1
|
Camacho IS, Wall E, Sazanovich IV, Gozzard E, Towrie M, Hunt NT, Hay S, Jones AR. Tuning of B 12 photochemistry in the CarH photoreceptor to avoid radical photoproducts. Chem Commun (Camb) 2023; 59:13014-13017. [PMID: 37831010 DOI: 10.1039/d3cc03900e] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Time-resolved infrared spectroscopy reveals the flow of electron density through coenzyme B12 in the light-activated, bacterial transcriptional regulator, CarH. The protein stabilises a series of charge transfer states that result in a photoresponse that avoids reactive, and potentially damaging, radical photoproducts.
Collapse
Affiliation(s)
- Ines S Camacho
- Biometrology, Chemical and Biological Sciences Department, National Physical Laboratory, Teddington, Middlesex, UK.
| | - Emma Wall
- Manchester Institute of Biotechnology and Department of Chemistry, The University of Manchester, 131 Princess Street, Manchester, UK
| | - Igor V Sazanovich
- Central Laser Facility, STFC Rutherford Appleton Laboratory, Harwell Campus, Didcot, UK
| | - Emma Gozzard
- Central Laser Facility, STFC Rutherford Appleton Laboratory, Harwell Campus, Didcot, UK
| | - Mike Towrie
- Central Laser Facility, STFC Rutherford Appleton Laboratory, Harwell Campus, Didcot, UK
| | - Neil T Hunt
- Department of Chemistry and York Biomedical Research Institute, University of York, UK
| | - Sam Hay
- Manchester Institute of Biotechnology and Department of Chemistry, The University of Manchester, 131 Princess Street, Manchester, UK
| | - Alex R Jones
- Biometrology, Chemical and Biological Sciences Department, National Physical Laboratory, Teddington, Middlesex, UK.
| |
Collapse
|
2
|
Marques HM. The inorganic chemistry of the cobalt corrinoids - an update. J Inorg Biochem 2023; 242:112154. [PMID: 36871417 DOI: 10.1016/j.jinorgbio.2023.112154] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 01/23/2023] [Accepted: 01/26/2023] [Indexed: 02/05/2023]
Abstract
The inorganic chemistry of the cobalt corrinoids, derivatives of vitamin B12, is reviewed, with particular emphasis on equilibrium constants for, and kinetics of, their axial ligand substitution reactions. The role the corrin ligand plays in controlling and modifying the properties of the metal ion is emphasised. Other aspects of the chemistry of these compounds, including their structure, corrinoid complexes with metals other than cobalt, the redox chemistry of the cobalt corrinoids and their chemical redox reactions, and their photochemistry are discussed. Their role as catalysts in non-biological reactions and aspects of their organometallic chemistry are briefly mentioned. Particular mention is made of the role that computational methods - and especially DFT calculations - have played in developing our understanding of the inorganic chemistry of these compounds. A brief overview of the biological chemistry of the B12-dependent enzymes is also given for the reader's convenience.
Collapse
Affiliation(s)
- Helder M Marques
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg 2050, South Africa.
| |
Collapse
|
3
|
Ghosh AP, Lodowski P, Kozlowski PM. Aerobic photolysis of methylcobalamin: unraveling the photoreaction mechanism. Phys Chem Chem Phys 2022; 24:6093-6106. [PMID: 35212341 DOI: 10.1039/d1cp02013g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The photo-reactivity of cobalamins (Cbls) is influenced by the nature of axial ligands and the cofactor's environment. While the biologically active forms of Cbls with alkyl axial ligands, such as methylcobalamin (MeCbl) and adenosylcobalamin (AdoCbl), are considered to be photolytically active, in contrast, the non-alkyl Cbls are photostable. In addition to these, the photolytic properties of Cbls can also be modulated in the presence of molecular oxygen, i.e., under aerobic conditions. Herein, the photoreaction of the MeCbl in the presence of oxygen has been explored using density functional theory (DFT) and time-dependent DFT (TD-DFT). The first stage of the aerobic photoreaction is the activation of the Co-C bond and the formation of the ligand field (LF) electronic state through the displacement of axial bonds. Once the photoreaction reaches the LF excited state, three processes can occur: namely the formation of OO-CH3 through the reaction of CH3 with molecular oxygen, de-activation of the {Im⋯[CoII(corrin)]⋯CH3}+ sub-system from the LF electronic state by changing the electronic configuration from (dyz)1(dz2)2 to (dyz)2(dz2)1 and the formation of the deactivation complex (DC) complex via the recombination of OO-CH3 species with the de-excited [CoII(corrin)] system. In the proposed mechanism, the deactivation of the [CoII(corrin)] subsystem may coexist with the formation of OO-CH3, followed by immediate relaxation of the subsystems in the ground state. Moreover, the formation of the OO-CH3 species followed by the formation of the {[CoIII(corrin)]-OO-CH3}+ complex stabilizes the system compared to the reactant complex.
