1
|
Bai Y, Wang Y, Meng S. Ab Initio Self-Trapped Excitons. PHYSICAL REVIEW LETTERS 2024; 133:046903. [PMID: 39121420 DOI: 10.1103/physrevlett.133.046903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 06/14/2024] [Indexed: 08/11/2024]
Abstract
We propose a new formalism and an effective computational framework to study self-trapped excitons (STEs) in insulators and semiconductors from first principles. Using the many-body Bethe-Salpeter equation in combination with perturbation theory, we are able to obtain the mode- and momentum-resolved exciton-phonon coupling matrix element in a perturbative scheme and explicitly solve the real space localization of the electron (hole), as well as the lattice distortion. Further, this method allows us to compute the STE potential energy surface and evaluate the STE formation energy and Stokes shift. We demonstrate our approach using two-dimensional magnetic semiconductor chromium trihalides and a wide-gap insulator BeO, the latter of which features dark excitons, and make predictions of their Stokes shift and coherent phonon generation which we hope will spark future experiments such as photoluminescence and transient absorption studies.
Collapse
|
2
|
Du Y, Arifuddin AA, Qin H, Yan S, Zou Z. Thermal-Stabilized Protonated TiO 2 for Heat-Accelerated Photoelectrochemical Water Splitting. J Phys Chem Lett 2024; 15:5681-5688. [PMID: 38767856 DOI: 10.1021/acs.jpclett.4c01154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Enhancing the charge separation efficiency is a big challenge that limits the energy conversion efficiency of photoelectrochemical (PEC) water splitting. Surface states generated by protonation of TiO2 are the efficient charge separation passageways to massively accept or transfer the photogenerated electrons. However, a challenge is to avoid the deprotonation of a protonated TiO2 photoelectrode at the operation temperature. Here, we found that the terminal hydroxyl group (OHT) as surface states on the TiO2 surface generated via electrochemical protonation of TiO2 at 90 °C [90-TiO2-x-(OH)x] is thermally stable. As a result, the thermally enhanced photocurrent of the 90-TiO2-x-(OH)x electrode reached 1.05 mA cm-2 under 80 °C, and the stability was maintained up to 10 h with a slight photocurrent decrease of 3%. The thermally stable surface states as charge separation paths provide an effective method to couple the heat field with the PEC process via thermal-stimulating hopping of polarons.
Collapse
Affiliation(s)
- Yu Du
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, 22 Hankou Road, Nanjing, Jiangsu 210093, People's Republic of China
| | - Alam Andi Arifuddin
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, 22 Hankou Road, Nanjing, Jiangsu 210093, People's Republic of China
| | - Hao Qin
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, 22 Hankou Road, Nanjing, Jiangsu 210093, People's Republic of China
- Wuxi Little Swan Electric Company, Limited, 18 Changjiang South Road, Wuxi, Jiangsu 214028, People's Republic of China
| | - Shicheng Yan
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, 22 Hankou Road, Nanjing, Jiangsu 210093, People's Republic of China
| | - Zhigang Zou
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, 22 Hankou Road, Nanjing, Jiangsu 210093, People's Republic of China
- Jiangsu Key Laboratory for Nano Technology, Nanjing University, 22 Hankou Road, Nanjing, Jiangsu 210093, People's Republic of China
| |
Collapse
|
3
|
Larsson ED, Veryazov V. An embedded cluster CASPT2 study of the Ce:YVO4 spectrum. J Chem Phys 2023; 159:114117. [PMID: 37724731 DOI: 10.1063/5.0159246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/28/2023] [Indexed: 09/21/2023] Open
Abstract
Multiconfigurational theory, in combination with the embedded cluster approach, is a precise and ab initio approach to describe the electronic structure of solids. In this work, the spectrum of a Ce(III) dopant in YVO4 has been studied by complete active space perturbation theory of the second order (CASPT2), with the host material represented as a set of ab initio model potentials and point-charges. We assess the sensitivity of the spectrum to the size of both the embedded cluster size as well as the size of the electronic basis set. A comparison of our best computational model with experimental results shows that the embedding approach is robust and can accurately model the spectrum of low-concentration dopants in complex host materials.
Collapse
Affiliation(s)
- Ernst D Larsson
- Division of Theoretical Chemistry, Lund University, Lund 22100, Sweden
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Valera Veryazov
- Division of Theoretical Chemistry, Lund University, Lund 22100, Sweden
| |
Collapse
|
4
|
Lei Y, Zhang Y, Han Y, Ni J, Zhang C, Xiao Q. Oxygen-deficient TiO 2-x interlayer enabling Li-rich Mn-based layered oxide cathodes with enhanced reversible capacity and cyclability. RSC Adv 2023; 13:16850-16859. [PMID: 37283876 PMCID: PMC10240256 DOI: 10.1039/d3ra02125d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/23/2023] [Indexed: 06/08/2023] Open
Abstract
The unique anion redox mechanism of Li-rich Mn-based layered oxide (LMLO) cathodes endows them with a higher specific capacity compared with conventional cathodes. However, the irreversible anion redox reactions can cause structural degradation and sluggish electrochemical kinetics in the cathode, resulting in a poor electrochemical performance in the batteries. Thus, to address these issues, a single-sided conductive oxygen-deficient TiO2-x interlayer was applied on a commercial Celgard separator as a coating layer towards the LMLO cathode. After coating TiO2-x, the initial coulombic efficiency (ICE) of the cathode increased from 92.1% to 95.8%, the capacity retention improved from 84.2% to 91.7% after 100 cycles, and the rate performance of the cathode was significantly enhanced from 91.3 mA h g-1 to 203.9 mA h g-1 at 5C. Operando differential electrochemical mass spectroscopy (DEMS) showed that the coating layer could restrain the release of oxygen in the battery, especially from the initial formation process. The X-ray photoelectron spectroscopy (XPS) results demonstrated that the favorable oxygen absorption by the TiO2-x interlayer benefitted the suppression of side reactions and cathode structural evolution and favored the formation of a uniform cathode-electrolyte interphase on the LMLO cathode. This work provides an alternative path to address the issue of oxygen release in LMLO cathodes.
