The synthesis of multifunctional porous honey comb-like La
2O
3 thin film for supercapacitor and gas sensor applications.
J Colloid Interface Sci 2016;
484:51-59. [PMID:
27586000 DOI:
10.1016/j.jcis.2016.08.056]
[Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 08/19/2016] [Accepted: 08/21/2016] [Indexed: 11/21/2022]
Abstract
The porous honey comb-like La2O3 thin films have been synthesized using one step spray pyrolysis method. The influence of sprayed solution quantity on properties of La2O3 thin films is studied using X-ray diffraction, Fourier transform spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy, optical absorption and Brunauer-Emmett-Teller techniques. Morphology of La2O3 electrode is controlled with sprayed solution quantity. The supercapacitive properties of La2O3 thin film electrode are investigated using cyclic voltammetry, galvanostatic charge-discharge and electrochemical impedance techniques. The La2O3 film electrode exhibited the specific capacitance of the 166Fg-1 with 85% stability for the 3000 cycles. The La2O3 film electrode exhibited sensitivity of 68 at 523K for 500ppm CO2 gas concentration. The possible CO2 sensing mechanism is discussed.
Collapse