Collapse
Affiliation(s)
- Arghya Pratim Ghosh
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, USA.
| | - Piotr Lodowski
- Institute of Chemistry, University of Silesia in Katowice, Szkolna 9, PL-40 006 Katowice, Poland
| | - Pawel M Kozlowski
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, USA.
| |
Collapse
|
4
|
Toda MJ, Lodowski P, Thurman TM, Kozlowski PM. Light Mediated Properties of a Thiolato-Derivative of Vitamin B 12. Inorg Chem 2020; 59:17200-17212. [PMID: 33211475 DOI: 10.1021/acs.inorgchem.0c02414] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Vitamin B12 derivatives (Cbls = cobalamins) exhibit photolytic properties upon excitation with light. These properties can be modulated by several factors including the nature of the axial ligands. Upon excitation, homolytic cleavage of the organometallic bond to the upper axial ligand takes place in photolabile Cbls. The photosensitive nature of Cbls has made them potential candidates for light-activated drug delivery. The addition of a fluorophore to the nucleotide loop of thiolato Cbls has been shown to shift the region of photohomolysis to within the optical window of tissue (600-900 nm). With this possibility, there is a need to analyze photolytic properties of unique Cbls which contain a Co-S bond. Herein, the photodissociation of one such Cbl, namely, N-acetylcysteinylcobalamin (NACCbl), is analyzed based on density functional theory (DFT) and time-dependent DFT (TD-DFT) calculations. The S0 and S1 potential energy surfaces (PESs), as a function of axial bond lengths, were computed to determine the mechanism of photodissociation. Like other Cbls, the S1 PES contains metal-to-ligand charge transfer (MLCT) and ligand field (LF) regions, but there are some unique differences. Interestingly, the S1 PES of NACCbl contains three distinct minima regions opening several possibilities for the mechanism of radical pair (RP) formation. The mild photoresponsiveness, observed experimentally, can be attributed to the small gap in energy between the S1 and S0 PESs. Compared to other Cbls, the gap shown for NACCbl is neither exactly in line with the alkyl Cbls nor the nonalkyl Cbls.
Collapse
Affiliation(s)
- Megan J Toda
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, United States
| | - Piotr Lodowski
- Department of Theoretical Chemistry, Institute of Chemistry, University of Silesia in Katowice, Szkolna 9, PL-40 006 Katowice, Poland
| | - Todd M Thurman
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, United States
| | - Pawel M Kozlowski
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, United States
| |
Collapse
|
5
|
Salerno EV, Miller NA, Konar A, Salchner R, Kieninger C, Wurst K, Spears KG, Kräutler B, Sension RJ. Exceptional Photochemical Stability of the Co-C Bond of Alkynyl Cobalamins, Potential Antivitamins B 12 and Core Elements of B 12-Based Biological Vectors. Inorg Chem 2020; 59:6422-6431. [PMID: 32311266 PMCID: PMC7201400 DOI: 10.1021/acs.inorgchem.0c00453] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
![]()
Alkynylcorrinoids
are a class of organometallic B12 derivatives,
recently rediscovered for use as antivitamins B12 and as
core components of B12-based biological vectors. They feature
exceptional photochemical and thermal stability of their characteristic
extra-short Co–C bond. We describe here the synthesis and structure
of 3-hydroxypropynylcobalamin (HOPryCbl) and photochemical experiments
with HOPryCbl, as well as of the related alkynylcobalamins: phenylethynylcobalamin
and difluoro-phenylethynylcobalamin. Ultrafast spectroscopic studies
of the excited state dynamics and mechanism for ground state recovery
demonstrate that the Co–C bond of alkynylcobalamins is stable,
with the Co–N bond and ring deformations mediating internal
conversion and ground state recovery within 100 ps. These studies
provide insights required for the rational design of photostable or
photolabile B12-based cellular vectors. Most alkylcobalamins are photolabile; in contrast, alkynylcobalamins
are photostable. Through time-resolved measurements, we demonstrate
for three alkynylcobalamins that the Co−C bond is stable (i.e.
“locked”), while expansion of the Co−N axial
bond (which is “unlocked”) and ring deformations mediate
internal conversion and ground state recovery within 100 ps. The barrier
for ground state recovery is independent of the R group on the alkynyl
ligand.
