1
|
Alheshibri M. Fabrication of Au-Ag Bimetallic Nanoparticles Using Pulsed Laser Ablation for Medical Applications: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2940. [PMID: 37999294 PMCID: PMC10674547 DOI: 10.3390/nano13222940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/03/2023] [Accepted: 11/08/2023] [Indexed: 11/25/2023]
Abstract
In recent years, the synthesis of Au-Ag bimetallic nanoparticles has garnered immense attention due to their potential applications in diverse fields, particularly in the realm of medicine and healthcare. The development of efficient synthesis methods is crucial in harnessing their unique properties for medical applications. Among the synthesis methods, pulsed laser ablation in a liquid environment has emerged as a robust and versatile method for precisely tailoring the synthesis of bimetallic nanoparticles. This manuscript provides an overview of the fundamentals of the pulsed laser ablation in a liquid method, elucidating the critical factors involved. It comprehensively explores the pivotal factors influencing Au-Ag bimetallic nanoparticle synthesis, delving into the material composition, laser parameters, and environmental conditions. Furthermore, this review highlights the promising strides made in antibacterial, photothermal, and diagnostic applications. Despite the remarkable progress, the manuscript also outlines the existing limitations and challenges in this advanced synthesis technique. By providing a thorough examination of the current state of research, this review aims to pave the way for future innovations in the field, driving the development of novel, safe, and effective medical technologies based on Au-Ag bimetallic nanoparticles.
Collapse
Affiliation(s)
- Muidh Alheshibri
- General Studies Department, Jubail Industrial College, P.O. Box 10099, Jubail Industrial City 31961, Saudi Arabia
| |
Collapse
|
2
|
Somchuea P, Sukprom T, Sringam S, Ampansang S, Witoon T, Chareonpanich M, Faungnawakij K, Rupprechter G, Seubsai A. Conversion of Methane to Value-Added Hydrocarbons via Modified Fischer–Tropsch Process Using Hybrid Catalysts. Top Catal 2023. [DOI: 10.1007/s11244-023-01808-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
3
|
Begildayeva T, Theerthagiri J, Lee SJ, Yu Y, Choi MY. Unraveling the Synergy of Anion Modulation on Co Electrocatalysts by Pulsed Laser for Water Splitting: Intermediate Capturing by In Situ/Operando Raman Studies. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2204309. [PMID: 36192152 DOI: 10.1002/smll.202204309] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/30/2022] [Indexed: 06/16/2023]
Abstract
Herein, the authors produce Co-based (Co3 (PO4 )2 , Co3 O4 , and Co9 S8 ) electrocatalysts via pulsed laser ablation in liquid (PLAL) to explore the synergy of anion modulation on phase-selective active sites in the electrocatalytic hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). Co3 (PO4 )2 displays an ultralow overpotential of 230 mV at 10 mA cm-2 with 48.5 mV dec-1 Tafel slope that outperforms the state-of-the-art Ir/C in OER due to its high intrinsic activity. Meanwhile, Co9 S8 exhibits the highest HER performance known to the authors among the synthesized Co-based catalysts, showing the lowest overpotential of 361 mV at 10 mA cm-2 with 95.8 mV dec-1 Tafel slope in the alkaline medium and producing H2 gas with ≈500 mmol g-1 h-1 yield rate under -0.45 V versus RHE. The identified surface reactive intermediates over in situ electrochemical-Raman spectroscopy reveal that cobalt(hydr)oxides with higher oxidation states of Co-cation forming under oxidizing potentials on the electrode-electrolyte surface of Co3 (PO4 )2 facilitate the OER, while Co(OH)2 facilitate the HER. Notably, the fabricated two-electrode electrolyzers using Co3 (PO4 )2 , Co3 O4 , and Co9 S8 electrocatalysts deliver the cell potentials ≈2.01, 2.11, and 1.89 V, respectively, at 10 mA cm-2 . This work not only shows PLAL-synthesized electrocatalysts as promising candidates for water splitting, but also provides an underlying principle for advanced energy-conversion catalysts and beyond.