Collapse
Affiliation(s)
- Yike Lei
- School of Automotive Studies, Clean Energy Automotive Engineering Center, Tongji University (Jiading Campus) 4800 Cao'an Road Shanghai 201804 P. R. China
| | - Yingchuan Zhang
- School of Automotive Studies, Clean Energy Automotive Engineering Center, Tongji University (Jiading Campus) 4800 Cao'an Road Shanghai 201804 P. R. China
| | - Yongkang Han
- School of Automotive Studies, Clean Energy Automotive Engineering Center, Tongji University (Jiading Campus) 4800 Cao'an Road Shanghai 201804 P. R. China
| | - Jie Ni
- School of Automotive Studies, Clean Energy Automotive Engineering Center, Tongji University (Jiading Campus) 4800 Cao'an Road Shanghai 201804 P. R. China
| | - Cunman Zhang
- School of Automotive Studies, Clean Energy Automotive Engineering Center, Tongji University (Jiading Campus) 4800 Cao'an Road Shanghai 201804 P. R. China
| | - Qiangfeng Xiao
- School of Automotive Studies, Clean Energy Automotive Engineering Center, Tongji University (Jiading Campus) 4800 Cao'an Road Shanghai 201804 P. R. China
| |
Collapse
|
5
|
Morita K, Golomb MJ, Rivera M, Walsh A. Models of Polaron Transport in Inorganic and Hybrid Organic-Inorganic Titanium Oxides. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2023; 35:3652-3659. [PMID: 37181672 PMCID: PMC10173375 DOI: 10.1021/acs.chemmater.3c00322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 04/04/2023] [Indexed: 05/16/2023]
Abstract
Polarons are a type of localized excess charge in materials and often form in transition metal oxides. The large effective mass and confined nature of polarons make them of fundamental interest for photochemical and electrochemical reactions. The most studied polaronic system is rutile TiO2 where electron addition results in small polaron formation through the reduction of Ti(IV) d0 to Ti(III) d1 centers. Using this model system, we perform a systematic analysis of the potential energy surface based on semiclassical Marcus theory parametrized from the first-principles potential energy landscape. We show that F-doped TiO2 only binds polaron weakly with effective dielectric screening after the second nearest neighbor. To tailor the polaron transport, we compare TiO2 to two metal-organic frameworks (MOFs): MIL-125 and ACM-1. The choice of MOF ligands and connectivity of the TiO6 octahedra largely vary the shape of the diabatic potential energy surface and the polaron mobility. Our models are applicable to other polaronic materials.
Collapse
Affiliation(s)
- Kazuki Morita
- Department
of Materials, Imperial College London, London SW7 2AZ, United Kingdom
- Department
of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United
States
| | - Matthias J. Golomb
- Department
of Materials, Imperial College London, London SW7 2AZ, United Kingdom
| | - Miguel Rivera
- Department
of Chemistry, University College London, London WC1H 0AJ, United Kingdom
| | - Aron Walsh
- Department
of Materials, Imperial College London, London SW7 2AZ, United Kingdom
- Department
of Physics, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
6
|
Chen T, Ye Y, Wang Y, Fang C, Lin W, Jiang Y, Xu B, Ouyang C, Zheng J. Tuning a small electron polaron in FePO 4 by P-site or O-site doping based on DFT+ U and KMC simulation. Phys Chem Chem Phys 2023; 25:8734-8742. [PMID: 36896849 DOI: 10.1039/d2cp06034e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
Due to the existence of a small polaron, the intrinsic electronic conductivity of olivine-structured LiFePO4 is quite low, limiting its performance as a cathode material for lithium-ion batteries (LIBs). Previous studies have mainly focused on improving intrinsic conductivity through Fe-site doping while P-site or O-site doping has rarely been reported. Herein, we studied the formation and dynamics of the small electron polaron in FeP1-αXαO4 and FePO4-βZβ by employing the density functional theory with the on-site Hubbard correction terms (DFT+U) and Kinetic Monte Carlo (KMC) simulation, where X and Z indicate the doping elements (X = S, Se, As, Si, V; Z = S, F, Cl), and α and β indicate the light doping at the P position (α = 0.0625) and O position (β = 0.015625), respectively. We confirmed the small electron polaron formation in pristine FePO4 and its doped systems, and the polaron hopping rates for all systems were calculated according to the Marcus-Emin-Holstein-Austin-Mott (MEHAM) theory. We found that the hopping process is adiabatic for most cases with the defects breaking the original symmetry. Based on the KMC simulation results, we found that the doping of S at the P site changes the polaron's motion mode, which is expected to increase the mobility and intrinsic electronic conductivity. This study attempts to provide theoretical guidance to improve the electronic conductivity of LiFePO4-like cathode materials with better rate performance.
Collapse
Affiliation(s)
- Taowen Chen
- School of Advanced Materials, Peking University, Shenzhen Graduate School, Shenzhen 518055, People's Republic of China.
| | - Yaokun Ye
- School of Advanced Materials, Peking University, Shenzhen Graduate School, Shenzhen 518055, People's Republic of China.
| | - Ying Wang
- School of Advanced Materials, Peking University, Shenzhen Graduate School, Shenzhen 518055, People's Republic of China.
| | - Chi Fang
- School of Advanced Materials, Peking University, Shenzhen Graduate School, Shenzhen 518055, People's Republic of China.
| | - Weicheng Lin
- School of Advanced Materials, Peking University, Shenzhen Graduate School, Shenzhen 518055, People's Republic of China.
| | - Yao Jiang
- Fujian Science & Technology Innovation Laboratory for Energy Devices of China (21C-LAB), Ningde 352100, People's Republic of China.
| | - Bo Xu
- Fujian Science & Technology Innovation Laboratory for Energy Devices of China (21C-LAB), Ningde 352100, People's Republic of China.
| | - Chuying Ouyang
- Fujian Science & Technology Innovation Laboratory for Energy Devices of China (21C-LAB), Ningde 352100, People's Republic of China.
| | - Jiaxin Zheng
- School of Advanced Materials, Peking University, Shenzhen Graduate School, Shenzhen 518055, People's Republic of China.
