1
|
Wu H, Li G, Hou J, Sotthewes K. Probing surface properties of organic molecular layers by scanning tunneling microscopy. Adv Colloid Interface Sci 2023; 318:102956. [PMID: 37393823 DOI: 10.1016/j.cis.2023.102956] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 06/21/2023] [Accepted: 06/23/2023] [Indexed: 07/04/2023]
Abstract
In view of the relevance of organic thin layers in many fields, the fundamentals, growth mechanisms, and dynamics of thin organic layers, in particular thiol-based self-assembled monolayers (SAMs) on Au(111) are systematically elaborated. From both theoretical and practical perspectives, dynamical and structural features of the SAMs are of great intrigue. Scanning tunneling microscopy (STM) is a remarkably powerful technique employed in the characterization of SAMs. Numerous research examples of investigation about the structural and dynamical properties of SAMs using STM, sometimes combined with other techniques, are listed in the review. Advanced options to enhance the time resolution of STM are discussed. Additionally, we elaborate on the extremely diverse dynamics of various SAMs, such as phase transitions and structural changes at the molecular level. In brief, the current review is expected to supply a better understanding and novel insights regarding the dynamical events happening in organic SAMs and how to characterize these processes.
Collapse
Affiliation(s)
- Hairong Wu
- State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum-Beijing, Beijing 102249, China; Unconventional Petroleum Research Institute, China University of Petroleum-Beijing, Beijing 102249, China.
| | - Genglin Li
- College of Science, China University of Petroleum-Beijing, Beijing 102249, China
| | - Jirui Hou
- State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum-Beijing, Beijing 102249, China; Unconventional Petroleum Research Institute, China University of Petroleum-Beijing, Beijing 102249, China
| | - Kai Sotthewes
- Physics of Interfaces and Nanomaterials, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500AE Enschede, the Netherlands.
| |
Collapse
|
2
|
Wang X, Lamantia A, Jay M, Sadeghi H, Lambert CJ, Kolosov OV, Robinson BJ. Determination of electric and thermoelectric properties of molecular junctions by AFM in peak force tapping mode. NANOTECHNOLOGY 2023; 34:385704. [PMID: 37336192 DOI: 10.1088/1361-6528/acdf67] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/19/2023] [Indexed: 06/21/2023]
Abstract
Molecular thin films, such as self-assembled monolayers (SAMs), offer the possibility of translating the optimised thermophysical and electrical properties of high-Seebeck-coefficient single molecules to scalable device architectures. However, for many scanning probe-based approaches attempting to characterise such SAMs, there remains a significant challenge in recovering single-molecule equivalent values from large-area films due to the intrinsic uncertainty of the probe-sample contact area coupled with film damage caused by contact forces. Here we report a new reproducible non-destructive method for probing the electrical and thermoelectric (TE) properties of small assemblies (10-103) of thiol-terminated molecules arranged within a SAM on a gold surface, and demonstrate the successful and reproducible measurements of the equivalent single-molecule electrical conductivity and Seebeck values. We have used a modified thermal-electric force microscopy approach, which integrates the conductive-probe atomic force microscope, a sample positioned on a temperature-controlled heater, and a probe-sample peak-force feedback that interactively limits the normal force across the molecular junctions. The experimental results are interpreted by density functional theory calculations allowing quantification the electrical quantum transport properties of both single molecules and small clusters of molecules. Significantly, this approach effectively eliminates lateral forces between probe and sample, minimising disruption to the SAM while enabling simultaneous mapping of the SAMs nanomechanical properties, as well as electrical and/or TE response, thereby allowing correlation of the film properties.
Collapse
Affiliation(s)
- Xintai Wang
- Department of Physics, Lancaster University, Lancaster, LA1 4YB, United Kingdom
- School of Information Science and Technology, Dalian Maritime University, Dalian, 116026, People's Republic of China
| | - Angelo Lamantia
- Department of Physics, Lancaster University, Lancaster, LA1 4YB, United Kingdom
| | - Michael Jay
- Department of Physics, Lancaster University, Lancaster, LA1 4YB, United Kingdom
| | - Hatef Sadeghi
- School of Engineering, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Colin J Lambert
- Department of Physics, Lancaster University, Lancaster, LA1 4YB, United Kingdom
| | - Oleg V Kolosov
- Department of Physics, Lancaster University, Lancaster, LA1 4YB, United Kingdom
| | - Benjamin J Robinson
- Department of Physics, Lancaster University, Lancaster, LA1 4YB, United Kingdom
| |
Collapse
|
3
|
Nanofabrication Techniques in Large-Area Molecular Electronic Devices. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10176064] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The societal impact of the electronics industry is enormous—not to mention how this industry impinges on the global economy. The foreseen limits of the current technology—technical, economic, and sustainability issues—open the door to the search for successor technologies. In this context, molecular electronics has emerged as a promising candidate that, at least in the short-term, will not likely replace our silicon-based electronics, but improve its performance through a nascent hybrid technology. Such technology will take advantage of both the small dimensions of the molecules and new functionalities resulting from the quantum effects that govern the properties at the molecular scale. An optimization of interface engineering and integration of molecules to form densely integrated individually addressable arrays of molecules are two crucial aspects in the molecular electronics field. These challenges should be met to establish the bridge between organic functional materials and hard electronics required for the incorporation of such hybrid technology in the market. In this review, the most advanced methods for fabricating large-area molecular electronic devices are presented, highlighting their advantages and limitations. Special emphasis is focused on bottom-up methodologies for the fabrication of well-ordered and tightly-packed monolayers onto the bottom electrode, followed by a description of the top-contact deposition methods so far used.
