1
|
Coutinho A, Poveda JA, Renart ML. Conformational Dynamic Studies of Prokaryotic Potassium Channels Explored by Homo-FRET Methodologies. Methods Mol Biol 2024; 2796:35-72. [PMID: 38856894 DOI: 10.1007/978-1-0716-3818-7_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Fluorescence techniques have been widely used to shed light over the structure-function relationship of potassium channels for the last 40-50 years. In this chapter, we describe how a Förster resonance energy transfer between identical fluorophores (homo-FRET) approach can be applied to study the gating behavior of the prokaryotic channel KcsA. Two different gates have been described to control the K+ flux across the channel's pore, the helix-bundle crossing and the selectivity filter, located at the opposite sides of the channel transmembrane section. Both gates can be studied individually or by using a double-reporter system. Due to its homotetrameric structural arrangement, KcsA presents a high degree of symmetry that fulfills the first requisite to calculate intersubunit distances through this technique. The results obtained through this work have helped to uncover the conformational plasticity of the selectivity filter under different experimental conditions and the importance of its allosteric coupling to the opening of the activation (inner) gate. This biophysical approach usually requires low protein concentration and presents high sensitivity and reproducibility, complementing the high-resolution structural information provided by X-ray crystallography, cryo-EM, and NMR studies.
Collapse
Affiliation(s)
- Ana Coutinho
- iBB, Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Associate Laboratory i4HB, Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - José Antonio Poveda
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche, Universidad Miguel Hernández, Elche, Spain
| | - María Lourdes Renart
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche, Universidad Miguel Hernández, Elche, Spain.
| |
Collapse
|
2
|
Miranda A, Lopez-Blanco R, Lopes-Nunes J, Melo AM, Campello MPC, Paulo A, Oliveira MC, Mergny JL, Oliveira PA, Fernandez-Megia E, Cruz C. Gallic Acid-Triethylene Glycol Aptadendrimers Synthesis, Biophysical Characterization and Cellular Evaluation. Pharmaceutics 2022; 14:pharmaceutics14112456. [PMID: 36432647 PMCID: PMC9696068 DOI: 10.3390/pharmaceutics14112456] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/04/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
Herein, we describe the synthesis of an aptadendrimer by covalent bioconjugation of a gallic acid-triethylene glycol (GATG) dendrimer with the G-quadruplex (G4) AT11 aptamer (a modified version of AS1411) at the surface. We evaluated the loading and interaction of an acridine orange ligand, termed C8, that acts as an anticancer drug and binder/stabilizer of the G4 structure of AT11. Dynamic light scattering experiments demonstrated that the aptadendrimer was approximately 3.1 nm in diameter. Both steady-state and time-resolved fluorescence anisotropy evidenced the interaction between the aptadendrimer and C8. Additionally, we demonstrated that the iodine atom of the C8 ligand acts as an effective intramolecular quencher in solution, while upon complexation with the aptadendrimer, it adopts a more extended conformation. Docking studies support this conclusion. Release experiments show a delivery of C8 after 4 h. The aptadendrimers tend to localize in the cytoplasm of various cell lines studied as demonstrated by confocal microscopy. The internalization of the aptadendrimers is not nucleolin-mediated or by passive diffusion, but via endocytosis. MTT studies with prostate cancer cells and non-malignant cells evidenced high cytotoxicity mainly due to the C8 ligand. The rapid internalization of the aptadendrimers and the fluorescence properties make them attractive for the development of potential nanocarriers.
Collapse
Affiliation(s)
- André Miranda
- CICS-UBI—Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6201-506 Covilhã, Portugal
| | - Roi Lopez-Blanco
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, Jenaro de la Fuente s/n, 15782 Santiago de Compostela, Spain
| | - Jéssica Lopes-Nunes
- CICS-UBI—Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6201-506 Covilhã, Portugal
| | - Ana M. Melo
- iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Maria Paula Cabral Campello
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10 (km 139.7), 2695-066 Bobadela, Portugal
- Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10 (km 139.7), 2695-066 Bobadela, Portugal
| | - António Paulo
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10 (km 139.7), 2695-066 Bobadela, Portugal
- Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10 (km 139.7), 2695-066 Bobadela, Portugal
| | - Maria Cristina Oliveira
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10 (km 139.7), 2695-066 Bobadela, Portugal
- Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10 (km 139.7), 2695-066 Bobadela, Portugal
| | - Jean-Louis Mergny
- Laboratoire d’Optique et Biosciences, Ecole Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, 91128 Palaiseau, France
| | - Paula A. Oliveira
- Centre for Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Inov4Agro, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal
| | - Eduardo Fernandez-Megia
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, Jenaro de la Fuente s/n, 15782 Santiago de Compostela, Spain
- Correspondence: (E.F.-M.); (C.C.)
| | - Carla Cruz
- CICS-UBI—Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6201-506 Covilhã, Portugal
- Departamento de Química, Universidade da Beira Interior, Rua Marquês de Ávila e Bolama, 6201-001 Covilhã, Portugal
- Correspondence: (E.F.-M.); (C.C.)
