial Pd growth at the optimal pH value was 4 atomic layers, taking {331}-faceted trisoctahedral (TOH) Au@PdnL NPs as an example, on the basis of the results of atomic-resolution high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) images. Moreover, the resulting TOH Au@Pd1L NPs (100.9 m2 g-1, 13.2 A mgPd-1 and 13.1 mA cm-2) exhibited excellent electrocatalytic performance and long-term electrocatalytic activity for ethanol oxidation, around 4.8-fold, 66-fold, and 21.8-fold better than commercial Pd/C catalysts (31 m2 g-1, 0.2 A mgPd-1, and 0.6 mA cm-2). Furthermore, the resulting TOH Au@Pd1L NPs not only markedly enhance the chemical catalytic activity for the reduction of 4-nitrophenol (4-NP), but also allow the in situ surface-enhanced Raman spectroscopy (SERS) monitoring of the reaction process of the Pd-catalyzed reduction of 4-NTP. Thus, our work may provide a new way to fabricate core-shell (CS) bimetallic NPs with the merits of both metal outer shells (excellent catalytic performance in electrocatalysis and chemical catalysis) and Au NP cores (reaction process by in situ SERS monitoring).
Collapse
Affiliation(s)
- Yahui Song
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Tan SF, Bisht G, Anand U, Bosman M, Yong XE, Mirsaidov U. In Situ Kinetic and Thermodynamic Growth Control of Au-Pd Core-Shell Nanoparticles. J Am Chem Soc 2018; 140:11680-11685. [PMID: 30099870 DOI: 10.1021/jacs.8b05217] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
One-pot wet-chemical synthesis is a simple way to obtain nanoparticles (NPs) with a well-defined shape and composition. However, achieving good control over NP synthesis would require a comprehensive understanding of the mechanisms of NP formation, something that is challenging to obtain experimentally. Here, we study the formation of gold (Au) core-palladium (Pd) shell NPs under kinetically and thermodynamically controlled reaction conditions using in situ liquid cell transmission electron microscopy (TEM). By controlling the reaction temperature, we demonstrate that it is possible to tune the shape of Au nanorods to Au-Pd arrow-headed structures or to cuboidal core-shell NPs. Our in situ studies show that the reaction temperature can switch the Pd shell growth between the kinetically and thermodynamically dominant regimes. The mechanistic insights reported here reveal how the reaction temperature affects the packing of the capping agents and how the facet selection of depositing shell atoms drives the shell formation under different kinetic conditions, which is useful for synthesizing NPs with greater design flexibility in shape and elemental composition for various technological applications.
Collapse
Affiliation(s)
- Shu Fen Tan
- Department of Physics , National University of Singapore , Singapore 117551.,Centre for BioImaging Sciences, Department of Biological Sciences , National University of Singapore , Singapore 117557
| | - Geeta Bisht
- Department of Physics , National University of Singapore , Singapore 117551.,Centre for BioImaging Sciences, Department of Biological Sciences , National University of Singapore , Singapore 117557
| | - Utkarsh Anand
- Department of Physics , National University of Singapore , Singapore 117551.,Centre for BioImaging Sciences, Department of Biological Sciences , National University of Singapore , Singapore 117557
| | - Michel Bosman
- Department of Materials Science and Engineering , National University of Singapore , Singapore 117575.,Institute of Materials Research and Engineering , Agency for Science, Technology, and Research (A*STAR) , Singapore 138634
| | - Xin Ee Yong
- Centre for BioImaging Sciences, Department of Biological Sciences , National University of Singapore , Singapore 117557
| | - Utkur Mirsaidov
- Department of Physics , National University of Singapore , Singapore 117551.,Centre for BioImaging Sciences, Department of Biological Sciences , National University of Singapore , Singapore 117557.,Department of Materials Science and Engineering , National University of Singapore , Singapore 117575.,Centre for Advanced 2D Materials and Graphene Research Centre , National University of Singapore , Singapore 117546.,NUSNNI-NanoCore , National University of Singapore , Singapore 117411
| |
Collapse
|
16
|
Sadafi FZ, Sauerbeck C, Braunschweig B, Klupp Taylor RN. On the complex role of ammonia in the electroless deposition of curved silver patches on silica nanospheres. CrystEngComm 2018. [DOI: 10.1039/c8ce00866c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Surface conformal growth of silver on colloidal silica is mediated by silver–ammonia complexation and ammonia–silica hydrogen bonding.