Collapse
Affiliation(s)
- Talshyn Begildayeva
- Department of Chemistry (BK21 FOUR), Research Institute of Natural Sciences, Gyeongsang National University, Jinju, 52828, South Korea
| | - Jayaraman Theerthagiri
- Department of Chemistry (BK21 FOUR), Research Institute of Natural Sciences, Gyeongsang National University, Jinju, 52828, South Korea
| | - Seung Jun Lee
- Core-Facility Center for Photochemistry & Nanomaterials, Gyeongsang National University, Jinju, 52828, South Korea
| | - Yiseul Yu
- Department of Chemistry (BK21 FOUR), Research Institute of Natural Sciences, Gyeongsang National University, Jinju, 52828, South Korea
| | - Myong Yong Choi
- Department of Chemistry (BK21 FOUR), Research Institute of Natural Sciences, Gyeongsang National University, Jinju, 52828, South Korea
- Core-Facility Center for Photochemistry & Nanomaterials, Gyeongsang National University, Jinju, 52828, South Korea
| |
Collapse
|
4
|
Mokhtarnejad M, Ribeiro EL, Mukherjee D, Khomami B. 3D printed interdigitated supercapacitor using reduced graphene oxide-MnO x /Mn 3O 4 based electrodes. RSC Adv 2022; 12:17321-17329. [PMID: 35765434 PMCID: PMC9189621 DOI: 10.1039/d2ra02009b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/02/2022] [Indexed: 11/21/2022] Open
Abstract
In this study hybrid nanocomposites (HNCs) based on manganese oxides (MnOx/Mn3O4) and reduced graphene oxide (rGO) are synthesized as active electrodes for energy storage devices. Comprehensive structural characterizations demonstrate that the active material is composed of MnOx/Mn3O4 nanorods and nanoparticles embedded in rGO nanosheets. The development of such novel structures is facilitated by the extreme synthesis conditions (high temperatures and pressures) of the liquid-confined plasma plume present in the Laser Ablation Synthesis in Solution (LASiS) technique. Specifically, functional characterizations demonstrate that the performance of the active layer is highly correlated with the MnOx/Mn3O4 to rGO ratio and the morphology of MnOx/Mn3O4 nanostructures in HNCs. To that end, active layer inks comprising HNC samples prepared under optimal laser ablation time windows, when interfaced with a percolated conductive network of electronic grade graphene and carbon nanofibers (CNFs) mixture, indicate superior supercapacitance for functional electrodes fabricated via sequential inkjet printing of the substrate, current collector layer, active material layer, and gel polymer electrolyte layer. Electrochemical characterizations unequivocally reveal that the electrode with the LASiS synthesized MnOx/Mn3O4–rGO composite exhibits significantly higher specific capacitance compared to the ones produced with commercially available Mn3O4–graphene NCs. Moreover, the galvanostatic charge–discharge (GCD) experiments with the LASiS synthesized HNCs show a significantly larger charge storage capacity (325 F g−1) in comparison to NCs synthesized with commercially available Mn3O4–graphene (189 F g−1). Overall, this study has paved the way for use of LASiS-based synthesized functional material in combination with additive manufacturing techniques for all-printed electronics with superior performance. LASiS-based HNCs of nanostructured MnOx/Mn3O4.![]()
Collapse
Affiliation(s)
- Mahshid Mokhtarnejad
- Department of Chemical & Biomolecular Engineering, University of Tennessee Knoxville Tennessee 37996 USA .,Material Research and Innovation Laboratory (MRAIL), University of Tennessee Knoxville Tennessee 37996 USA.,Nano-BioMaterials Laboratory for Energy, Energetics & Environment (nbml-E3), University of Tennessee Knoxville Tennessee 37996 USA
| | - Erick L Ribeiro
- Department of Chemical & Biomolecular Engineering, University of Tennessee Knoxville Tennessee 37996 USA .,Material Research and Innovation Laboratory (MRAIL), University of Tennessee Knoxville Tennessee 37996 USA.,Nano-BioMaterials Laboratory for Energy, Energetics & Environment (nbml-E3), University of Tennessee Knoxville Tennessee 37996 USA
| | - Dibyendu Mukherjee