- Fujian Science & Technology Innovation Laboratory for Energy Devices of China (21C-LAB), Ningde 352100, People's Republic of China.
| |
Collapse
|
7
|
Sun S, Wang C, Wang QC, Liu Y, Xie Q, Zeng Z, Li X, Han J, Guo R. Three-in-one oxygen-deficient titanium dioxide in a pomegranate-inspired design for improved lithium storage. J Colloid Interface Sci 2023; 633:546-554. [PMID: 36470135 DOI: 10.1016/j.jcis.2022.11.103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/16/2022] [Accepted: 11/19/2022] [Indexed: 11/25/2022]
Abstract
Defects engineering has played an ever-increasing important role in electrochemistry, especially secondary lithium batteries. TiO2 is regarded as a promising anode due to its attractive cycling stability, low volume strain and great abundance, while challenges of intrinsic poor electrical and ionic conductivity remain to be addressed. Herein, we report a three-in-one oxygen vacancy (VO)-involved pomegranate design for TiO2-x/C composite anode, which provides highly improved electrical conduction, shortened Li+ pathway and promoted Li+ redox. N-doped mesoporous carbon acts as a robust scaffold to support the whole structure, electron highway and efficient reductant to generate VO on TiO2 nanoparticles during crystallization. Theoretical calculations reveal the crucial role of surface VO on TiO2 in Li electrochemistry. Resultantly, the optimal TiO2-x/C anode achieves significantly enhanced cycling performance (203 mAh/g retained after 2000 cycles at 1 A/g). Postmortem analysis reveals the robustness of VO and reasonable structure stability upon cycles for improved battery performance.
Collapse
Affiliation(s)
- Siwei Sun
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Chao Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China.
| | - Qin-Chao Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China.
| | - Yingwei Liu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Qihong Xie
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Zhiyong Zeng
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Xiaoge Li
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Jie Han
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China.
| | - Rong Guo
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| |
Collapse
|
8
|
Rana B, Coons MP, Herbert JM. Detection and Correction of Delocalization Errors for Electron and Hole Polarons Using Density-Corrected DFT. J Phys Chem Lett 2022; 13:5275-5284. [PMID: 35674719 DOI: 10.1021/acs.jpclett.2c01187] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Modeling polaron defects is an important aspect of computational materials science, but the description of unpaired spins in density functional theory (DFT) often suffers from delocalization error. To diagnose and correct the overdelocalization of spin defects, we report an implementation of density-corrected (DC-)DFT and its analytic energy gradient. In DC-DFT, an exchange-correlation functional is evaluated using a Hartree-Fock density, thus incorporating electron correlation while avoiding self-interaction error. Results for an electron polaron in models of titania and a hole polaron in Al-doped silica demonstrate that geometry optimization with semilocal functionals drives significant structural distortion, including the elongation of several bonds, such that subsequent single-point calculations with hybrid functionals fail to afford a localized defect even in cases where geometry optimization with the hybrid functional does localize the polaron. This has significant implications for traditional workflows in computational materials science, where semilocal functionals are often used for structure relaxation. DC-DFT calculations provide a mechanism to detect situations where delocalization error is likely to affect the results.
Collapse
Affiliation(s)
- Bhaskar Rana
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Marc P Coons
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - John M Herbert
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
9
|
Wang YC, Zhao Y. Diagrammatic quantum Monte Carlo toward the calculation of transport properties in disordered semiconductors. J Chem Phys 2022; 156:204116. [DOI: 10.1063/5.0091124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A new diagrammatic quantum Monte Carlo approach is proposed to deal with the imaginary time propagator involving both dynamic disorder (i.e., electron–phonon interactions) and static disorder of local or nonlocal nature in a unified and numerically exact way. The establishment of the whole framework relies on a general reciprocal-space expression and a generalized Wick’s theorem for the static disorder. Since the numerical cost is independent of the system size, various physical quantities, such as the thermally averaged coherence, Matsubara one-particle Green’s function, and current autocorrelation function, can be efficiently evaluated in the thermodynamic limit (infinite in the system size). The validity and performance of the proposed approach are systematically examined in a broad parameter regime. This approach, combined with proper numerical analytic continuation methods and first-principles calculations, is expected to be a versatile tool toward the calculation of various transport properties, such as mobilities in realistic semiconductors involving multiple electronic energy bands, high-frequency optical and low-frequency acoustic phonons, different forms of dynamic and static disorders, and anisotropy.
Collapse
Affiliation(s)
- Yu-Chen Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iCHEM, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People’s Republic of China
| | - Yi Zhao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iCHEM, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People’s Republic of China
| |
Collapse
|
10
|
Reticcioli M, Diebold U, Franchini C. Modeling polarons in density functional theory: lessons learned from TiO 2. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 34:204006. [PMID: 35213845 DOI: 10.1088/1361-648x/ac58d7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 02/25/2022] [Indexed: 06/14/2023]
Abstract
Density functional theory (DFT) is nowadays one of the most broadly used and successful techniques to study the properties of polarons and their effects in materials. Here, we systematically analyze the aspects of the theoretical calculations that are crucial to obtain reliable predictions in agreement with the experimental observations. We focus on rutile TiO2, a prototypical polaronic compound, and compare the formation of polarons on the (110) surface and subsurface atomic layers. As expected, the parameterUused to correct the electronic correlation in the DFT +Uformalism affects the resulting charge localization, local structural distortions and electronic properties of polarons. Moreover, the polaron localization can be driven to different sites by strain: due to different local environments, surface and subsurface polarons show different responses to the applied strain, with impact on the relative energy stability. An accurate description of the properties of polarons is key to understand their impact on complex phenomena and applications: as an example, we show the effects of lattice strain on the interaction between polarons and CO adsorbates.