Collapse
Affiliation(s)
- Elvin V Salerno
- Department of Chemistry, University of Michigan, 930 N University Ave. Ann Arbor, Michigan 48109-1055, United States
| | - Nicholas A Miller
- Department of Chemistry, University of Michigan, 930 N University Ave. Ann Arbor, Michigan 48109-1055, United States
| | - Arkaprabha Konar
- Department of Physics, University of Michigan, 450 Church Street, Ann Arbor, Michigan 48109-1040, United States
| | - Robert Salchner
- Institute of Organic Chemistry and Center for Molecular Biosciences, University of Innsbruck, Innrain 80/82, A-6020 Innsbruck, Austria
| | - Christoph Kieninger
- Institute of Organic Chemistry and Center for Molecular Biosciences, University of Innsbruck, Innrain 80/82, A-6020 Innsbruck, Austria
| | - Klaus Wurst
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 80/82, A-6020 Innsbruck, Austria
| | - Kenneth G Spears
- Department of Chemistry, University of Michigan, 930 N University Ave. Ann Arbor, Michigan 48109-1055, United States
| | - Bernhard Kräutler
- Institute of Organic Chemistry and Center for Molecular Biosciences, University of Innsbruck, Innrain 80/82, A-6020 Innsbruck, Austria
| | - Roseanne J Sension
- Department of Chemistry, University of Michigan, 930 N University Ave. Ann Arbor, Michigan 48109-1055, United States.,Department of Physics, University of Michigan, 450 Church Street, Ann Arbor, Michigan 48109-1040, United States.,Biophysics, University of Michigan, 930 N University Ave. Ann Arbor, Michigan 48109-1055, United States
| |
Collapse
|
6
|
Ghosh AP, Lodowski P, Bazarganpour A, Leks M, Kozlowski PM. Aerobic photolysis of methylcobalamin: structural and electronic properties of the Cbl-O-O-CH 3 intermediate. Dalton Trans 2020; 49:4114-4124. [PMID: 32142090 DOI: 10.1039/c9dt03740c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Photolysis of methylcobalamin (MeCbl) in the presence of molecular oxygen (O2) has been investigated using density functional theory (DFT) and time-dependent DFT (TD-DFT). The key step involves the formation of the Cbl-O-O-CH3 intermediate as a result of triplet O2 insertion in the Co-C bond in the presence of light. Analysis of low-lying excited states shows that the presence of light is only needed to activate the Co-C bond via the formation of the ligand field (LF) state. The insertion of O2, as well as the change in the spin state, takes place in the ground state. The analysis of the structural and electronic properties of the Cbl-O-O-CH3 intermediate is presented and possible decomposition also discussed.
Collapse
Affiliation(s)
- Arghya Pratim Ghosh
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, USA.
| | | | | | | | | |
Collapse
|
7
|
Miller NA, Michocki LB, Alonso-Mori R, Britz A, Deb A, DePonte DP, Glownia JM, Kaneshiro AK, Kieninger C, Koralek J, Meadows JH, van Driel TB, Kräutler B, Kubarych KJ, Penner-Hahn JE, Sension RJ. Antivitamins B 12 in a Microdrop: The Excited-State Structure of a Precious Sample Using Transient Polarized X-ray Absorption Near-Edge Structure. J Phys Chem Lett 2019; 10:5484-5489. [PMID: 31483136 DOI: 10.1021/acs.jpclett.9b02202] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Polarized transient X-ray absorption near-edge structure (XANES) was used to probe the excited-state structure of a photostable B12 antivitamin (Coβ-2-(2,4-difluorophenyl)-ethynylcobalamin, F2PhEtyCbl). A drop-on-demand delivery system synchronized to the LCLS X-ray free electron laser pulses was implemented and used to measure the XANES difference spectrum 12 ps following excitation, exposing only ∼45 μL of sample. Unlike cyanocobalamin (CNCbl), where the Co-C bond expands 15-20%, the excited state of F2PhEtyCbl is characterized by little change in the Co-C bond, suggesting that the acetylide linkage raises the barrier for expansion of the Co-C bond. In contrast, the lower axial Co-NDMB bond is elongated in the excited state of F2PhEtyCbl by ca. 10% or more, comparable to the 10% elongation observed for Co-NDMB in CNCbl.