| |
Collapse
|
3
|
Rivas G, Minton A. Influence of Nonspecific Interactions on Protein Associations: Implications for Biochemistry In Vivo. Annu Rev Biochem 2022; 91:321-351. [PMID: 35287477 DOI: 10.1146/annurev-biochem-040320-104151] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The cellular interior is composed of a variety of microenvironments defined by distinct local compositions and composition-dependent intermolecular interactions. We review the various types of nonspecific interactions between proteins and between proteins and other macromolecules and supramolecular structures that influence the state of association and functional properties of a given protein existing within a particular microenvironment at a particular point in time. The present state of knowledge is summarized, and suggestions for fruitful directions of research are offered. Expected final online publication date for the Annual Review of Biochemistry, Volume 91 is June 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Germán Rivas
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas, Madrid, Spain;
| | - Allen Minton
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA;
| |
Collapse
|
4
|
Claro B, González-Freire E, Granja JR, Garcia-Fandiño R, Gallová J, Uhríková D, Fedorov A, Coutinho A, Bastos M. Partition of antimicrobial D-L-α-cyclic peptides into bacterial model membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2022; 1864:183729. [PMID: 34506796 DOI: 10.1016/j.bbamem.2021.183729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/30/2021] [Accepted: 08/11/2021] [Indexed: 11/29/2022]
Abstract
Fluorescence spectroscopy is used to characterize the partition of three second-generation D,L-α-cyclic peptides to two lipid model membranes. The peptides have proven antimicrobial activity, particularly against Gram positive bacteria, and the model membranes are formed of either with 1,2-dimyristoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (DMPG) or its mixture with 1,2-dimyristoyl-sn-glycero-3-phosphoethanolamine (DMPE), at a molar ratio of (1:1). The peptide's intrinsic fluorescence was used in the Steady State and/or Time Resolved Fluorescence Spectroscopy experiments, showing that the peptides bind to the membranes, and the extent of their partition is thereof quantified. The peptide-induced membrane leakage was followed using an encapsulated fluorescent dye. Overall, the partition is mainly driven by electrostatics, but also involves hydrophobic interactions. The introduction of a hydrocarbon tail in one of the residues of the parent peptide, CPR, adjacent to the tryptophan (Trp) residue, significantly improves the partition of the modified peptides, CPRT10 and CPRT14, to both membrane systems. Further, we show that the length of the tail is the main distinguishing factor for the extension of the partition process. The parent peptide induces very limited leakage, at odds with the peptides with tail, that promote fast leakage, increasing in most cases with peptide concentration, and being almost complete for the highest peptide concentration and negatively charged membranes. Overall, the results help the unravelling of the antimicrobial action of these peptides and are well in line with their proven high antimicrobial activity.
Collapse
Affiliation(s)
- Bárbara Claro
- CIQUP, Centro de Investigação em Química, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Eva González-Freire
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Juan R Granja
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Rebeca Garcia-Fandiño
- CIQUP, Centro de Investigação em Química, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal; Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Jana Gallová
- Faculty of Pharmacy, Comenius University in Bratislava, 832 32 Bratislava, Slovak Republic
| | - Daniela Uhríková
- Faculty of Pharmacy, Comenius University in Bratislava, 832 32 Bratislava, Slovak Republic
| | - Aleksander Fedorov
- iBB - Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| | - Ana Coutinho
- iBB - Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal; Department of Chemistry and Biochemistry, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal.
| | - Margarida Bastos
- CIQUP, Centro de Investigação em Química, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal.
| |
Collapse
|
5
|
Díaz-García C, Renart ML, Poveda JA, Giudici AM, González-Ros JM, Prieto M, Coutinho A. Probing the Structural Dynamics of the Activation Gate of KcsA Using Homo-FRET Measurements. Int J Mol Sci 2021; 22:ijms222111954. [PMID: 34769384 PMCID: PMC8584343 DOI: 10.3390/ijms222111954] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/18/2021] [Accepted: 10/29/2021] [Indexed: 12/16/2022] Open
Abstract
The allosteric coupling between activation and inactivation processes is a common feature observed in K+ channels. Particularly, in the prokaryotic KcsA channel the K+ conduction process is controlled by the inner gate, which is activated by acidic pH, and by the selectivity filter (SF) or outer gate, which can adopt non-conductive or conductive states. In a previous study, a single tryptophan mutant channel (W67 KcsA) enabled us to investigate the SF dynamics using time-resolved homo-Förster Resonance Energy Transfer (homo-FRET) measurements. Here, the conformational changes of both gates were simultaneously monitored after labelling the G116C position with tetramethylrhodamine (TMR) within a W67 KcsA background. At a high degree of protein labeling, fluorescence anisotropy measurements showed that the pH-induced KcsA gating elicited a variation in the homo-FRET efficiency among the conjugated TMR dyes (TMR homo-FRET), while the conformation of the SF was simultaneously tracked (W67 homo-FRET). The dependence of the activation pKa of the inner gate with the ion occupancy of the SF unequivocally confirmed the allosteric communication between the two gates of KcsA. This simple TMR homo-FRET based ratiometric assay can be easily extended to study the conformational dynamics associated with the gating of other ion channels and their modulation.