Collapse
Affiliation(s)
- Fabrizio-Zagros Sadafi
- Institute of Particle Technology
- Friedrich-Alexander University of Erlangen-Nürnberg
- 91058 Erlangen
- Germany
| | - Christian Sauerbeck
- Institute of Particle Technology
- Friedrich-Alexander University of Erlangen-Nürnberg
- 91058 Erlangen
- Germany
| | - Björn Braunschweig
- Institute of Particle Technology
- Friedrich-Alexander University of Erlangen-Nürnberg
- 91058 Erlangen
- Germany
- Interdisciplinary Center for Functional Particle Systems
| | - Robin N. Klupp Taylor
- Institute of Particle Technology
- Friedrich-Alexander University of Erlangen-Nürnberg
- 91058 Erlangen
- Germany
- Interdisciplinary Center for Functional Particle Systems
| |
Collapse
|
17
|
Su G, Jiang H, Zhu H, Lv JJ, Yang G, Yan B, Zhu JJ. Controlled deposition of palladium nanodendrites on the tips of gold nanorods and their enhanced catalytic activity. NANOSCALE 2017; 9:12494-12502. [PMID: 28817146 DOI: 10.1039/c7nr04046f] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Plasmonic Au-Pd nanostructures have drawn significant attention for use in heterogeneous catalysis. In this study, palladium nanodendrite-tipped gold nanorods (PdND-T-AuNRs) were subjected to a facile fabrication under mild reaction conditions. The palladium amounts on the two tips were tunable. In the preparation of PdND-T-AuNRs, dense capped AuNRs, a low reaction temperature, and suitable stabilizing agents were identified as critical reaction parameters for controlling palladium nanodendrites deposited on both ends of AuNRs. After overgrowth with palladium nanodendrites, the longitudinal surface plasmonic resonance peaks of PdND-T-AuNRs were red-shifted from 810 nm to 980 nm. The electrocatalytic activity of PdND-T-AuNRs for ethanol oxidation was examined, which was a bit weaker than that of cuboid core-shell Au-Pd nanodendrites; however, PdND-T-AuNRs were more stable in ethanol electrooxidation. Moreover, the photocatalytic activity of PdND-T-AuNRs for Suzuki cross-coupling reactions was investigated. At room temperature, nearly 100% yield was obtained under laser irradiation. The results can further enhance our capability of fine-tuning the optical, electronic, and catalytic properties of the bimetallic Au-Pd nanostructures.
Collapse
Affiliation(s)
- Gaoxing Su
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
18
|
Sun L, Zhang Q, Li GG, Villarreal E, Fu X, Wang H. Multifaceted Gold-Palladium Bimetallic Nanorods and Their Geometric, Compositional, and Catalytic Tunabilities. ACS NANO 2017; 11:3213-3228. [PMID: 28230971 DOI: 10.1021/acsnano.7b00264] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Kinetically controlled, seed-mediated co-reduction provides a robust and versatile synthetic approach to multimetallic nanoparticles with precisely controlled geometries and compositions. Here, we demonstrate that single-crystalline cylindrical Au nanorods selectively transform into a series of structurally distinct Au@Au-Pd alloy core-shell bimetallic nanorods with exotic multifaceted geometries enclosed by specific types of facets upon seed-mediated Au-Pd co-reduction under diffusion-controlled conditions. By adjusting several key synthetic parameters, such as the Pd/Au precursor ratio, the reducing agent concentration, the capping surfactant concentration, and foreign metal ion additives, we have been able to simultaneously fine-tailor the atomic-level surface structures and fine-tune the compositional stoichiometries of the multifaceted Au-Pd bimetallic nanorods. Using the catalytic hydrogenation of 4-nitrophenol by ammonia borane as a model reaction obeying the Langmuir-Hinshelwood kinetics, we further show that the relative surface binding affinities of the reactants and the rates of interfacial charge transfers, both of which play key roles in determining the overall reaction kinetics, strongly depend upon the surface atomic coordinations and the compositional stoichiometries of the colloidal Au-Pd alloy nanocatalysts. The insights gained from this work not only shed light on the underlying mechanisms dictating the intriguing geometric evolution of multimetallic nanocrystals during seed-mediated co-reduction but also provide an important knowledge framework that guides the rational design of architecturally sophisticated multimetallic nanostructures toward optimization of catalytic molecular transformations.