- Department of Chemical & Biomolecular Engineering, University of Tennessee Knoxville Tennessee 37996 USA .,Material Research and Innovation Laboratory (MRAIL), University of Tennessee Knoxville Tennessee 37996 USA.,Nano-BioMaterials Laboratory for Energy, Energetics & Environment (nbml-E3), University of Tennessee Knoxville Tennessee 37996 USA
| | - Bamin Khomami
- Department of Chemical & Biomolecular Engineering, University of Tennessee Knoxville Tennessee 37996 USA .,Material Research and Innovation Laboratory (MRAIL), University of Tennessee Knoxville Tennessee 37996 USA
| |
Collapse
|
5
|
Alheshibri M, Akhtar S, Al Baroot A, Elsayed KA, Al Qahtani HS, Drmosh Q. Template-free single-step preparation of hollow CoO nanospheres using pulsed laser ablation in liquid enviroment. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103317] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
|
6
|
Havelka O, Cvek M, Urbánek M, Łukowiec D, Jašíková D, Kotek M, Černík M, Amendola V, Torres-Mendieta R. On the Use of Laser Fragmentation for the Synthesis of Ligand-Free Ultra-Small Iron Nanoparticles in Various Liquid Environments. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1538. [PMID: 34200863 PMCID: PMC8230550 DOI: 10.3390/nano11061538] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 12/16/2022]
Abstract
Traditionally, the synthesis of nanomaterials in the ultra-small size regime (1-3 nm diameter) has been linked with the employment of excessive amounts of hazardous chemicals, inevitably leading to significant environmentally detrimental effects. In the current work, we demonstrate the potential of laser fragmentation in liquids (LFL) to produce highly pure and stable iron ultra-small nanoparticles. This is carried out by reducing the size of carbonyl iron microparticles dispersed in various polar solvents (water, ethanol, ethylene glycol, polyethylene glycol 400) and liquid nitrogen. The explored method enables the fabrication of ligand-free iron oxide ultra-small nanoparticles with diameter in the 1-3 nm range, a tight size distribution, and excellent hydrodynamic stability (zeta potential > 50 mV). The generated particles can be found in different forms, including separated ultra-small NPs, ultra-small NPs forming agglomerates, and ultra-small NPs together with zero-valent iron, iron carbide, or iron oxide NPs embedded in matrices, depending on the employed solvent and their dipolar moment. The LFL technique, aside from avoiding chemical waste generation, does not require any additional chemical agent, other than the precursor microparticles immersed in the corresponding solvent. In contrast to their widely exploited chemically synthesized counterparts, the lack of additives and chemical residuals may be of fundamental interest in sectors requiring colloidal stability and the largest possible number of chemically active sites, making the presented pathway a promising alternative for the clean design of new-generation nanomaterials.
Collapse
Affiliation(s)
- Ondřej Havelka
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 1402/2, 461 17 Liberec, Czech Republic; (O.H.); (D.J.); (M.K.); (M.Č.)
| | - Martin Cvek
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlín, Třída T. Bati 5678, 760 01 Zlín, Czech Republic; (M.C.); (M.U.)
| | - Michal Urbánek
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlín, Třída T. Bati 5678, 760 01 Zlín, Czech Republic; (M.C.); (M.U.)
| | - Dariusz Łukowiec
- Faculty of Mechanical Engineering, Silesian University of Technology, Konarskiego 18 a St., 44-100 Gliwice, Poland;
| | - Darina Jašíková
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 1402/2, 461 17 Liberec, Czech Republic; (O.H.); (D.J.); (M.K.); (M.Č.)
| | - Michal Kotek
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 1402/2, 461 17 Liberec, Czech Republic; (O.H.); (D.J.); (M.K.); (M.Č.)
| | - Miroslav Černík
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 1402/2, 461 17 Liberec, Czech Republic; (O.H.); (D.J.); (M.K.); (M.Č.)
| | - Vincenzo Amendola
- Department of Chemical Sciences, University of Padova, via Marzolo 1, I-35131 Padova, Italy;
| | - Rafael Torres-Mendieta
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 1402/2, 461 17 Liberec, Czech Republic; (O.H.); (D.J.); (M.K.); (M.Č.)