Collapse
Affiliation(s)
- Clara Díaz-García
- iBB, Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal; (C.D.-G.); (M.P.)
- Associate Laboratory i4HB, Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| | - Maria Lourdes Renart
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche, Universidad Miguel Hernández, 03202 Elche, Spain; (J.A.P.); (A.M.G.); (J.M.G.-R.)
- Correspondence: (M.L.R.); (A.C.)
| | - José Antonio Poveda
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche, Universidad Miguel Hernández, 03202 Elche, Spain; (J.A.P.); (A.M.G.); (J.M.G.-R.)
| | - Ana Marcela Giudici
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche, Universidad Miguel Hernández, 03202 Elche, Spain; (J.A.P.); (A.M.G.); (J.M.G.-R.)
| | - José M. González-Ros
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche, Universidad Miguel Hernández, 03202 Elche, Spain; (J.A.P.); (A.M.G.); (J.M.G.-R.)
| | - Manuel Prieto
- iBB, Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal; (C.D.-G.); (M.P.)
- Associate Laboratory i4HB, Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| | - Ana Coutinho
- iBB, Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal; (C.D.-G.); (M.P.)
- Associate Laboratory i4HB, Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
- Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
- Correspondence: (M.L.R.); (A.C.)
| |
Collapse
|
6
|
Scanavachi G, Coutinho A, Fedorov AA, Prieto M, Melo AM, Itri R. Lipid Hydroperoxide Compromises the Membrane Structure Organization and Softens Bending Rigidity. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:9952-9963. [PMID: 34374545 DOI: 10.1021/acs.langmuir.1c00830] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Lipid hydroperoxides are key mediators of diseases and cell death. In this work, the structural and dynamic perturbations induced by the hydroperoxidized POPC lipid (POPC-OOH) in fluid POPC membranes, at both 23 and 37 °C, were addressed using advanced small-angle X-ray scattering (SAXS) and fluorescence methodologies. Notably, SAXS reveals that the hydroperoxide group decreases the lipid bilayer bending rigidity. This alteration disfavors the bilayer stacking and increases the swelling in-between stacked bilayers. We further investigated the changes in the apolar/polar interface of hydroperoxide-containing membranes through time-resolved fluorescence/anisotropy experiments of the probe TMA-DPH and time-dependent fluorescence shifts of Laurdan. A shorter mean fluorescence lifetime for TMA-DPH was obtained in enriched POPC-OOH membranes, revealing a higher degree of hydration near the membrane interface. Moreover, a higher microviscosity near TMA-DPH and lower order are predicted for these oxidized membranes, at variance with the usual trend of variation of these two parameters. Finally, the complex relaxation process of Laurdan in pure POPC-OOH membranes also indicates a higher membrane hydration and viscosity in the close vicinity of the -OOH moiety. Altogether, our combined approach reveals that the hydroperoxide group promotes alterations in the membrane structure organization, namely, at the level of membrane order, viscosity, and bending rigidity.
Collapse
Affiliation(s)
- Gustavo Scanavachi
- Institute of Physics, University of São Paulo, São Paulo 05508-090, Brazil
| | - Ana Coutinho
- iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisboa 1049-001, Portugal
- Dep. Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Lisboa 1749-016, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisboa 1049-001, Portugal
| | - Alexander Andreevich Fedorov
- iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisboa 1049-001, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisboa 1049-001, Portugal
| | - Manuel Prieto
- iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisboa 1049-001, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisboa 1049-001, Portugal
| | - Ana M Melo
- iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisboa 1049-001, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisboa 1049-001, Portugal
| | - Rosangela Itri
- Institute of Physics, University of São Paulo, São Paulo 05508-090, Brazil
| |
Collapse
|
7
|
Lopes-de-Campos D, Pereira-Leite C, Fontaine P, Coutinho A, Prieto M, Sarmento B, Jakobtorweihen S, Nunes C, Reis S. Interface-Mediated Mechanism of Action-The Root of the Cytoprotective Effect of Immediate-Release Omeprazole. J Med Chem 2021; 64:5171-5184. [PMID: 33847502 DOI: 10.1021/acs.jmedchem.1c00251] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Omeprazole is usually administered under an enteric coating. However, there is a Food and Drug Administration-approved strategy that enables its release in the stomach. When locally absorbed, omeprazole shows a higher efficacy and a cytoprotective effect, whose mechanism was still unknown. Therefore, we aimed to assess the effect of the absorption route on the gastric mucosa. 2D and 3D models of dipalmitoylphosphatidylcholine (DPPC) at different pH values (5.0 and 7.4) were used to mimic different absorption conditions. Several experimental techniques, namely, fluorescence studies, X-ray scattering methodologies, and Langmuir monolayers coupled with microscopy, X-ray diffraction, and infrared spectroscopy techniques, were combined with molecular dynamics simulations. The results showed that electrostatic and hydrophobic interactions between omeprazole and DPPC rearranged the conformational state of DPPC. Omeprazole intercalates among DPPC molecules, promoting domain formation with untilted phospholipids. Hence, the local release of omeprazole enables its action as a phospholipid-like drug, which can reinforce and protect the gastric mucosa.