Collapse
|
4
|
Carro P, Salvarezza RC. Gold adatoms modulate sulfur adsorption on gold. NANOSCALE 2019; 11:19341-19351. [PMID: 31435624 DOI: 10.1039/c9nr05709a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Sulfur adsorption on Au(111) at high coverage has been studied by density functional calculations. In this case S species organize into rectangular structures containing 8 S atoms irrespective of the S source, which have been alternatively assigned to adsorbed monomeric S, adsorbed S2, adsorbed monomeric plus S2 species, and gold sulfide. We found that monomeric S at the high coverage organizes into S2 species that are stabilized into the 8-S structures by Au adatoms, forming gold disulfide complexes (Au-(S2)4). The Au atoms could be provided by decomposition of more diluted AuS3 containing phases, as recently proposed, and direct removal from terraces and step edges, both explaining the surface coverage of vacancy islands coexisting with the 8-S structures. The gold-disulfide complexes capture the disorder shown in the experimental STM images, explain the intrigued features of XPS, and also, give a smooth pathway to gold sulfide formation at higher temperatures. More importantly, the gold-disulfide complexes allow a unified picture of the gold-sulfur surface chemistry at high coverage for thiols and adsorbed sulfur species where the surface chemistry remains under discussion.
Collapse
Affiliation(s)
- Pilar Carro
- Área de Química Física, Departamento de Química, Facultad de Ciencias, Universidad de La Laguna, Instituto de Materiales y Nanotecnología, Avda. Francisco Sánchez, s/n 38200-La Laguna, Tenerife, Spain
| | - Roberto C Salvarezza
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET, La Plata 1900, Argentina.
| |
Collapse
|
5
|
Salvarezza R, Carro P. The electrochemical stability of thiols on gold surfaces. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2017.10.046] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
6
|
Segala M, Schneider FSS, Caramori GF, Parreira RLT. Evaluation of Electron Donation as a Mechanism for the Stabilisation of Chalcogenate-Protected Gold Nanoclusters. Chemphyschem 2016; 17:3102-3111. [DOI: 10.1002/cphc.201600552] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Maximiliano Segala
- Departamento de Físico-Química, Instituto de Química; Universidade Federal do Rio Grande do Sul; Porto Alegre RS 91501-970 Brazil
| | - Felipe S. S. Schneider
- Departamento de Química; Universidade Federal de Santa Catarina; Campus Universitário Trindade, CP 476 Florianópolis SC 88040-900 Brazil
| | - Giovanni F. Caramori
- Departamento de Química; Universidade Federal de Santa Catarina; Campus Universitário Trindade, CP 476 Florianópolis SC 88040-900 Brazil
| | - Renato L. T. Parreira
- Núcleo de Pesquisa em Ciências Exatas e Tecnológicas; Universidade de Franca; Franca SP 14404-600 Brazil
| |
Collapse
|
7
|
Löfgren J, Grönbeck H, Moth-Poulsen K, Erhart P. Understanding the Phase Diagram of Self-Assembled Monolayers of Alkanethiolates on Gold. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2016; 120:12059-12067. [PMID: 27313813 PMCID: PMC4904245 DOI: 10.1021/acs.jpcc.6b03283] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 05/11/2016] [Indexed: 05/19/2023]
Abstract
Alkanethiolate monolayers on gold are important both for applications in nanoscience as well as fundamental studies of adsorption and self-assembly at metal surfaces. While considerable experimental effort has been put into understanding the phase diagram of these systems, theoretical work based on density functional theory (DFT) has long been hampered by the inability of conventional exchange-correlation functionals to describe dispersive interactions. In this work, we combine dispersion-corrected DFT calculations using the new vdW-DF-CX functional with the ab initio thermodynamics method to study the stability of dense standing-up and low-coverage lying-down phases on Au(111). We demonstrate that the lying-down phase has a thermodynamic region of stability starting from thiolates with alkyl chains consisting of n ≈ 3 methylene units. This phase emerges as a consequence of a competition between dispersive chain-chain and chain-substrate interactions, where the strength of the latter varies more strongly with n. A phase diagram is derived under ultrahigh-vacuum conditions, detailing the phase transition temperatures of the system as a function of the chain length. The present work illustrates that accurate ab initio modeling of dispersive interactions is both feasible and essential for describing self-assembled monolayers.
Collapse
Affiliation(s)
- Joakim Löfgren
- Department of Physics and Department of
Chemistry and Chemical Engineering, Chalmers
University of Technology, Gothenburg, Sweden
- E-mail ; Phone 0046317722902 (J.L.)
| | - Henrik Grönbeck
- Department of Physics and Department of
Chemistry and Chemical Engineering, Chalmers
University of Technology, Gothenburg, Sweden
| | - Kasper Moth-Poulsen
- Department of Physics and Department of
Chemistry and Chemical Engineering, Chalmers
University of Technology, Gothenburg, Sweden
| | - Paul Erhart
- Department of Physics and Department of
Chemistry and Chemical Engineering, Chalmers
University of Technology, Gothenburg, Sweden
| |
Collapse
|