Collapse
Affiliation(s)
- Nicholas A Miller
- Department of Chemistry , University of Michigan , 930 North University Avenue , Ann Arbor , Michigan 48109-1055 , United States
| | - Lindsay B Michocki
- Department of Chemistry , University of Michigan , 930 North University Avenue , Ann Arbor , Michigan 48109-1055 , United States
| | - Roberto Alonso-Mori
- Linac Coherent Light Source , SLAC National Accelerator Laboratory , 2575 Sand Hill Road , Menlo Park , California 94025 , United States
| | - Alexander Britz
- Linac Coherent Light Source , SLAC National Accelerator Laboratory , 2575 Sand Hill Road , Menlo Park , California 94025 , United States
- Stanford PULSE Institute , SLAC National Accelerator Laboratory , 2575 Sand Hill Road , Menlo Park , California 94025 , United States
| | - Aniruddha Deb
- Department of Chemistry , University of Michigan , 930 North University Avenue , Ann Arbor , Michigan 48109-1055 , United States
- Biophysics , University of Michigan , 930 North University Avenue , Ann Arbor , Michigan 48109-1055 , United States
| | - Daniel P DePonte
- Linac Coherent Light Source , SLAC National Accelerator Laboratory , 2575 Sand Hill Road , Menlo Park , California 94025 , United States
| | - James M Glownia
- Linac Coherent Light Source , SLAC National Accelerator Laboratory , 2575 Sand Hill Road , Menlo Park , California 94025 , United States
| | - April K Kaneshiro
- Department of Biological Chemistry , 1150 West Medical Center Drive , Ann Arbor , Michigan 48109-0600 , United States
| | - Christoph Kieninger
- Institute of Organic Chemistry & Center for Molecular Biosciences , University of Innsbruck , Innrain 80/82 , A-6020 Innsbruck , Austria
| | - Jake Koralek
- Linac Coherent Light Source , SLAC National Accelerator Laboratory , 2575 Sand Hill Road , Menlo Park , California 94025 , United States
| | - Joseph H Meadows
- Department of Chemistry , University of Michigan , 930 North University Avenue , Ann Arbor , Michigan 48109-1055 , United States
| | - Tim B van Driel
- Linac Coherent Light Source , SLAC National Accelerator Laboratory , 2575 Sand Hill Road , Menlo Park , California 94025 , United States
| | - Bernhard Kräutler
- Institute of Organic Chemistry & Center for Molecular Biosciences , University of Innsbruck , Innrain 80/82 , A-6020 Innsbruck , Austria
| | - Kevin J Kubarych
- Department of Chemistry , University of Michigan , 930 North University Avenue , Ann Arbor , Michigan 48109-1055 , United States
- Biophysics , University of Michigan , 930 North University Avenue , Ann Arbor , Michigan 48109-1055 , United States
| | - James E Penner-Hahn
- Department of Chemistry , University of Michigan , 930 North University Avenue , Ann Arbor , Michigan 48109-1055 , United States
- Biophysics , University of Michigan , 930 North University Avenue , Ann Arbor , Michigan 48109-1055 , United States
| | - Roseanne J Sension
- Department of Chemistry , University of Michigan , 930 North University Avenue , Ann Arbor , Michigan 48109-1055 , United States
- Biophysics , University of Michigan , 930 North University Avenue , Ann Arbor , Michigan 48109-1055 , United States
- Department of Physics , University of Michigan , 450 Church Street , Ann Arbor , Michigan 48109-1040 , United States
| |
Collapse
|
8
|
Toda MJ, Lodowski P, Mamun AA, Jaworska M, Kozlowski PM. Photolytic properties of the biologically active forms of vitamin B12. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2018.12.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Mamun AA, Toda MJ, Lodowski P, Kozlowski PM. Photolytic Cleavage of Co–C Bond in Coenzyme B12-Dependent Glutamate Mutase. J Phys Chem B 2019; 123:2585-2598. [DOI: 10.1021/acs.jpcb.8b07547] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Abdullah Al Mamun
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, United States
| | - Megan J. Toda
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, United States
| | - Piotr Lodowski
- Department of Theoretical Chemistry, Institute of Chemistry, University of Silesia in Katowice, Szkolna 9, PL-40 006 Katowice, Poland
| | - Pawel M. Kozlowski
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, United States
| |
Collapse
|
10
|
Ghosh AP, Mamun AA, Lodowski P, Jaworska M, Kozlowski PM. Mechanism of the photo-induced activation of Co C bond in methylcobalamin-dependent methionine synthase. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2018; 189:306-317. [DOI: 10.1016/j.jphotobiol.2018.09.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 09/12/2018] [Accepted: 09/18/2018] [Indexed: 11/26/2022]
|
11
|
Lodowski P, Toda MJ, Ciura K, Jaworska M, Kozlowski PM. Photolytic Properties of Antivitamins B12. Inorg Chem 2018; 57:7838-7850. [DOI: 10.1021/acs.inorgchem.8b00956] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Piotr Lodowski