Collapse
Affiliation(s)
- Michele Reticcioli
- University of Vienna, Faculty of Physics, Center for Computational Materials Science, Vienna, Austria
| | - Ulrike Diebold
- Institute of Applied Physics, Technische Universität Wien, Vienna, Austria
| | - Cesare Franchini
- University of Vienna, Faculty of Physics, Center for Computational Materials Science, Vienna, Austria
- Dipartimento di Fisica e Astronomia, Università di Bologna, 40127 Bologna, Italy
| |
Collapse
|
11
|
Zhang L, Chu W, Zheng Q, Zhao J. Effects of oxygen vacancies on the photoexcited carrier lifetime in rutile TiO 2. Phys Chem Chem Phys 2022; 24:4743-4750. [PMID: 35142307 DOI: 10.1039/d1cp04248c] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The photoexcited carrier lifetime in semiconductors plays a crucial role in solar energy conversion processes. The defects or impurities in semiconductors are usually proposed to introduce electron-hole (e-h) recombination centers and consequently reduce the photoexcited carrier lifetime. In this report, we investigate the effects of oxygen vacancies (OV) on the carrier lifetime in rutile TiO2, which has important applications in photocatalysis and photovoltaics. It is found that an OV introduces two excess electrons which form two defect states in the band gap. The lower state is localized on one Ti atom and behaves as a small polaron, and the higher one is a hybrid state contributed by three Ti atoms around the OV. Both the polaron and hybrid states exhibit strong electron-phonon (e-ph) coupling and their charge distributions become more and more delocalized when the temperature increases from 100 to 700 K. Such strong e-ph coupling and charge delocalization enhance the nonadibatic coupling between the electronic states along the hole relaxation path, where the defect states behave as intermediate states, leading to a distinct acceleration of e-h recombination. Our study provides valuable insights to understand the role of defects on photoexcited carrier lifetime in semiconductors.
Collapse
Affiliation(s)
- Lili Zhang
- Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, China. .,Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| | - Weibin Chu
- Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, China. .,Departments of Chemistry, and Physics and Astronomy, University of Southern California, Los Angeles, CA 90089, USA
| | - Qijing Zheng
- Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Jin Zhao
- Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, China.
| |
Collapse
|
12
|
Stein F, Hutter J. Double-hybrid density functionals for the condensed phase: Gradients, stress tensor, and auxiliary-density matrix method acceleration. J Chem Phys 2022; 156:074107. [DOI: 10.1063/5.0082327] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Frederick Stein
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, Zurich 8057, Switzerland
| | - Jürg Hutter
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, Zurich 8057, Switzerland
| |
Collapse
|
13
|
Lee JG, Pickard C, Cheng B. High-pressure phase behaviors of titanium dioxide revealed by a $\Delta$-learning potential. J Chem Phys 2022; 156:074106. [DOI: 10.1063/5.0079844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Jacob G. Lee
- Department of Physics, Cavendish Laboratory, University of Cambridge, JJ Thompson Avenue, Cambridge, CB3 0HE, United Kingdom
| | | | | |
Collapse
|
14
|
Tanner AJ, Thornton G. TiO 2 Polarons in the Time Domain: Implications for Photocatalysis. J Phys Chem Lett 2022; 13:559-566. [PMID: 35014263 PMCID: PMC9097515 DOI: 10.1021/acs.jpclett.1c03677] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 01/03/2022] [Indexed: 06/14/2023]
Abstract
Exploiting the availability of solar energy to produce valuable chemicals is imperative in our quest for a sustainable energy cycle. TiO2 has emerged as an efficient photocatalyst, and as such its photochemistry has been studied extensively. It is well-known that polaronic defect states impact the activity of this chemistry. As such, understanding the fundamental excitation mechanisms deserves the attention of the scientific community. However, isolating the contribution of polarons to these processes has required increasingly creative experimental techniques and expensive theory. In this Perspective, we discuss recent advances in this field, with a particular focus on two-photon photoemission spectroscopy (2PPE) and density functional theory (DFT), and discuss the implications for photocatalysis.
Collapse
|
15
|
Shousha S, Khalil S, Youssef M. A complete ab initio thermodynamic and kinetic catalogue of the defect chemistry of hematite α-Fe 2O 3, its cation diffusion, and sample donor dopants. Phys Chem Chem Phys 2021; 23:25518-25532. [PMID: 34761781 DOI: 10.1039/d1cp03394h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
This paper studies comprehensively the defect chemistry of and cation diffusion in α-Fe2O3. Defect formation energies and migration barriers are calculated using density functional theory with a theoretically calibrated Hubbard U correction. The established model shows a good agreement with experimental off-stoichiometry and cation diffusivities available in the literature. At any temperature, and are the predominant ionic defects in hematite at the two extremes of oxygen partial pressure (pO2) range, reducing and oxidizing, respectively. Between these two extremes, an intrinsic electronic regime exists where small polaronic electrons and holes are the dominant charge carriers. The calculated migration barriers show that Fe ions favor the diffusion along the 〈111〉 direction in the primitive cell through an interstitial crowdion-like mechanism. Our model suggests that cation diffusion in hematite is mainly controlled by the migration of , while may contribute to cation diffusion at extremely low pO2. Our analysis in the presence of two sample donor dopants Ti and Sn indicates that high temperature annealing at T > 1100 K is needed to prepare n-type hematite at ambient pO2, consistently with prior experimental findings. Alternatively, annealing at lower temperatures requires much lower pO2 to avoid compensating the donors with Fe vacancies. A synergistic comparison of our theoretical model and the experimental results on Ti-doped hematite led us to propose that free electrons and small polarons coexist and both contribute to n-type conductivity. Our validated model of defective hematite is a foundation to study hematite in applications such as corrosion and water splitting.