| |
Collapse
|
7
|
Belles L, Moularas C, Smykała S, Deligiannakis Y. Flame Spray Pyrolysis Co 3O 4/CoO as Highly-Efficient Nanocatalyst for Oxygen Reduction Reaction. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:925. [PMID: 33916435 PMCID: PMC8066371 DOI: 10.3390/nano11040925] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/23/2021] [Accepted: 04/01/2021] [Indexed: 12/30/2022]
Abstract
The oxygen reduction reaction (ORR) is the rate-limiting reaction in the cathode side of fuel cells. In the quest for alternatives to Pt-electrodes as cathodes in ORR, appropriate transition metal oxide-based electrocatalysts are needed. In the present work, we have synthesized Co3O4 and CoO/Co3O4 nanostructures using flame spray pyrolysis (FSP), as electrocatalysts for ORR in acidic and alkaline media. A detailed study of the effect of (Co-oxide)/Pt ratio on ORR efficiency shows that the present FSP-made Co-oxides are able to perform ORR at very low-Pt loading, 0.4% of total metal content. In acid medium, an electrode with (5.2% Pt + 4.8% Co3O4), achieved the highest ORR performance (Jmax = 8.31 mA/cm2, E1/2 = 0.66 V). In alkaline medium, superior performance and stability have been achieved by an electrode with (0.4%Pt + 9.6% (CoO/Co3O4)) with ORR activity (Jmax = 3.5 mA/cm2, E1/2 = 0.08 V). Using XRD, XPS, Raman and TEM data, we discuss the structural and electronic aspects of the FSP-made Co-oxide catalysts in relation to the ORR performance. Cyclic voltammetry data indicate that the ORR process involves active sites associated with Co3+ cations at the cobalt oxide surface. Technology-wise, the present work demonstrates that the developed FSP-protocols, constitutes a novel scalable process for production of co-oxides appropriate for oxygen reduction reaction electrodes.
Collapse
Affiliation(s)
- Loukas Belles
- Laboratory of Physics Chemistry of Materials & Environment, Department of Physics, University of Ioannina, 45550 Ioannina, Greece; (L.B.); (C.M.)
| | - Constantinos Moularas
- Laboratory of Physics Chemistry of Materials & Environment, Department of Physics, University of Ioannina, 45550 Ioannina, Greece; (L.B.); (C.M.)
| | - Szymon Smykała
- Institute of Engineering Materials and Biomaterials, Silesian University of Technology, 18a Konarskiego St, 44-100 Gliwice, Poland;
| | - Yiannis Deligiannakis
- Laboratory of Physics Chemistry of Materials & Environment, Department of Physics, University of Ioannina, 45550 Ioannina, Greece; (L.B.); (C.M.)
| |
Collapse
|
8
|
Lu H, Tang SY, Yun G, Li H, Zhang Y, Qiao R, Li W. Modular and Integrated Systems for Nanoparticle and Microparticle Synthesis-A Review. BIOSENSORS 2020; 10:E165. [PMID: 33153122 PMCID: PMC7693962 DOI: 10.3390/bios10110165] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/27/2020] [Accepted: 10/29/2020] [Indexed: 01/22/2023]
Abstract
Nanoparticles (NPs) and microparticles (MPs) have been widely used in different areas of research such as materials science, energy, and biotechnology. On-demand synthesis of NPs and MPs with desired chemical and physical properties is essential for different applications. However, most of the conventional methods for producing NPs/MPs require bulky and expensive equipment, which occupies large space and generally need complex operation with dedicated expertise and labour. These limitations hinder inexperienced researchers to harness the advantages of NPs and MPs in their fields of research. When problems individual researchers accumulate, the overall interdisciplinary innovations for unleashing a wider range of directions are undermined. In recent years, modular and integrated systems are developed for resolving the ongoing dilemma. In this review, we focus on the development of modular and integrated systems that assist the production of NPs and MPs. We categorise these systems into two major groups: systems for the synthesis of (1) NPs and (2) MPs; systems for producing NPs are further divided into two sections based on top-down and bottom-up approaches. The mechanisms of each synthesis method are explained, and the properties of produced NPs/MPs are compared. Finally, we discuss existing challenges and outline the potentials for the development of modular and integrated systems.
Collapse
Affiliation(s)
- Hongda Lu
- School of Mechanical, Materials, Mechatronic and Biomedical Engineering, University of Wollongong, Wollongong, NSW 2522, Australia; (H.L.); (G.Y.)
| | - Shi-Yang Tang
- Department of Electronic, Electrical and Systems Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK;
| | - Guolin Yun
- School of Mechanical, Materials, Mechatronic and Biomedical Engineering, University of Wollongong, Wollongong, NSW 2522, Australia; (H.L.); (G.Y.)