Collapse
Affiliation(s)
- Daniela Lopes-de-Campos
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal
| | - Catarina Pereira-Leite
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal
| | - Philippe Fontaine
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint Aubin, BP48, 91192 Gif-sur-Yvette, France
| | - Ana Coutinho
- IBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal.,Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Manuel Prieto
- IBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| | - Bruno Sarmento
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal.,i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal.,IINFACTS, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Instituto Universitário de Ciências da Saúde, 4585-116 Gandra, Portugal
| | - Sven Jakobtorweihen
- Institute of Thermal Separation Processes, Hamburg University of Technology, 21073 Hamburg, Germany
| | - Cláudia Nunes
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal
| | - Salette Reis
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal
| |
Collapse
|
8
|
Membrane binding properties of the C-terminal segment of retinol dehydrogenase 8. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021; 1863:183605. [PMID: 33766534 DOI: 10.1016/j.bbamem.2021.183605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/01/2021] [Accepted: 03/12/2021] [Indexed: 12/18/2022]
Abstract
Light absorption by rhodopsin leads to the release of all-trans retinal (ATRal) in the lipid phase of photoreceptor disc membranes. Retinol dehydrogenase 8 (RDH8) then reduces ATRal into all-trans retinol, which is the first step of the visual cycle. The membrane binding of RDH8 has been postulated to be mediated by one or more palmitoylated cysteines located in its C-terminus. Different peptide variants of the C-terminus of RDH8 were thus used to obtain information on the mechanism of membrane binding of this enzyme. Steady-state and time-resolved fluorescence measurements were performed using short and long C-terminal segments of bovine RDH8, comprising one or two tryptophan residues. The data demonstrate that the amphipathic alpha helical structure of the first portion of the C-terminus of RDH8 strongly contributes to its membrane binding, which is also favored by palmitoylation of at least one of the cysteines located in the last portion of the C-terminus.
Collapse
|
9
|
Kashida H, Kawai H, Azuma H, Araki Y, Wada T, Asanuma H. Quantitative Analyses of Förster Resonance Energy Transfer between Identical Pyrene Chromophores (Homo‐FRET) In DNA Scaffolds. CHEMPHOTOCHEM 2020. [DOI: 10.1002/cptc.202000199] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Hiromu Kashida
- Department of Biomolecular Engineering Graduate School of Engineering Nagoya University Furo-cho, Chikusa-ku Nagoya 464-8603 Japan
| | - Hayato Kawai
- Department of Biomolecular Engineering Graduate School of Engineering Nagoya University Furo-cho, Chikusa-ku Nagoya 464-8603 Japan
| | - Hidenori Azuma
- Department of Biomolecular Engineering Graduate School of Engineering Nagoya University Furo-cho, Chikusa-ku Nagoya 464-8603 Japan
| | - Yasuyuki Araki
- Institute of Multidisciplinary Research for Advanced Materials Tohoku University 2-1-1, Katahira, Aoba-ku Sendai 980-8577 Japan
| | - Takehiko Wada
- Institute of Multidisciplinary Research for Advanced Materials Tohoku University 2-1-1, Katahira, Aoba-ku Sendai 980-8577 Japan
| | - Hiroyuki Asanuma
- Department of Biomolecular Engineering Graduate School of Engineering Nagoya University Furo-cho, Chikusa-ku Nagoya 464-8603 Japan
| |
Collapse
|
10
|
Heckmeier PJ, Agam G, Teese MG, Hoyer M, Stehle R, Lamb DC, Langosch D. Determining the Stoichiometry of Small Protein Oligomers Using Steady-State Fluorescence Anisotropy. Biophys J 2020; 119:99-114. [PMID: 32553128 DOI: 10.1016/j.bpj.2020.05.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 04/24/2020] [Accepted: 05/04/2020] [Indexed: 11/19/2022] Open
Abstract
A large fraction of soluble and membrane-bound proteins exists as non-covalent dimers, trimers, and higher-order oligomers. The experimental determination of the oligomeric state or stoichiometry of proteins remains a nontrivial challenge. In one approach, the protein of interest is genetically fused to green fluorescent protein (GFP). If a fusion protein assembles into a non-covalent oligomeric complex, exciting their GFP moiety with polarized fluorescent light elicits homotypic Förster resonance energy transfer (homo-FRET), in which the emitted radiation is partially depolarized. Fluorescence depolarization is associated with a decrease in fluorescence anisotropy that can be exploited to calculate the oligomeric state. In a classical approach, several parameters obtained through time-resolved and steady-state anisotropy measurements are required for determining the stoichiometry of the oligomers. Here, we examined novel approaches in which time-resolved measurements of reference proteins provide the parameters that can be used to interpret the less expensive steady-state anisotropy data of candidates. In one approach, we find that using average homo-FRET rates (kFRET), average fluorescence lifetimes (τ), and average anisotropies of those fluorophores that are indirectly excited by homo-FRET (rET) do not compromise the accuracy of calculated stoichiometries. In the other approach, fractional photobleaching of reference oligomers provides a novel parameter a whose dependence on stoichiometry allows one to quantitatively interpret the increase of fluorescence anisotropy seen after photobleaching the candidates. These methods can at least reliably distinguish monomers from dimers and trimers.