Collapse
Affiliation(s)
- Shehab Shousha
- Department of Nuclear and Radiation Engineering, Alexandria University, Alexandria, Egypt.,Department of Mechanical Engineering, The American University in Cairo, AUC Avenue, P.O. Box 74, New Cairo 11835, Egypt.
| | - Sarah Khalil
- Department of Nuclear and Radiation Engineering, Alexandria University, Alexandria, Egypt.,Faculty of Energy and Environmental Engineering, The British University in Egypt, El Sherouk City, Suez Desert Road, Cairo 11837 - P.O. Box 43, Egypt
| | - Mostafa Youssef
- Department of Mechanical Engineering, The American University in Cairo, AUC Avenue, P.O. Box 74, New Cairo 11835, Egypt.
| |
Collapse
|
16
|
De Lile JR, Bahadoran A, Zhou S, Zhang J. Polaron in TiO
2
from First‐Principles: A Review. ADVANCED THEORY AND SIMULATIONS 2021. [DOI: 10.1002/adts.202100244] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Jeffrey Roshan De Lile
- Department of physical engineering Polytechnique Montréal Case postal 6079, Station Centre‐ville Montréal Québec H3C 3A7 Canada
- Department of Physics and Regroupement québécois sur les matériaux de pointe Université de Montréal 1375 Ave.Thérèse‐Lavoie‐Roux Montréal QC H2V 0B3 Canada
| | - Ashkan Bahadoran
- State Key Laboratory of Metal Matrix Composite Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Su Zhou
- School of Automotive Studies Tongji University Cao'an road Shanghai 201804 P. R. China
| | - Jiujun Zhang
- Institute of Sustainable Energy/College of Sciences Shanghai University Shanghai 200444 P. R. China
| |
Collapse
|
17
|
Wang YC, Jiang H. Constrained density functional theory plus the Hubbard U correction approach for the electronic polaron mobility: A case study of TiO2. CHINESE J CHEM PHYS 2021. [DOI: 10.1063/1674-0068/cjcp2108136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Yue-Chao Wang
- Beijing National Laboratory for Molecular Sciences, Institute of Theoretical and Computational Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Hong Jiang
- Beijing National Laboratory for Molecular Sciences, Institute of Theoretical and Computational Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
18
|
Carey JJ, Quirk JA, McKenna KP. Hole Polaron Migration in Bulk Phases of TiO 2 Using Hybrid Density Functional Theory. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2021; 125:12441-12450. [PMID: 34276864 PMCID: PMC8279702 DOI: 10.1021/acs.jpcc.1c03136] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/06/2021] [Indexed: 06/13/2023]
Abstract
Understanding charge-carrier transport in semiconductors is vital to the improvement of material performance for various applications in optoelectronics and photochemistry. Here, we use hybrid density functional theory to model small hole polaron transport in the anatase, brookite, and TiO2-B phases of titanium dioxide and determine the rates of site-to-site hopping as well as thermal ionization into the valance band and retrapping. We find that the hole polaron mobility increases in the order TiO2-B < anatase < brookite and there are distinct differences in the character of hole polaron migration in each phase. As well as having fundamental interest, these results have implications for applications of TiO2 in photocatalysis and photoelectrochemistry, which we discuss.
Collapse
|
19
|
Shen H, Lin M, Wang L, Huang Z, Wu X, Jiang X, Li Q, Chen CL, Zhao J, Jing G, Yuan CS. Experimental and theoretical investigation of the enhancement of the photo-oxidation of Hg 0 by CeO 2-modified morphology-controlled anatase TiO 2. JOURNAL OF HAZARDOUS MATERIALS 2021; 406:124535. [PMID: 33302186 DOI: 10.1016/j.jhazmat.2020.124535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 11/06/2020] [Accepted: 11/07/2020] [Indexed: 06/12/2023]
Abstract
This study aims to investigate the coeffects of predominantly exposed anatase TiO2{001} and {101} and CeO2 loading on the photo-oxidation of Hg0 to relieve the adverse effects caused by higher temperatures of 50-250 °C. The effect of loading CeO2 on the photocatalytic activity of morphology-controlled TiO2 was not only investigated using DFT with U correction but also experimentally analyzed by characterizing the electrochemical properties and the formation of free radicals. The theoretical calculation showed that CeO2 loading on TiO2{101} was more stable than that on TiO2{001}. Accordingly, a larger portion of CeO2 was observed to anchor to the (101) plane than to the (001) plane. CeO2 loading is more beneficial for increasing the distribution of photo-induced electrons and holes on the surface of 7%CeTi than on the surface of TiO2 and increases the energy difference between the conduction band edge of 7%CeTi and the standard redox potential of O2/·O2-. Correspondingly, the photocatalytic removal efficiencies (PREs) of Hg0 by 7%CeTi were significantly enhanced compared with those of pristine TiO2. The effect of CeO2 was highly morphologically dependent on the photocatalytic activity. This study provides valuable insight into surface engineering strategies for morphology-controlled photocatalysts for air pollution control technology.
Collapse
Affiliation(s)
- Huazhen Shen
- College of Chemical Engineering, Huaqiao University, Xiamen, Fujian, China
| | - Mengjia Lin
- College of Chemical Engineering, Huaqiao University, Xiamen, Fujian, China
| | - Lidong Wang
- North China Electrical Power University, Department Environment Science & Engineering, Hebei Key Lab Power Plant Flue Gas Multipollutant, Baoding, 071003 Hebei, China
| | - Zhiwei Huang
- College of Chemical Engineering, Huaqiao University, Xiamen, Fujian, China
| | - Xiaomin Wu
- College of Chemical Engineering, Huaqiao University, Xiamen, Fujian, China
| | - Xiaoqi Jiang
- College of Chemical Engineering, Huaqiao University, Xiamen, Fujian, China
| | - Qing Li
- College of Chemical Engineering, Huaqiao University, Xiamen, Fujian, China
| | - Cheng-Lung Chen
- Department of Chemistry, National Sun Yat-Sen University, No. 70, Lian-Hai Road, Kaohsiung 804, Taiwan
| | - Jingxiang Zhao
- College of Chemistry and Chemical Engineering, and Key Laboratory of Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin 150025, China
| | - Guohua Jing
- College of Chemical Engineering, Huaqiao University, Xiamen, Fujian, China.
| | - Chung-Shin Yuan
- Institute of Environmental Engineering, National Sun Yat-Sen University, No. 70, Lian-Hai Road, Kaohsiung 804, Taiwan.