- Department of Theoretical Chemistry, Institute of Chemistry, University of Silesia in Katowice, Szkolna 9, PL-40 006 Katowice, Poland
| | - Megan J. Toda
- Department of Chemistry, University of Louisville, 2320 South Brook Street, Louisville, Kentucky 40292, United States
| | - Karolina Ciura
- Department of Theoretical Chemistry, Institute of Chemistry, University of Silesia in Katowice, Szkolna 9, PL-40 006 Katowice, Poland
| | - Maria Jaworska
- Department of Theoretical Chemistry, Institute of Chemistry, University of Silesia in Katowice, Szkolna 9, PL-40 006 Katowice, Poland
| | - Pawel M. Kozlowski
- Department of Chemistry, University of Louisville, 2320 South Brook Street, Louisville, Kentucky 40292, United States
- Department of Food Sciences, Medical University of Gdansk, Al. Gen. J. Hallera 107, 80-416 Gdansk, Poland
| |
Collapse
|
12
|
Mamun AA, Toda MJ, Lodowski P, Jaworska M, Kozlowski PM. Mechanism of Light Induced Radical Pair Formation in Coenzyme B12-Dependent Ethanolamine Ammonia-Lyase. ACS Catal 2018. [DOI: 10.1021/acscatal.8b00120] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Abdullah Al Mamun
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, United States
| | - Megan J. Toda
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, United States
| | - Piotr Lodowski
- Department of Theoretical Chemistry, Institute of Chemistry, University of Silesia in Katowice, Szkolna 9, PL-40 006 Katowice, Poland
| | - Maria Jaworska
- Department of Theoretical Chemistry, Institute of Chemistry, University of Silesia in Katowice, Szkolna 9, PL-40 006 Katowice, Poland
| | - Pawel M. Kozlowski
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, United States
- Department of Food Sciences, Medical University of Gdansk, Al. Gen. J. Hallera 107, 80-416 Gdansk, Poland
| |
Collapse
|
13
|
Miller NA, Deb A, Alonso-Mori R, Glownia JM, Kiefer LM, Konar A, Michocki LB, Sikorski M, Sofferman DL, Song S, Toda MJ, Wiley TE, Zhu D, Kozlowski PM, Kubarych KJ, Penner-Hahn JE, Sension RJ. Ultrafast X-ray Absorption Near Edge Structure Reveals Ballistic Excited State Structural Dynamics. J Phys Chem A 2018; 122:4963-4971. [PMID: 29799204 DOI: 10.1021/acs.jpca.8b04223] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Polarized ultrafast time-resolved X-ray absorption near edge structure (XANES) allows characterization of excited state dynamics following excitation. Excitation of vitamin B12, cyanocobalamin (CNCbl), in the αβ-band at 550 nm and the γ-band at 365 nm was used to uniquely resolve axial and equatorial contributions to the excited state dynamics. The structural evolution of the excited molecule is best described by a coherent ballistic trajectory on the excited state potential energy surface. Prompt expansion of the Co cavity by ca. 0.03 Å is followed by significant elongation of the axial bonds (>0.25 Å) over the first 190 fs. Subsequent contraction of the Co cavity in both axial and equatorial directions results in the relaxed S1 excited state structure within 500 fs of excitation.
Collapse
Affiliation(s)
| | | | - Roberto Alonso-Mori
- Linac Coherent Light Source , SLAC National Accelerator Laboratory , 2575 Sand Hill Road , Menlo Park , California 94025 , United States
| | - James M Glownia
- Linac Coherent Light Source , SLAC National Accelerator Laboratory , 2575 Sand Hill Road , Menlo Park , California 94025 , United States
| | | | | | | | - Marcin Sikorski
- Linac Coherent Light Source , SLAC National Accelerator Laboratory , 2575 Sand Hill Road , Menlo Park , California 94025 , United States
| | | | - Sanghoon Song
- Linac Coherent Light Source , SLAC National Accelerator Laboratory , 2575 Sand Hill Road , Menlo Park , California 94025 , United States
| | - Megan J Toda
- Department of Chemistry , University of Louisville , 2320 South Brook Street , Louisville , Kentucky 40292 , United States
| | | | - Diling Zhu
- Linac Coherent Light Source , SLAC National Accelerator Laboratory , 2575 Sand Hill Road , Menlo Park , California 94025 , United States
| | - Pawel M Kozlowski
- Department of Chemistry , University of Louisville , 2320 South Brook Street , Louisville , Kentucky 40292 , United States
| | | | | | | |
Collapse
|
14
|
Miller NA, Deb A, Alonso-Mori R, Garabato BD, Glownia JM, Kiefer LM, Koralek J, Sikorski M, Spears KG, Wiley TE, Zhu D, Kozlowski PM, Kubarych KJ, Penner-Hahn JE, Sension RJ. Polarized XANES Monitors Femtosecond Structural Evolution of Photoexcited Vitamin B12. J Am Chem Soc 2017; 139:1894-1899. [DOI: 10.1021/jacs.6b11295] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Nicholas A. Miller
- Department
of Chemistry, University of Michigan, 930 N University Avenue, Ann Arbor, Michigan 48109-1055, United States