| | - Haiyue Li
- Department of Chemistry and Biochemistry, University of California, San Diego, CA 92093, USA;
| | - Yuxin Zhang
- Department of Electronic, Electrical and Systems Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK;
| | - Ruirui Qiao
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Weihua Li
- Department of Electronic, Electrical and Systems Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK;
| |
Collapse
|
9
|
Amendola V, Amans D, Ishikawa Y, Koshizaki N, Scirè S, Compagnini G, Reichenberger S, Barcikowski S. Room-Temperature Laser Synthesis in Liquid of Oxide, Metal-Oxide Core-Shells, and Doped Oxide Nanoparticles. Chemistry 2020; 26:9206-9242. [PMID: 32311172 PMCID: PMC7497020 DOI: 10.1002/chem.202000686] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Indexed: 11/06/2022]
Abstract
Although oxide nanoparticles are ubiquitous in science and technology, a multitude of compositions, phases, structures, and doping levels exist, each one requiring a variety of conditions for their synthesis and modification. Besides, experimental procedures are frequently dominated by high temperatures or pressures and by chemical contaminants or waste. In recent years, laser synthesis of colloids emerged as a versatile approach to access a library of clean oxide nanoparticles relying on only four main strategies running at room temperature and ambient pressure: laser ablation in liquid, laser fragmentation in liquid, laser melting in liquid and laser defect-engineering in liquid. Here, established laser-based methodologies are reviewed through the presentation of a panorama of oxide nanoparticles which include pure oxidic phases, as well as unconventional structures like defective or doped oxides, non-equilibrium compounds, metal-oxide core-shells and other anisotropic morphologies. So far, these materials showed several useful properties that are discussed with special emphasis on catalytic, biomedical and optical application. Yet, given the endless number of mixed compounds accessible by the laser-assisted methodologies, there is still a lot of room to expand the library of nano-crystals and to refine the control over products as well as to improve the understanding of the whole process of nanoparticle formation. To that end, this review aims to identify the perspectives and unique opportunities of laser-based synthesis and processing of colloids for future studies of oxide nanomaterial-oriented sciences.
Collapse
Affiliation(s)
- Vincenzo Amendola
- Department of Chemical SciencesUniversity of PadovaVia Marzolo 135131ParovaItaly
| | - David Amans
- CNRSInstitut Lumière MatièreUniv Lyon, Université Claude Bernard Lyon 1
| | - Yoshie Ishikawa
- Nanomaterials Research InstituteNational Institute of Advanced Industrial Science and Technology (AIST)Tsukuba Central 5, 1-1-1 HigashiTsukubaIbaraki305-8565Japan
| | - Naoto Koshizaki
- Graduate School of EngineeringHokkaido UniversityKita 13 Nishi 8, Kita-kuSapporoHokkaido060-8628Japan
| | - Salvatore Scirè
- Department of Chemical SciencesUniversity of CataniaViale A. Doria 6Catania95125Italy
| | - Giuseppe Compagnini
- Department of Chemical SciencesUniversity of CataniaViale A. Doria 6Catania95125Italy
| | - Sven Reichenberger
- Technical Chemistry I andCenter for Nanointegration Duisburg-Essen (CENIDE)University Duisburg-EssenUniversitätstr. 745141EssenGermany
| | - Stephan Barcikowski
- Technical Chemistry I andCenter for Nanointegration Duisburg-Essen (CENIDE)University Duisburg-EssenUniversitätstr. 745141EssenGermany
| |
Collapse
|
10
|
Kanitz A, Kalus MR, Gurevich EL, Ostendorf A, Barcikowski S, Amans D. Review on experimental and theoretical investigations of the early stage, femtoseconds to microseconds processes during laser ablation in liquid-phase for the synthesis of colloidal nanoparticles. ACTA ACUST UNITED AC 2019. [DOI: 10.1088/1361-6595/ab3dbe] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
11
|
Frias Batista LM, Meader VK, Romero K, Kunzler K, Kabir F, Bullock A, Tibbetts KM. Kinetic Control of [AuCl4]− Photochemical Reduction and Gold Nanoparticle Size with Hydroxyl Radical Scavengers. J Phys Chem B 2019; 123:7204-7213. [DOI: 10.1021/acs.jpcb.9b04643] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Laysa M. Frias Batista
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Victoria Kathryn Meader
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Katherine Romero
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Karli Kunzler
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Fariha Kabir
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Amazin Bullock