| |
Collapse
|
20
|
Zhang L, Chu W, Zhao C, Zheng Q, Prezhdo OV, Zhao J. Dynamics of Photoexcited Small Polarons in Transition-Metal Oxides. J Phys Chem Lett 2021; 12:2191-2198. [PMID: 33630612 DOI: 10.1021/acs.jpclett.1c00003] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The dynamics of photoexcited polarons in transition-metal oxides (TMOs), including their formation, migration, and quenching, plays an important role in photocatalysis and photovoltaics. Taking rutile TiO2 as a prototypical system, we use ab initio nonadiabatic molecular dynamics simulation to investigate the dynamics of small polarons induced by photoexcitation at different temperatures. The photoexcited electron is trapped by the distortion of the surrounding lattice and forms a small polaron within tens of femtoseconds. Polaron migration among Ti atoms is strongly correlated with quenching through an electron-hole (e-h) recombination process. At low temperature, the polaron is localized on a single Ti atom and polaron quenching occurs within several nanoseconds. At increased temperature, as under solar cell operating conditions, thermal phonon excitation stimulates the hopping and delocalization of polarons, which induces fast polaron quenching through the e-h recombination within 200 ps. Our study proves that e-h recombination centers can be formed by photoexcited polarons, which provides new insights to understand the efficiency bottleneck of photocatalysis and photovoltaics in TMOs.
Collapse
Affiliation(s)
- Lili Zhang
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| | - Weibin Chu
- Departments of Chemistry, and Physics and Astronomy, University of Southern California, Los Angeles, California 90089, United States
| | | | | | - Oleg V Prezhdo
- Departments of Chemistry, and Physics and Astronomy, University of Southern California, Los Angeles, California 90089, United States
| | - Jin Zhao
- Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh Pennsylvania 15260, United States
| |
Collapse
|
21
|
Chen J, Bogdanov NA, Usvyat D, Fang W, Michaelides A, Alavi A. The color center singlet state of oxygen vacancies in TiO2. J Chem Phys 2020; 153:204704. [DOI: 10.1063/5.0030658] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Ji Chen
- School of Physics, Peking University, Beijing 100871, People’s Republic of China
- Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-St. 2, D-12489 Berlin, Germany
| | - Nikolay A. Bogdanov
- Max Planck Institute for Solid State Research, Heisenbergstrasse 1, 70569 Stuttgart, Germany
| | - Denis Usvyat
- Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-St. 2, D-12489 Berlin, Germany
| | - Wei Fang
- Laboratory of Physical Chemistry, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Angelos Michaelides
- Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-St. 2, D-12489 Berlin, Germany
- Department of Physics and Astronomy, London Centre for Nanotechnology, Thomas Young Centre, University College London, Gower Street, London WC1E 6BT, United Kingdom
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Ali Alavi
- Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-St. 2, D-12489 Berlin, Germany
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
22
|
Pham TD, Deskins NA. Efficient Method for Modeling Polarons Using Electronic Structure Methods. J Chem Theory Comput 2020; 16:5264-5278. [DOI: 10.1021/acs.jctc.0c00374] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Thang Duc Pham
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - N. Aaron Deskins
- Department of Chemical Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts 01609, United States
| |
Collapse
|
23
|
Zhu YN, Teobaldi G, Liu LM. Water-Hydrogen-Polaron Coupling at Anatase TiO 2(101) Surfaces: A Hybrid Density Functional Theory Study. J Phys Chem Lett 2020; 11:4317-4325. [PMID: 32354210 DOI: 10.1021/acs.jpclett.0c00917] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Defects and water generally coexist on the surfaces of reducible metal oxides for heterogeneous photocatalysis in aqueous environments, which makes quantification and understanding of their coupling essential for development of practical solutions. Here we explore and quantify the coupling between water (H2O)- and hydrogen (H)-induced electron-polarons on the TiO2 anatase (101) surface by means of first-principles simulations. Without H2O, the hydrogen-induced electron-polaron localizes preferentially around the energetically favored subsurface H site. Its hopping barrier to neighboring sites in the subsurface is about 0.29 eV. Conversely, following H2O adsorption, surface trapping of the electron-polaron becomes energetically favored, and the diffusion barrier from subsurface to surface decreases by 0.15 eV. H2O adsorption is shown to be effective in decreasing the proton diffusion energy barrier within the same layer by reducing the polaron-proton coupling and promoting diffusion toward the subsurface in line with a recent experimental observation on water-dispersed anatase TiO2 nanoparticles.
Collapse
Affiliation(s)
- Ya-Nan Zhu
- Beijing Computational Science Research Center, Beijing 100193, China
- School of Physics, Beihang University, Beijing 100191, China
| | - Gilberto Teobaldi
- Scientific Computing Department, STFC UKRI, Rutherford Appleton Laboratory, Harwell Campus, OX11 0QX Didcot, United Kingdom
- Stephenson Institute for Renewable Energy, Department of Chemistry, University of Liverpool, L69 3BX Liverpool, United Kingdom
- School of Chemistry, University of Southampton, Highfield, SO17 1BJ Southampton, United Kingdom
| | - Li-Min Liu
- School of Physics, Beihang University, Beijing 100191, China
| |
Collapse
|
24
|
Wang C, Yang J, Li T, Shen Z, Guo T, Zhang H, Lu Z. In Situ Tuning of Defects and Phase Transition in Titanium Dioxide by Lithiothermic Reduction. ACS APPLIED MATERIALS & INTERFACES 2020; 12:5750-5758. [PMID: 31913596 DOI: 10.1021/acsami.9b18359] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Defects engineering of oxides plays a vital role in tuning their physicochemical and electronic properties and thereby determining their potential applications. However, the safe and controllable production of effective defects in the oxides is still challenging. Here, we report a facile one-pot solid lithiothermic reduction approach to generate graded oxygen defects in TiO2 nanoparticles. Various levels of lithium reduction are systematically studied, and meanwhile, a distinct phase transition from anatase TiO2 to cubic LixTiO2 is observed with the increasing lithium ratio. The structure and evolution of surface defects and bulk phase transition are investigated in detail. Afterward, we demonstrate their applications in carbon dioxide photoreduction and photothermal imaging. The slightly reduced TiO2 with effective oxygen defects affords a highly broadened solar spectrum absorption and yields significantly enhanced visible photocatalytic activity in CO2 conversion, which is further revealed by theoretical calculations. The highly reduced TiO2 with obvious phase transition shows enhanced solar absorption and achieves high photo-thermal-conversion efficacy, showing huge potential in photo-thermal-related applications. The lithiothermic reduction is a general and effective approach to produce defects and induce phase transition in oxides, which can be used in multiple applications.