| | - Aniruddha Deb
- Department
of Chemistry, University of Michigan, 930 N University Avenue, Ann Arbor, Michigan 48109-1055, United States
- Biophysics, University of Michigan, 930 N University Avenue, Ann Arbor, Michigan 48109-1055, United States
| | - Roberto Alonso-Mori
- Linac
Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand
Hill Road, Menlo Park, California 94025, United States,
| | - Brady D. Garabato
- Department
of Chemistry, University of Louisville, 2320 South Brook Street, Louisville, Kentucky 40292, United States
| | - James M. Glownia
- Linac
Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand
Hill Road, Menlo Park, California 94025, United States,
| | - Laura M. Kiefer
- Department
of Chemistry, University of Michigan, 930 N University Avenue, Ann Arbor, Michigan 48109-1055, United States
| | - Jake Koralek
- Linac
Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand
Hill Road, Menlo Park, California 94025, United States,
| | - Marcin Sikorski
- Linac
Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand
Hill Road, Menlo Park, California 94025, United States,
| | - Kenneth G. Spears
- Department
of Chemistry, University of Michigan, 930 N University Avenue, Ann Arbor, Michigan 48109-1055, United States
| | - Theodore E. Wiley
- Department
of Chemistry, University of Michigan, 930 N University Avenue, Ann Arbor, Michigan 48109-1055, United States
| | - Diling Zhu
- Linac
Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand
Hill Road, Menlo Park, California 94025, United States,
| | - Pawel M. Kozlowski
- Department
of Chemistry, University of Louisville, 2320 South Brook Street, Louisville, Kentucky 40292, United States
- Department
of Food Sciences, Medical University of Gdansk, Al. Gen J. Hallera
107, 80-416 Gdansk, Poland
| | - Kevin J. Kubarych
- Department
of Chemistry, University of Michigan, 930 N University Avenue, Ann Arbor, Michigan 48109-1055, United States
- Biophysics, University of Michigan, 930 N University Avenue, Ann Arbor, Michigan 48109-1055, United States
| | - James E. Penner-Hahn
- Department
of Chemistry, University of Michigan, 930 N University Avenue, Ann Arbor, Michigan 48109-1055, United States
- Biophysics, University of Michigan, 930 N University Avenue, Ann Arbor, Michigan 48109-1055, United States
| | - Roseanne J. Sension
- Department
of Chemistry, University of Michigan, 930 N University Avenue, Ann Arbor, Michigan 48109-1055, United States
- Department
of Physics, University of Michigan, 450 Church Street, Ann Arbor, Michigan 48109-1040, United States
- Biophysics, University of Michigan, 930 N University Avenue, Ann Arbor, Michigan 48109-1055, United States
| |
Collapse
|
15
|
Lodowski P, Ciura K, Toda MJ, Jaworska M, Kozlowski PM. Photodissociation of ethylphenylcobalamin antivitamin B12. Phys Chem Chem Phys 2017; 19:30310-30315. [DOI: 10.1039/c7cp06589b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Biologically active forms of cobalamins are crucial cofactors in biochemical reactions and these metabolites can be inhibited by their structurally similar analogues known as antivitamins B12.
Collapse
Affiliation(s)
- Piotr Lodowski
- Department of Theoretical Chemistry
- Institute of Chemistry
- University of Silesia in Katowice
- PL-40 006 Katowice
- Poland
| | - Karolina Ciura
- Department of Theoretical Chemistry
- Institute of Chemistry
- University of Silesia in Katowice
- PL-40 006 Katowice
- Poland
| | - Megan J. Toda
- Department of Chemistry
- University of Louisville
- Louisville
- USA
| | - Maria Jaworska
- Department of Theoretical Chemistry
- Institute of Chemistry
- University of Silesia in Katowice
- PL-40 006 Katowice
- Poland
| | - Pawel M. Kozlowski
- Department of Chemistry
- University of Louisville
- Louisville
- USA
- Department of Food Sciences
| |
Collapse
|
16
|
Abstract
This Perspective provides the first detailed overview of the photoresponse of vitamin B12 and its derivatives, from the early, photophysical events to the burgeoning area of B12-dependent photobiology.
Collapse
Affiliation(s)
- Alex R. Jones
- School of Chemistry
- Photon Science Institute and Manchester Institute of Biotechnology
- The University of Manchester
- Manchester
- UK
| |
Collapse
|
17
|
Miller NA, Wiley TE, Spears KG, Ruetz M, Kieninger C, Kräutler B, Sension RJ. Toward the Design of Photoresponsive Conditional Antivitamins B12: A Transient Absorption Study of an Arylcobalamin and an Alkynylcobalamin. J Am Chem Soc 2016; 138:14250-14256. [DOI: 10.1021/jacs.6b05299] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Nicholas A. Miller
- Department
of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Theodore E. Wiley
- Department