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Katharine Moore Tibbetts
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| |
Collapse
|
12
|
Calibration-free quantitative analysis of elemental ratios in intermetallic nanoalloys and nanocomposites using Laser Induced Breakdown Spectroscopy (LIBS). Talanta 2017; 164:330-340. [DOI: 10.1016/j.talanta.2016.11.031] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 11/16/2016] [Accepted: 11/16/2016] [Indexed: 11/24/2022]
|
13
|
Zhang D, Gökce B, Barcikowski S. Laser Synthesis and Processing of Colloids: Fundamentals and Applications. Chem Rev 2017; 117:3990-4103. [PMID: 28191931 DOI: 10.1021/acs.chemrev.6b00468] [Citation(s) in RCA: 392] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Driven by functionality and purity demand for applications of inorganic nanoparticle colloids in optics, biology, and energy, their surface chemistry has become a topic of intensive research interest. Consequently, ligand-free colloids are ideal reference materials for evaluating the effects of surface adsorbates from the initial state for application-oriented nanointegration purposes. After two decades of development, laser synthesis and processing of colloids (LSPC) has emerged as a convenient and scalable technique for the synthesis of ligand-free nanomaterials in sealed environments. In addition to the high-purity surface of LSPC-generated nanoparticles, other strengths of LSPC include its high throughput, convenience for preparing alloys or series of doped nanomaterials, and its continuous operation mode, suitable for downstream processing. Unscreened surface charge of LSPC-synthesized colloids is the key to achieving colloidal stability and high affinity to biomolecules as well as support materials, thereby enabling the fabrication of bioconjugates and heterogeneous catalysts. Accurate size control of LSPC-synthesized materials ranging from quantum dots to submicrometer spheres and recent upscaling advancement toward the multiple-gram scale are helpful for extending the applicability of LSPC-synthesized nanomaterials to various fields. By discussing key reports on both the fundamentals and the applications related to laser ablation, fragmentation, and melting in liquids, this Article presents a timely and critical review of this emerging topic.
Collapse
Affiliation(s)
- Dongshi Zhang
- Technical Chemistry I and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen , Universitaetsstrasse 7, 45141 Essen, Germany
| | - Bilal Gökce
- Technical Chemistry I and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen , Universitaetsstrasse 7, 45141 Essen, Germany
| | - Stephan Barcikowski
- Technical Chemistry I and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen , Universitaetsstrasse 7, 45141 Essen, Germany
| |
Collapse
|
14
|
Hu S, Ribeiro E, Davari SA, Tian M, Mukherjee D, Khomami B. Hybrid nanocomposites of nanostructured Co3O4 interfaced with reduced/nitrogen-doped graphene oxides for selective improvements in electrocatalytic and/or supercapacitive properties. RSC Adv 2017. [DOI: 10.1039/c7ra05494g] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Hybrid nanocomposites (HNCs) of Co3O4 nanoparticles/nanorods embedded in reduced/nitrogen-doped graphene oxide, manufactured via laser ablation synthesis in solution (LASiS), exhibit selective electrocatalytic/supercapacitive properties.
Collapse
Affiliation(s)
- Sheng Hu
- Department of Chemical & Biomolecular Engineering
- University of Tennessee
- Knoxville
- USA
- Nano-BioMaterials Laboratory for Energy, Energetics & Environment (nbmL-E3)
| | - Erick L. Ribeiro
- Department of Chemical & Biomolecular Engineering
- University of Tennessee
- Knoxville
- USA
- Nano-BioMaterials Laboratory for Energy, Energetics & Environment (nbmL-E3)
| | - Seyyed Ali Davari
- Department of Mechanical, Aerospace, & Biomedical Engineering
- University of Tennessee
- Knoxville
- USA
- Nano-BioMaterials Laboratory for Energy, Energetics & Environment (nbmL-E3)
| | - Mengkun Tian
- Department of Chemical & Biomolecular Engineering
- University of Tennessee
- Knoxville
- USA
| | - Dibyendu Mukherjee
- Department of Mechanical, Aerospace, & Biomedical Engineering
- University of Tennessee
- Knoxville
- USA
- Department of Chemical & Biomolecular Engineering
| | - Bamin Khomami
- Department of Mechanical, Aerospace, & Biomedical Engineering
- University of Tennessee
- Knoxville
- USA
- Department of Chemical & Biomolecular Engineering
| |
Collapse
|
15
|
Abstract
Metal nanoparticles (MNPs) hold great technological promise because of the possibility of engineering their electronic and optical properties through material design.