Collapse
Affiliation(s)
- Philipp J Heckmeier
- Center for Integrated Protein Science Munich (CIPSM), Lehrstuhl für Chemie der Biopolymere, Technische Universität München, Freising, Germany
| | - Ganesh Agam
- Physical Chemistry, Department of Chemistry, Center for Nano Science (CENS), Center for Integrated Protein Science (CIPSM) and Nanosystems Initiative München (NIM), Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Mark G Teese
- Center for Integrated Protein Science Munich (CIPSM), Lehrstuhl für Chemie der Biopolymere, Technische Universität München, Freising, Germany
| | - Maria Hoyer
- Physical Chemistry, Department of Chemistry, Center for Nano Science (CENS), Center for Integrated Protein Science (CIPSM) and Nanosystems Initiative München (NIM), Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Ralf Stehle
- Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany; Center for Integrated Protein Science Munich (CIPSM), Chair Biomolecular NMR Spectroscopy, Department Chemie, Technische Universität München, Garching, Germany
| | - Don C Lamb
- Physical Chemistry, Department of Chemistry, Center for Nano Science (CENS), Center for Integrated Protein Science (CIPSM) and Nanosystems Initiative München (NIM), Ludwig-Maximilians-Universität Munich, Munich, Germany.
| | - Dieter Langosch
- Center for Integrated Protein Science Munich (CIPSM), Lehrstuhl für Chemie der Biopolymere, Technische Universität München, Freising, Germany.
| |
Collapse
|
11
|
Conformational plasticity in the KcsA potassium channel pore helix revealed by homo-FRET studies. Sci Rep 2019; 9:6215. [PMID: 30996281 PMCID: PMC6470172 DOI: 10.1038/s41598-019-42405-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 03/29/2019] [Indexed: 11/24/2022] Open
Abstract
Potassium channels selectivity filter (SF) conformation is modulated by several factors, including ion-protein and protein-protein interactions. Here, we investigate the SF dynamics of a single Trp mutant of the potassium channel KcsA (W67) using polarized time-resolved fluorescence measurements. For the first time, an analytical framework is reported to analyze the homo-Förster resonance energy transfer (homo-FRET) within a symmetric tetrameric protein with a square geometry. We found that in the closed state (pH 7), the W67-W67 intersubunit distances become shorter as the average ion occupancy of the SF increases according to cation type and concentration. The hypothesis that the inactivated SF at pH 4 is structurally similar to its collapsed state, detected at low K+, pH 7, was ruled out, emphasizing the critical role played by the S2 binding site in the inactivation process of KcsA. This homo-FRET approach provides complementary information to X-ray crystallography in which the protein conformational dynamics is usually compromised.
Collapse
|
12
|
Rivas G, Minton AP. Toward an understanding of biochemical equilibria within living cells. Biophys Rev 2018; 10:241-253. [PMID: 29235084 PMCID: PMC5899707 DOI: 10.1007/s12551-017-0347-6] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 11/13/2017] [Indexed: 12/19/2022] Open
Abstract
Four types of environmental effects that can affect macromolecular reactions in a living cell are defined: nonspecific intermolecular interactions, side reactions, partitioning between microenvironments, and surface interactions. Methods for investigating these interactions and their influence on target reactions in vitro are reviewed. Methods employed to characterize conformational and association equilibria in vivo are reviewed and difficulties in their interpretation cataloged. It is concluded that, in order to be amenable to unambiguous interpretation, in vivo studies must be complemented by in vitro studies carried out in well-characterized and controllable media designed to contain key elements of selected intracellular microenvironments.