of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Kenneth G. Spears
- Department
of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Markus Ruetz
- Institute of Organic Chemistry & Center for Molecular Biosciences, University of Innsbruck, Innrain 80/82, A-6020 Innsbruck, Austria
| | - Christoph Kieninger
- Institute of Organic Chemistry & Center for Molecular Biosciences, University of Innsbruck, Innrain 80/82, A-6020 Innsbruck, Austria
| | - Bernhard Kräutler
- Institute of Organic Chemistry & Center for Molecular Biosciences, University of Innsbruck, Innrain 80/82, A-6020 Innsbruck, Austria
| | - Roseanne J. Sension
- Department
of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| |
Collapse
|
18
|
Andruniów T, Lodowski P, Garabato BD, Jaworska M, Kozlowski PM. The role of spin-orbit coupling in the photolysis of methylcobalamin. J Chem Phys 2016; 144:124305. [DOI: 10.1063/1.4943184] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Tadeusz Andruniów
- Department of Chemistry, Advanced Materials Engineering and Modelling Group, Wroclaw University of Technology, 50-370 Wroclaw, Poland
| | - Piotr Lodowski
- Department of Theoretical Chemistry, Institute of Chemistry, University of Silesia, Szkolna 9, PL-40 006 Katowice, Poland
| | - Brady D. Garabato
- Department of Chemistry, University of Louisville, 2320 South Brook Street, Louisville, Kentucky 40292, USA
| | - Maria Jaworska
- Department of Theoretical Chemistry, Institute of Chemistry, University of Silesia, Szkolna 9, PL-40 006 Katowice, Poland
| | - Pawel M. Kozlowski
- Department of Chemistry, University of Louisville, 2320 South Brook Street, Louisville, Kentucky 40292, USA
- Department of Food Sciences, Medical University of Gdansk, Al. Gen. J. Hallera 107, 80-416 Gdansk, Poland
| |
Collapse
|
19
|
Kozlowski PM, Garabato BD, Lodowski P, Jaworska M. Photolytic properties of cobalamins: a theoretical perspective. Dalton Trans 2016; 45:4457-70. [PMID: 26865262 DOI: 10.1039/c5dt04286k] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This Perspective Article highlights recent theoretical developments, and summarizes the current understanding of the photolytic properties of cobalamins from a computational point of view. The primary focus is on two alkyl cobalamins, methylcobalamin (MeCbl) and adenosylcobalamin (AdoCbl), as well as two non-alkyl cobalamins, cyanocobalamin (CNCbl) and hydroxocobalamin (HOCbl). Photolysis of alkyl cobalamins involves low-lying singlet excited states where photodissociation of the Co-C bond leads to formation of singlet-born alkyl/cob(ii)alamin radical pairs (RPs). Potential energy surfaces (PESs) associated with cobalamin low-lying excited states as functions of both axial bonds, provide the most reliable tool for initial analysis of their photochemical and photophysical properties. Due to the complexity, and size limitations associated with the cobalamins, the primary method for calculating ground state properties is density functional theory (DFT), while time-dependent DFT (TD-DFT) is used for electronically excited states. For alkyl cobalamins, energy pathways on the lowest singlet surface, connecting metal-to-ligand charge transfer (MLCT) and ligand field (LF) minima, can be associated with photo-homolysis of the Co-C bond observed experimentally. Additionally, energy pathways between minima and seams associated with crossing of S1/S0 surfaces, are the most efficient for internal conversion (IC) to the ground state. Depending on the specific cobalamin, such IC may involve simultaneous elongation of both axial bonds (CNCbl), or detachment of axial base followed by corrin ring distortion (MeCbl). The possibility of intersystem crossing, and the formation of triplet RPs is also discussed based on Landau-Zener theory.
Collapse
Affiliation(s)
- Pawel M Kozlowski
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, USA.
| | | | | | | |
Collapse
|
20
|
Wiley TE, Miller WR, Miller NA, Sension RJ, Lodowski P, Jaworska M, Kozlowski PM. Photostability of Hydroxocobalamin: Ultrafast Excited State Dynamics and Computational Studies. J Phys Chem Lett 2016; 7:143-147. [PMID: 26655401 DOI: 10.1021/acs.jpclett.5b02333] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Hydroxocobalamin is a potential biocompatible source of photogenerated hydroxyl radicals localized in time and space. The photogeneration of hydroxyl radicals is studied using time-resolved spectroscopy and theoretical simulations. Radicals are only generated for wavelengths <350 nm through a mechanism that involves competition between prompt dissociation and internal conversion. Characterization of the lowest-lying singlet potential energy surface provides insight into the photochemistry of hydroxocobalamin and other cobalamin compounds.