Collapse
Affiliation(s)
- Chao Wang
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures and College of Engineering and Applied Sciences , Nanjing University , Nanjing 210093 , China
- School of Chemical and Biomolecular Engineering , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| | - Jingjing Yang
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures and College of Engineering and Applied Sciences , Nanjing University , Nanjing 210093 , China
| | - Taozhu Li
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures and College of Engineering and Applied Sciences , Nanjing University , Nanjing 210093 , China
| | - Zihan Shen
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures and College of Engineering and Applied Sciences , Nanjing University , Nanjing 210093 , China
| | - Taolian Guo
- College of Chemistry , Central China Normal University , Wuhan 430079 , China
| | - Huigang Zhang
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures and College of Engineering and Applied Sciences , Nanjing University , Nanjing 210093 , China
| | - Zhenda Lu
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures and College of Engineering and Applied Sciences , Nanjing University , Nanjing 210093 , China
- Jiangsu Key Laboratory of Artificial Functional Materials , Nanjing University , Nanjing 210093 , China
- Research Center for Environmental Nanotechnology (ReCENT) , Nanjing University , Nanjing 210023 , China
| |
Collapse
|
25
|
Arrigoni M, Madsen GKH. A comparative first-principles investigation on the defect chemistry of TiO 2 anatase. J Chem Phys 2020; 152:044110. [PMID: 32007033 DOI: 10.1063/1.5138902] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Understanding native point defects is fundamental in order to comprehend the properties of TiO2 anatase in technological applications. The previous first-principles reports of defect-relevant quantities, such as formation energies and charge transition levels, are, however, scattered over a wide range. We perform a comparative study employing different approaches based on semilocal with Hubbard correction (DFT+U) and screened hybrid functionals in order to investigate the dependence defect properties on the employed computational method. While the defects in TiO2 anatase, as in most transition-metal oxides, generally induce the localization of electrons or holes on atomic sites, we notice that, provided an alignment of the valence bands has been performed, the calculated defect formation energies and transition levels using semilocal functionals are in a fair agreement with those obtained using hybrid functionals. A similar conclusion can be reached for the thermochemistry of the Ti-O system and the limit values of the elemental chemical potentials. We interpret this as a cancellation of error between the self-interaction error and the overbinding of the O2 molecule in semilocal functionals. Inclusion of a U term in the electron Hamiltonian offers a convenient way for obtaining more precise geometric and electronic configurations of the defective systems.
Collapse
Affiliation(s)
- Marco Arrigoni
- Institute of Materials Chemistry, TU Wien, Getreidemarkt 9/165, A-1060, Vienna, Austria
| | - Georg K H Madsen
- Institute of Materials Chemistry, TU Wien, Getreidemarkt 9/165, A-1060, Vienna, Austria
| |
Collapse
|
26
|
Ku C, Sit PHL. Oxidation-State Constrained Density Functional Theory for the Study of Electron-Transfer Reactions. J Chem Theory Comput 2019; 15:4781-4789. [PMID: 31339717 DOI: 10.1021/acs.jctc.9b00281] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We propose a new constrained density functional theory (CDFT) approach which directly controls the oxidation state of the target atoms. In this new approach called oxidation-state constrained density functional theory (OS-CDFT), the eigenvalues of the occupation matrix obtained from projecting the Kohn-Sham wave functions onto the valence orbitals are constrained to obtain the desired oxidation states. This approach is particularly useful to study electron transfer problems in transition metal-containing systems due to the multivalent nature of the transition metal ions. The calculation of the forces on the ions and of the coupling constant was implemented under the OS-CDFT scheme to allow efficient and accurate study of electron transfer reactions. We demonstrated the application of this method in the study of different electron transfer reactions including the aqueous ferrous-ferric self-exchange reaction, polaron hopping in the TiO2 anatase and bismuth vanadate, and photoexcited electron transfer in the sapphire.
Collapse
Affiliation(s)
- Calvin Ku
- School of Energy and Environment , City University of Hong Kong , Hong Kong Special Administrative Region , People's Republic of China
| | - Patrick H-L Sit
- School of Energy and Environment , City University of Hong Kong , Hong Kong Special Administrative Region , People's Republic of China
| |
Collapse
|
27
|
Curious behaviors of photogenerated electrons and holes at the defects on anatase, rutile, and brookite TiO2 powders: A review. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS 2019. [DOI: 10.1016/j.jphotochemrev.2018.12.001] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
28
|
Morales-García Á, Valero R, Illas F. Electronic Properties of Realistic Anatase TiO 2 Nanoparticles from G0W0 Calculations on a Gaussian and Plane Waves Scheme. J Chem Theory Comput 2019; 15:5024-5030. [PMID: 31369257 DOI: 10.1021/acs.jctc.9b00516] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The electronic properties of realistic (TiO2)n nanoparticles (NPs) with cuboctahedral and bipyramidal morphologies are investigated within the many-body perturbation theory (MBPT) G0W0 approximation using PBE and hybrid PBEx (12.5% Fock contribution) functionals as starting points. The use of a Gaussian and plane waves (GPW) scheme reduces the usual O4 computational time required in this type of calculation close to O3 and thus allows considering explicitly NPs with n up to 165. The analysis of the Kohn-Sham energy orbitals and quasiparticle (QP) energies shows that the optical energy gap (Ogap), the electronic energy gap (Egap), and the exciton binding energy (ΔEex) values decrease with increasing TiO2 NP size, in agreement with previous work. However, while bipyramidal NPs appear to reach the scalable regime already for n = 84, cuboctahedral NPs reach this regime only above n = 151. Relevant correlations are found and reported that will allow one to predict these electronic properties at the G0W0 level in even much larger NPs where these calculations are unaffordable. The present work provides a feasible and practical way to approach the electronic properties of rather large TiO2 NPs and thus constitutes a further step in the study of realistic nanoparticles of semiconducting oxides.