Collapse
Affiliation(s)
- Germán Rivas
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Allen P. Minton
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892 USA
| |
Collapse
|
13
|
Saha S, Majhi D, Bhattacharyya K, Preeyanka N, Datta A, Sarkar M. Evidence of homo-FRET in quantum dot–dye heterostructured assembly. Phys Chem Chem Phys 2018; 20:9523-9535. [DOI: 10.1039/c7cp07233c] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Evidence of homo-FRET in inorganic–organic hybrid hetero-structured assembly is demonstrated
Collapse
Affiliation(s)
- Samyabrata Saha
- School of Chemical Sciences
- National Institute of Science Education and Research
- HBNI
- Bhubaneswar
- India
| | - Debashis Majhi
- School of Chemical Sciences
- National Institute of Science Education and Research
- HBNI
- Bhubaneswar
- India
| | | | - Naupada Preeyanka
- School of Chemical Sciences
- National Institute of Science Education and Research
- HBNI
- Bhubaneswar
- India
| | - Ayan Datta
- Department of Spectroscopy
- Indian Association for the Cultivation of Science
- Kolkata 700032
- India
| | - Moloy Sarkar
- School of Chemical Sciences
- National Institute of Science Education and Research
- HBNI
- Bhubaneswar
- India
| |
Collapse
|
14
|
Akamatsu K, Shikazono N, Saito T. New method for estimating clustering of DNA lesions induced by physical/chemical mutagens using fluorescence anisotropy. Anal Biochem 2017; 536:78-89. [PMID: 28827125 DOI: 10.1016/j.ab.2017.08.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 08/02/2017] [Accepted: 08/11/2017] [Indexed: 12/31/2022]
Abstract
We have developed a new method for estimating the localization of DNA damage such as apurinic/apyrimidinic sites (APs) on DNA using fluorescence anisotropy. This method is aimed at characterizing clustered DNA damage produced by DNA-damaging agents such as ionizing radiation and genotoxic chemicals. A fluorescent probe with an aminooxy group (AlexaFluor488) was used to label APs. We prepared a pUC19 plasmid with APs by heating under acidic conditions as a model for damaged DNA, and subsequently labeled the APs. We found that the observed fluorescence anisotropy (robs) decreases as averaged AP density (λAP: number of APs per base pair) increases due to homo-FRET, and that the APs were randomly distributed. We applied this method to three DNA-damaging agents, 60Co γ-rays, methyl methanesulfonate (MMS), and neocarzinostatin (NCS). We found that robs-λAP relationships differed significantly between MMS and NCS. At low AP density (λAP < 0.001), the APs induced by MMS seemed to not be closely distributed, whereas those induced by NCS were remarkably clustered. In contrast, the AP clustering induced by 60Co γ-rays was similar to, but potentially more likely to occur than, random distribution. This simple method can be used to estimate mutagenicity of ionizing radiation and genotoxic chemicals.
Collapse
Affiliation(s)
- Ken Akamatsu
- Radiation DNA Damage Research Group, Kansai Photon Science Institute, National Institutes for Quantum and Radiological Science and Technology (QST), 8-1-7 Umemidai, Kizugawa, Kyoto 619-0215, Japan.
| | - Naoya Shikazono
- Radiation DNA Damage Research Group, Kansai Photon Science Institute, National Institutes for Quantum and Radiological Science and Technology (QST), 8-1-7 Umemidai, Kizugawa, Kyoto 619-0215, Japan
| | - Takeshi Saito
- Radiation Biochemistry and Biological Function, Research Reactor Institute, Kyoto University, Kumatori, Sennan, Osaka 590-0494, Japan
| |
Collapse
|
15
|
Amaro M, Šachl R, Jurkiewicz P, Coutinho A, Prieto M, Hof M. Time-resolved fluorescence in lipid bilayers: selected applications and advantages over steady state. Biophys J 2016; 107:2751-2760. [PMID: 25517142 DOI: 10.1016/j.bpj.2014.10.058] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 10/23/2014] [Accepted: 10/29/2014] [Indexed: 01/23/2023] Open
Abstract
Fluorescence methods are versatile tools for obtaining dynamic and topological information about biomembranes because the molecular interactions taking place in lipid membranes frequently occur on the same timescale as fluorescence emission. The fluorescence intensity decay, in particular, is a powerful reporter of the molecular environment of a fluorophore. The fluorescence lifetime can be sensitive to the local polarity, hydration, viscosity, and/or presence of fluorescence quenchers/energy acceptors within several nanometers of the vicinity of a fluorophore. Illustrative examples of how time-resolved fluorescence measurements can provide more valuable and detailed information about a system than the time-integrated (steady-state) approach will be presented in this review: 1), determination of membrane polarity and mobility using time-dependent spectral shifts; 2), identification of submicroscopic domains by fluorescence lifetime imaging microscopy; 3), elucidation of membrane leakage mechanisms from dye self-quenching assays; and 4), evaluation of nanodomain sizes by time-resolved Förster resonance energy transfer measurements.