Collapse
Affiliation(s)
- Theodore E Wiley
- Department of Chemistry, University of Michigan , 930 North University Avenue, Ann Arbor, Michigan 48109-1055, United States
| | - William R Miller
- Department of Chemistry, University of Michigan , 930 North University Avenue, Ann Arbor, Michigan 48109-1055, United States
| | - Nicholas A Miller
- Department of Chemistry, University of Michigan , 930 North University Avenue, Ann Arbor, Michigan 48109-1055, United States
| | - Roseanne J Sension
- Department of Chemistry, University of Michigan , 930 North University Avenue, Ann Arbor, Michigan 48109-1055, United States
| | - Piotr Lodowski
- Department of Theoretical Chemistry, Institute of Chemistry, University of Silesia , Szkolna 9, 40-006 Katowice, Poland
| | - Maria Jaworska
- Department of Theoretical Chemistry, Institute of Chemistry, University of Silesia , Szkolna 9, 40-006 Katowice, Poland
| | - Pawel M Kozlowski
- Department of Chemistry, University of Louisville , 2320 South Brook Street, Louisville, Kentucky 40292, United States
- Visiting Professor at the Department of Food Sciences, Medical University of Gdansk , Al. Gen. J. Hallera 107, 80-416 Gdansk, Poland
| |
Collapse
|
21
|
|
22
|
Rury AS, Wiley TE, Sension RJ. Energy cascades, excited state dynamics, and photochemistry in cob(III)alamins and ferric porphyrins. Acc Chem Res 2015; 48:860-7. [PMID: 25741574 DOI: 10.1021/ar5004016] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Porphyrins and the related chlorins and corrins contain a cyclic tetrapyrrole with the ability to coordinate an active metal center and to perform a variety of functions exploiting the oxidation state, reactivity, and axial ligation of the metal center. These compounds are used in optically activated applications ranging from light harvesting and energy conversion to medical therapeutics and photodynamic therapy to molecular electronics, spintronics, optoelectronic thin films, and optomagnetics. Cobalt containing corrin rings extend the range of applications through photolytic cleavage of a unique axial carbon-cobalt bond, permitting spatiotemporal control of drug delivery. The photochemistry and photophysics of cyclic tetrapyrroles are controlled by electronic relaxation dynamics including internal conversion and intersystem crossing. Typically the electronic excitation cascades through ring centered ππ* states, ligand to metal charge transfer (LMCT) states, metal to ligand charge transfer (MLCT) states, and metal centered states. Ultrafast transient absorption spectroscopy provides a powerful tool for the investigation of the electronic state dynamics in metal containing tetrapyrroles. The UV-visible spectrum is sensitive to the oxidation state, electronic configuration, spin state, and axial ligation of the central metal atom. Ultrashort broadband white light probes spanning the range from 270 to 800 nm, combined with tunable excitation pulses, permit the detailed unravelling of the time scales involved in the electronic energy cascade. State-of-the-art theoretical calculations provide additional insight required for precise assignment of the states. In this Account, we focus on recent ultrafast transient absorption studies of ferric porphyrins and corrin containing cob(III)alamins elucidating the electronic states responsible for ultrafast energy cascades, excited state dynamics, and the resulting photoreactivity or photostability of these compounds. Iron tetraphenyl porphyrin chloride (Fe((III))TPPCl) exhibits picosecond decay to a metal centered d → d* (4)T state. This state decays on a ca. 16 ps time scale in room temperature solution but persists for much longer in a cryogenic glass. The photoreactivity of the (4)T state may lead to novel future applications for these compounds. In contrast, the nonplanar cob(III)alamins contain two axial ligands to the central cobalt atom. The upper axial ligand can be an alkyl group as in the two biologically active coenzymes or a nonalkyl ligand such as -CN in cyanocobalamin (vitamin B12) or -OH in hydroxocobalamin. The electronic structure, energy cascade, and bond cleavage of these compounds is sensitive to the details of the axial ligand. Nonalkylcobalamins exhibit ultrafast internal conversion to a low-lying state of metal to ligand or ligand to metal charge transfer character. The compounds are generally photostable with ground state recovery complete on a time scale of 2-7 ps in room temperature aqueous solution. Alkylcobalamins exhibit ultrafast internal conversion to an S1 state of d/π → π* character. Most compounds undergo bond cleavage from this state with near unit quantum yield within ∼100 ps. Recent theoretical calculations provide a potential energy surface accounting for these observations. Conformation dependent mixing of the corrin π and cobalt d orbitals plays a significant role in the observed photochemistry and photophysics.
Collapse
Affiliation(s)
- Aaron S. Rury
- Department of Chemistry and
Department of Physics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Theodore E. Wiley
- Department of Chemistry and
Department of Physics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Roseanne J. Sension
- Department of Chemistry and
Department of Physics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| |
Collapse
|
23
|
Lodowski P, Jaworska M, Andruniów T, Garabato BD, Kozlowski PM. Mechanism of Co–C Bond Photolysis in the Base-On Form of Methylcobalamin. J Phys Chem A 2014; 118:11718-34. [DOI: 10.1021/jp508513p] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Piotr Lodowski
- Department
of Theoretical Chemistry, Institute of Chemistry, University of Silesia, Szkolna 9, PL-40 006 Katowice, Poland
| | - Maria Jaworska
- Department
of Theoretical Chemistry, Institute of Chemistry, University of Silesia, Szkolna 9, PL-40 006 Katowice, Poland
| | - Tadeusz Andruniów
- Institute
of Physical and Theoretical Chemistry, Department of Chemistry, Wroclaw University of Technology, 50-370 Wroclaw, Poland
| | - Brady D. Garabato
- Department
of Chemistry, University of Louisville, Louisville, Kentucky 40292, United States
| | - Pawel M. Kozlowski
- Department
of Chemistry, University of Louisville, Louisville, Kentucky 40292, United States
| |
Collapse
|