Collapse
Affiliation(s)
- Yu-xi Zhang
- Hubei Province Key Laboratory of Science in Metallurgical Process
- Wuhan University of Science and Technology
- Wuhan 430081
- China
| | - Yu-hua Wang
- Hubei Province Key Laboratory of Science in Metallurgical Process
- Wuhan University of Science and Technology
- Wuhan 430081
- China
| |
Collapse
|
16
|
Hu S, Cheng K, Ribeiro EL, Park K, Khomami B, Mukherjee D. A facile and surfactant-free route for nanomanufacturing of tailored ternary nanoalloys as superior oxygen reduction reaction electrocatalysts. Catal Sci Technol 2017. [DOI: 10.1039/c7cy00073a] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Laser ablation synthesis in solution-galvanic replacement reaction (LASiS-GRR) enables tuning of elemental ratios and bonding properties for Pt based ternary nanoalloys as ORR electrocatalysts.
Collapse
Affiliation(s)
- Sheng Hu
- Department of Chemical & Biomolecular Engineering
- University of Tennessee
- Knoxville
- USA
- Nano-BioMaterials Laboratory for Energy, Energetics & Environment (nbml-E3)
| | - Kangming Cheng
- Department of Mechanical, Aerospace & Biomedical Engineering
- University of Tennessee
- Knoxville
- USA
- Nano-BioMaterials Laboratory for Energy, Energetics & Environment (nbml-E3)
| | - Erick L. Ribeiro
- Department of Chemical & Biomolecular Engineering
- University of Tennessee
- Knoxville
- USA
- Nano-BioMaterials Laboratory for Energy, Energetics & Environment (nbml-E3)
| | - Kiman Park
- Department of Chemical & Biomolecular Engineering
- University of Tennessee
- Knoxville
- USA
- Nano-BioMaterials Laboratory for Energy, Energetics & Environment (nbml-E3)
| | - Bamin Khomami
- Department of Mechanical, Aerospace & Biomedical Engineering
- University of Tennessee
- Knoxville
- USA
- Department of Chemical & Biomolecular Engineering
| | - Dibyendu Mukherjee
- Department of Mechanical, Aerospace & Biomedical Engineering
- University of Tennessee
- Knoxville
- USA
- Department of Chemical & Biomolecular Engineering
| |
Collapse
|
17
|
Liang D, Tian Z, Liu J, Ye Y, Wu S, Cai Y, Liang C. MoS2 nanosheets decorated with ultrafine Co3O4 nanoparticles for high-performance electrochemical capacitors. Electrochim Acta 2015. [DOI: 10.1016/j.electacta.2015.09.085] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
18
|
Alrehaily LM, Joseph JM, Wren JC. Radiation-induced formation of Co3O4 nanoparticles from Co(2+)(aq): probing the kinetics using radical scavengers. Phys Chem Chem Phys 2015; 17:24138-50. [PMID: 26314616 DOI: 10.1039/c5cp02828k] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The effects of the Co(2+) content and different radical scavengers on the kinetics of γ-radiation-induced Co3O4 nanoparticle formation and growth were investigated. There are four distinct stages of particle formation with different oxidation rates. Scavengers and [Co(2+)]0 affect the oxidation kinetics in the different stages and consequently the final size of the particles formed. Radiolysis model calculations were performed to obtain the time-evolution of the concentrations of key oxidants and reductants, and the effect of scavengers on those concentrations. Based on the model results and experimental data a reaction mechanism for Co3O4 particle formation by γ-irradiation of solutions containing Co(2+)(aq) is proposed. The main cobalt oxidation reaction changes with time. Oxidation of Co(2+)(aq) to Co(3+)(aq) by radiolytically produced ˙OH occurs first in the solution phase. This is followed by spontaneous co-precipitation of mixed Co(II)/Co(III) hydroxide nucleate particles. Adsorption of Co(II)(ad) followed by surface oxidation of Co(II)(ad) to CoOOH(ad) by H2O2 grows particles with a solid CoOOH(s) phase. In parallel, the solid-state transformation of CoOOH(s) and Co(II)(ad) to form Co3O4(s) occurs.
Collapse
Affiliation(s)
- L M Alrehaily
- Department of Chemistry, The University of Western Ontario, London, Ontario, CanadaN6A 5B7.
| | | | | |
Collapse
|