Collapse
Affiliation(s)
- Lichao Sun
- Department of Chemistry and Biochemistry, University of South Carolina , Columbia, South Carolina 29208, United States
| | - Qingfeng Zhang
- Department of Chemistry and Biochemistry, University of South Carolina , Columbia, South Carolina 29208, United States
| | - Guangfang Grace Li
- Department of Chemistry and Biochemistry, University of South Carolina , Columbia, South Carolina 29208, United States
| | - Esteban Villarreal
- Department of Chemistry and Biochemistry, University of South Carolina , Columbia, South Carolina 29208, United States
| | - Xiaoqi Fu
- Department of Chemistry and Biochemistry, University of South Carolina , Columbia, South Carolina 29208, United States
| | - Hui Wang
- Department of Chemistry and Biochemistry, University of South Carolina , Columbia, South Carolina 29208, United States
| |
Collapse
|
19
|
Yin Y, Yang Y, Zhang L, Li Y, Li Z, Lei W, Ma Y, Huang Z. Facile synthesis of Au/Pd nano-dogbones and their plasmon-enhanced visible-to-NIR light photocatalytic performance. RSC Adv 2017. [DOI: 10.1039/c7ra06206k] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Au/Pd nano-dogbones are efficient for hydrogen production from formic acid under visible-to-NIR light irradiation.
Collapse
Affiliation(s)
- Yueyue Yin
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure
- Shanghai Institute of Ceramics
- Chinese Academy of Sciences
- Shanghai 200050
- China
| | - Yong Yang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure
- Shanghai Institute of Ceramics
- Chinese Academy of Sciences
- Shanghai 200050
- China
| | - Liangzhu Zhang
- Key Laboratory of Inorganic Functional Materials and Devices
- Shanghai Institute of Ceramics
- Chinese Academy of Sciences
- Shanghai 201800
- China
| | - Yongsheng Li
- Lab of Low-Dimensional Materials Chemistry
- Key Laboratory for Ultrafine Materials of Ministry of Education
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai 200237
| | - Zhiyuan Li
- Laboratory of Optical Physics
- Institute of Physics
- Chinese Academy of Sciences
- Beijing 100190
- China
| | - Weiwei Lei
- Institute for Frontier Materials
- Deakin University
- Waurn Ponds Campus
- Australia
| | - Yunfeng Ma
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure
- Shanghai Institute of Ceramics
- Chinese Academy of Sciences
- Shanghai 200050
- China
| | - Zhengren Huang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure
- Shanghai Institute of Ceramics
- Chinese Academy of Sciences
- Shanghai 200050
- China
| |
Collapse
|
20
|
Rajendra R, Gangadharan PK, Tripathi S, Kurungot S, Ballav N. High-index faceted Au nanocrystals with highly controllable optical properties and electro-catalytic activity. NANOSCALE 2016; 8:19224-19228. [PMID: 27849091 DOI: 10.1039/c6nr06922c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We introduce a new and naturally abundant mild reducing agent, tannic acid, to improve the seed-mediated growth method for the synthesis of elongated tetrahexahedral Au nanocrystals enclosed with high-index (730) planes, at room-temperature. The control of the dimensions, plasmonics and electro-catalysis of such high-index faceted nanocrystals is remarkable.