Collapse
Affiliation(s)
- Mariana Amaro
- Department of Biophysical Chemistry, J. Heyrovský Institute of Physical Chemistry of the Academy of Sciences of the Czech Republic, v.v.i., Prague, Czech Republic
| | - Radek Šachl
- Department of Biophysical Chemistry, J. Heyrovský Institute of Physical Chemistry of the Academy of Sciences of the Czech Republic, v.v.i., Prague, Czech Republic
| | - Piotr Jurkiewicz
- Department of Biophysical Chemistry, J. Heyrovský Institute of Physical Chemistry of the Academy of Sciences of the Czech Republic, v.v.i., Prague, Czech Republic
| | - Ana Coutinho
- Centre for Molecular Chemistry and Physics and Instituto de Nanociência e Nanotecnologia, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal; Departamento Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Manuel Prieto
- Centre for Molecular Chemistry and Physics and Instituto de Nanociência e Nanotecnologia, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Martin Hof
- Department of Biophysical Chemistry, J. Heyrovský Institute of Physical Chemistry of the Academy of Sciences of the Czech Republic, v.v.i., Prague, Czech Republic.
| |
Collapse
|
16
|
Tu C, Santo L, Mishima Y, Raje N, Smilansky Z, Zoldan J. Monitoring protein synthesis in single live cancer cells. Integr Biol (Camb) 2016; 8:645-53. [PMID: 26956582 DOI: 10.1039/c5ib00279f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Protein synthesis is generally under sophisticated and dynamic regulation to meet the ever-changing demands of a cell. Global up or down-regulation of protein synthesis and the shift of protein synthesis location (as shown, for example, during cellular stress or viral infection) are recognized as cellular responses to environmental changes such as nutrient/oxygen deprivation or to alterations such as pathological mutations in cancer cells. Monitoring protein synthesis in single live cells can be a powerful tool for cancer research. Here we employed a microfluidic platform to perform high throughput delivery of fluorescent labeled tRNAs into multiple myeloma cells with high transfection efficiency (∼45%) and high viability (>80%). We show that the delivered tRNAs were actively recruited to the ER for protein synthesis and that treatment with puromycin effectively disrupted this process. Interestingly, we observed the scattered distribution of tRNAs in cells undergoing mitosis, which has not been previously reported. Fluorescence lifetime analysis detected extensive FRET signals generated from tRNAs labeled as FRET pairs, further confirming that the delivered tRNAs were used by active ribosomes for protein translation. Our work demonstrates that the microfluidic delivery of FRET labeled tRNAs into living cancer cells can provide new insights into basic cancer metabolism and has the potential to serve as a platform for drug screening, diagnostics, or personalized medication.
Collapse
Affiliation(s)
- Chengyi Tu
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA.
| | | | | | | | | | | |
Collapse
|
17
|
Levitt JA, Morton PE, Fruhwirth GO, Santis G, Chung PH, Parsons M, Suhling K. Simultaneous FRAP, FLIM and FAIM for measurements of protein mobility and interaction in living cells. BIOMEDICAL OPTICS EXPRESS 2015; 6:3842-54. [PMID: 26504635 PMCID: PMC4605044 DOI: 10.1364/boe.6.003842] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 08/16/2015] [Accepted: 08/18/2015] [Indexed: 05/23/2023]
Abstract
We present a novel integrated multimodal fluorescence microscopy technique for simultaneous fluorescence recovery after photobleaching (FRAP), fluorescence lifetime imaging (FLIM) and fluorescence anisotropy imaging (FAIM). This approach captures a series of polarization-resolved fluorescence lifetime images during a FRAP recovery, maximizing the information available from a limited photon budget. We have applied this method to analyse the behaviour of GFP-labelled coxsackievirus and adenovirus receptor (CAR) in living human epithelial cells. Our data reveal that CAR exists in oligomeric states throughout the cell, and that these complexes occur in conjunction with high immobile fractions of the receptor at cell-cell junctions. These findings shed light on previously unknown molecular associations between CAR receptors in intact cells and demonstrate the power of combined FRAP, FLIM and FAIM microscopy as a robust method to analyse complex multi-component dynamics in living cells.
Collapse
Affiliation(s)
- James A. Levitt
- Department of Physics, King’s College London, Strand, London WC2R 2LS, UK
| | - Penny E. Morton
- Division of Asthma, Allergy, and Lung Biology, Guys Campus, King’s College London, London, UK
- Randall Division of Cell and Molecular Biophysics, Guys Campus, King’s College London, London, SE1 1UL, UK
| | - Gilbert O. Fruhwirth
- Department of Imaging Chemsitry and Biology, Division of Imaging Sciences and Biomedical Engineering, St. Thomas Hospital, King's College London, SE1 7EH, UK
| | - George Santis
- Division of Asthma, Allergy, and Lung Biology, Guys Campus, King’s College London, London, UK
| | - Pei-Hua Chung
- Department of Physics, King’s College London, Strand, London WC2R 2LS, UK
| | - Maddy Parsons
- Randall Division of Cell and Molecular Biophysics, Guys Campus, King’s College London, London, SE1 1UL, UK
| | - Klaus Suhling
- Department of Physics, King’s College London, Strand, London WC2R 2LS, UK
| |
Collapse
|
18
|
Bene L, Ungvári T, Fedor R, Nagy I, Damjanovich L. Dual-laser homo-FRET on the cell surface. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:1096-112. [DOI: 10.1016/j.bbamcr.2015.02.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 01/19/2015] [Accepted: 02/02/2015] [Indexed: 10/24/2022]
|
19
|
Fernandes F, Coutinho A, Prieto M, Loura LMS. Electrostatically driven lipid-protein interaction: Answers from FRET. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:1837-48. [PMID: 25769805 DOI: 10.1016/j.bbamem.2015.02.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 02/23/2015] [Indexed: 12/13/2022]
Abstract
Electrostatics govern the association of a large number of proteins with cellular membranes. In some cases, these proteins present specialized lipid-binding modules or membrane targeting domains while in other cases association is achieved through nonspecific interaction of unstructured clusters of basic residues with negatively charged lipids. Given its spatial resolution in the nanometer range, Förster resonance energy transfer (FRET) is a powerful tool to give insight into protein-lipid interactions and provide molecular level information which is difficult to retrieve with other spectroscopic techniques. In this review we present and discuss the basic formalisms of both hetero- and homo-FRET pertinent to the most commonly encountered problems in lipid-protein interaction studies and highlight some examples of implementations of different FRET methodologies to characterize lipid/protein systems in which electrostatic interactions play a crucial role. This article is part of a Special Issue entitled: Lipid-protein interactions.