Collapse
Affiliation(s)
| | - Pranav K Gangadharan
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory (NCL), Pune, 411 008, India
| | - Shalini Tripathi
- Materials Research Centre, Indian Institute of Science (IISc), Bangalore, 560 012, India
| | - Sreekumar Kurungot
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory (NCL), Pune, 411 008, India
| | | |
Collapse
|
21
|
Colorimetric sensing of malathion using palladium-gold bimetallic nanozyme. Biosens Bioelectron 2016; 92:280-286. [PMID: 27840040 DOI: 10.1016/j.bios.2016.11.011] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 11/03/2016] [Accepted: 11/04/2016] [Indexed: 11/23/2022]
Abstract
In this work, a simple, sensitive and selective label free colorimetric assay using palladium-gold nanorod as nanozyme is reported for malathion detection. Study investigates the peroxidase potential of the nanozyme on colorimetric substrates and explores the effect of selected organophosphates on their enzyme mimetic activity. Palladium-gold nanozyme shows excellent peroxidase mimetic activity with O-phenylenediamine in the presence of hydrogen peroxide. Its Kinetic parameters Km and kcat are better than horseradish peroxidase which makes it a superior enzyme. Nanozyme is stable over a broad temperature range (4-70°C) and shows high peroxidase activity from 2 to 6pH. The peroxidase activity of nanozyme is selectively quenched with increasing concentration of malathion and is the principle of developed assay. Assay has a lowest detection limit of 60ng/ml and shows no cross-reaction with other analogous organophosphates or metal salts. Validation on tap water samples spiked with different concentrations of malathion shows good recovery in the range of 80-106%. Assay also displays good intra and inter-assay precision which lie in the range of 2.7-6.1% and 3.2-5.9% respectively. This study demonstrated the catalytic potential of palladium-gold nanorods, which can be employed as nanozyme for developing highly sensitive detection methods.
Collapse
|
22
|
Huang Q, Li W, Lin Q, Pi D, Hu C, Shao C, Zhang H. A review of significant factors in the synthesis of hetero-structured dumbbell-like nanoparticles. CHINESE JOURNAL OF CATALYSIS 2016. [DOI: 10.1016/s1872-2067(15)61069-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
23
|
He L, Liu C, Hu J, Gu W, Zhang Y, Dong L, Fu X, Tang J. Hydrophobic ligand-mediated hierarchical Cu nanoparticles on reduced graphene oxides for SERS platform. CrystEngComm 2016. [DOI: 10.1039/c6ce01728b] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
24
|
Zhang L, Xie Z, Gong J. Shape-controlled synthesis of Au–Pd bimetallic nanocrystals for catalytic applications. Chem Soc Rev 2016; 45:3916-34. [DOI: 10.1039/c5cs00958h] [Citation(s) in RCA: 199] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This review describes recent progress in the design and synthesis of shape-controlled Au–Pd bimetallic NCs and their emerging catalytic applications.
Collapse
Affiliation(s)
- Lei Zhang
- Key Laboratory for Green Chemical Technology of Ministry of Education
- School of Chemical Engineering and Technology
- Tianjin University
- Collaborative Innovation Center of Chemical Science and Engineering
- Tianjin 300072
| | - Zhaoxiong Xie
- State Key Laboratory of Physical Chemistry of Solid Surfaces
- Collaborative Innovation Center of Chemistry for Energy Materials
- and Department of Chemistry
- College of Chemistry and Chemical Engineering
- Xiamen University
| | - Jinlong Gong
- Key Laboratory for Green Chemical Technology of Ministry of Education
- School of Chemical Engineering and Technology
- Tianjin University
- Collaborative Innovation Center of Chemical Science and Engineering
- Tianjin 300072
| |
Collapse
|
25
|
Laske S, Ziegler W, Kainer M, Wuerfel J, Holzer C. Enhancing the temperature stability of PLA by compounding strategies. POLYM ENG SCI 2015. [DOI: 10.1002/pen.24176] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Stephan Laske
- Department of Polymer Engineering and Science, Polymer Processing; Montanuniversitaet Leoben; Otto Gloeckel-Strasse 2 Leoben 8700 Austria
| | - Wolfgang Ziegler
- Department of Polymer Engineering and Science, Chemistry of Polymeric Materials; Montanuniversitaet Leoben; Otto Gloeckel-Strasse 2 Leoben 8700 Austria
| | - Markus Kainer
- IM Polymer GmbH; Peter Tunner Strasse 19 Leoben 8700 Austria
| | | | - Clemens Holzer
- Department of Polymer Engineering and Science, Polymer Processing; Montanuniversitaet Leoben; Otto Gloeckel-Strasse 2 Leoben 8700 Austria
| |
Collapse
|
26
|
Polavarapu L, Mourdikoudis S, Pastoriza-Santos I, Pérez-Juste J. Nanocrystal engineering of noble metals and metal chalcogenides: controlling the morphology, composition and crystallinity. CrystEngComm 2015. [DOI: 10.1039/c5ce00112a] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|