Collapse
Affiliation(s)
- Fábio Fernandes
- Centro de Química-Física Molecular and Institute of Nanoscience and Nanotechnology, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Ana Coutinho
- Centro de Química-Física Molecular and Institute of Nanoscience and Nanotechnology, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; Dep. Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Manuel Prieto
- Centro de Química-Física Molecular and Institute of Nanoscience and Nanotechnology, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Luís M S Loura
- Faculdade de Farmácia, Universidade de Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; Centro de Química de Coimbra, Largo D. Dinis, Rua Larga, 3004-535 Coimbra, Portugal.
| |
Collapse
|
20
|
Sinha C, Arora K, Moon CS, Yarlagadda S, Woodrooffe K, Naren AP. Förster resonance energy transfer - an approach to visualize the spatiotemporal regulation of macromolecular complex formation and compartmentalized cell signaling. Biochim Biophys Acta Gen Subj 2014; 1840:3067-72. [PMID: 25086255 DOI: 10.1016/j.bbagen.2014.07.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 07/17/2014] [Accepted: 07/21/2014] [Indexed: 01/09/2023]
Abstract
BACKGROUND Signaling messengers and effector proteins provide an orchestrated molecular machinery to relay extracellular signals to the inside of cells and thereby facilitate distinct cellular behaviors. Formations of intracellular macromolecular complexes and segregation of signaling cascades dynamically regulate the flow of a biological process. SCOPE OF REVIEW In this review, we provide an overview of the development and application of FRET technology in monitoring cyclic nucleotide-dependent signalings and protein complexes associated with these signalings in real time and space with brief mention of other important signaling messengers and effector proteins involved in compartmentalized signaling. MAJOR CONCLUSIONS The preciseness, rapidity and specificity of cellular responses indicate restricted alterations of signaling messengers, particularly in subcellular compartments rather than globally. Not only the physical confinement and selective depletion, but also the intra- and inter-molecular interactions of signaling effectors modulate the direction of signal transduction in a compartmentalized fashion. To understand the finer details of various intracellular signaling cascades and crosstalk between proteins and other effectors, it is important to visualize these processes in live cells. Förster Resonance Energy Transfer (FRET) has been established as a useful tool to do this, even with its inherent limitations. GENERAL SIGNIFICANCE FRET technology remains as an effective tool for unraveling the complex organization and distribution of various endogenous signaling proteins, as well as the spatiotemporal dynamics of second messengers inside a single cell to distinguish the heterogeneity of cell signaling under normal physiological conditions and during pathological events.
Collapse
Affiliation(s)
- Chandrima Sinha
- Division of Pulmonary Medicine, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, MLC2120 3333 Burnet Avenue Cincinnati, OH 45229, USA; Department of Physiology, University of Tennessee Health Science Center, 426 Nash Research Building, 894 Union Avenue, Memphis, TN 38163, USA
| | - Kavisha Arora
- Division of Pulmonary Medicine, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, MLC2120 3333 Burnet Avenue Cincinnati, OH 45229, USA
| | - Chang Suk Moon
- Division of Pulmonary Medicine, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, MLC2120 3333 Burnet Avenue Cincinnati, OH 45229, USA
| | - Sunitha Yarlagadda
- Division of Pulmonary Medicine, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, MLC2120 3333 Burnet Avenue Cincinnati, OH 45229, USA
| | - Koryse Woodrooffe
- Division of Pulmonary Medicine, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, MLC2120 3333 Burnet Avenue Cincinnati, OH 45229, USA
| | - Anjaparavanda P Naren
- Division of Pulmonary Medicine, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, MLC2120 3333 Burnet Avenue Cincinnati, OH 45229, USA; Department of Physiology, University of Tennessee Health Science Center, 426 Nash Research Building, 894 Union Avenue, Memphis, TN 38163, USA.
| |
Collapse
|