Collapse
Affiliation(s)
- Ángel Morales-García
- Departament de Ciència de Materials i Química Física and Institut de Química Teòrica i Computacional (IQTCUB) , Universitat de Barcelona , c/Martí i Franquès 1-11 , 08028 Barcelona , Spain
| | - Rosendo Valero
- Departament de Ciència de Materials i Química Física and Institut de Química Teòrica i Computacional (IQTCUB) , Universitat de Barcelona , c/Martí i Franquès 1-11 , 08028 Barcelona , Spain
| | - Francesc Illas
- Departament de Ciència de Materials i Química Física and Institut de Química Teòrica i Computacional (IQTCUB) , Universitat de Barcelona , c/Martí i Franquès 1-11 , 08028 Barcelona , Spain
| |
Collapse
|
29
|
Sio WH, Verdi C, Poncé S, Giustino F. Polarons from First Principles, without Supercells. PHYSICAL REVIEW LETTERS 2019; 122:246403. [PMID: 31322376 DOI: 10.1103/physrevlett.122.246403] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Indexed: 06/10/2023]
Abstract
We develop a formalism and a computational method to study polarons in insulators and semiconductors from first principles. Unlike in standard calculations requiring large supercells, we solve a secular equation involving phonons and electron-phonon matrix elements from density-functional perturbation theory, in a spirit similar to the Bethe-Salpeter equation for excitons. We show that our approach describes seamlessly large and small polarons, and we illustrate its capability by calculating wave functions, formation energies, and spectral decomposition of polarons in LiF and Li_{2}O_{2}.
Collapse
Affiliation(s)
- Weng Hong Sio
- Department of Chemistry, Physical and Theoretical Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
- Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, United Kingdom
| | - Carla Verdi
- Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, United Kingdom
| | - Samuel Poncé
- Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, United Kingdom
| | - Feliciano Giustino
- Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, United Kingdom
| |
Collapse
|
30
|
De Lile J, Kang SG, Son YA, Lee SG. Investigating Polaron Formation in Anatase and Brookite TiO 2 by Density Functional Theory with Hybrid-Functional and DFT + U Methods. ACS OMEGA 2019; 4:8056-8064. [PMID: 31459895 PMCID: PMC6648264 DOI: 10.1021/acsomega.9b00443] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Accepted: 04/24/2019] [Indexed: 05/31/2023]
Abstract
Anatase and brookite are robust materials with enhanced photocatalytic properties. In this study, we used density functional theory (DFT) with a hybrid functional and the Hubbard on-site potential methods to determine electron- and hole-polaron geometries for anatase and brookite and their energetics. Localized electron and hole polarons were predicted not to form in anatase using DFT with hybrid functionals. In contrast, brookite formed both electron and hole polarons. The brookite electron-polaronic solution exhibits coexisting localized and delocalized states, with hole polarons mainly dispersed on two-coordinated oxygen ions. Hubbard on-site potential testing over the wide 4.0-10 eV range revealed that brookite polarons are formed at U = 6 eV, while anatase polarons are formed at U = 8 eV. The brookite electron polaron was always localized on a single titanium ion under the Hubbard model, whereas the hole polaron was dispersed over four oxygen atoms, consistent with the hybrid DFT studies. The anatase electron polarons were dispersed at lower on-site potentials but were more localized at higher potentials. Both methods predict that brookite has a higher driving force for the formation of polarons than anatase.
Collapse
Affiliation(s)
- Jeffrey
Roshan De Lile
- Department
of Organic Material Science and Engineering, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic
of Korea
| | - Sung Gu Kang
- School
of Chemical Engineering, University of Ulsan, 93 Daehak-ro, Nam-gu, Ulsan 44610, Republic
of Korea
| | - Young-A Son
- Department
of Advanced Organic Materials Engineering, Chungnam National University, 220 Gung-dong, Yuseong-gu, Daejeon 305-764, Republic
of Korea
| | - Seung Geol Lee
- Department
of Organic Material Science and Engineering, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic
of Korea
| |
Collapse
|
31
|
Ajala AO, Voora V, Mardirossian N, Furche F, Paesani F. Assessment of Density Functional Theory in Predicting Interaction Energies between Water and Polycyclic Aromatic Hydrocarbons: from Water on Benzene to Water on Graphene. J Chem Theory Comput 2019; 15:2359-2374. [PMID: 30860827 DOI: 10.1021/acs.jctc.9b00110] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The interactions of water with polycyclic aromatic hydrocarbons, from benzene to graphene, are investigated using various exchange-correlation functionals selected across the hierarchy of density functional theory (DFT) approximations. The accuracy of the different functionals is assessed through comparisons with random phase approximation (RPA) and coupled-cluster with single, double, and perturbative triple excitations [CCSD(T)] calculations. Diffusion Monte Carlo (DMC) data reported in the literature are also used for comparison. Relatively large variations are found in interaction energies predicted by different DFT models, with GGA functionals underestimating the interaction strength for configurations with the water oxygen pointing toward the aromatic molecules. The meta-GGA B97M-rV and range-separated hybrid, meta-GGA ωB97M-V functionals provide nearly quantitative agreement with CCSD(T) values for the water-benzene, water-coronene, and water-circumcoronene dimers, while RPA and DMC predict interaction energies that differ by up to ∼1 kcal/mol and ∼0.4 kcal/mol from the corresponding CCSD(T) values, respectively. Similar trends among GGA, meta-GGA, and hybrid functionals are observed for larger polycyclic aromatic hydrocarbons. By performing absolutely localized molecular orbital energy decomposition analyses (ALMO-EDA), it is found that, independently of the number of carbon atoms and exchange-correlation functional, the dominant contributions to the interaction energies between water and polycyclic aromatic hydrocarbon molecules are the electrostatic and dispersion terms while polarization and charge transfer effects are negligibly small. Calculations carried out with GGA and meta-GGA functionals indicate that, as the number of carbon atoms increases, the interaction energies slowly converge to the corresponding values obtained for an infinite graphene sheet.
Collapse
Affiliation(s)
- Adeayo O Ajala
- Department of Chemistry and Biochemistry , University of California San Diego , La Jolla , California 92093 , United States
| | - Vamsee Voora
- Department of Chemistry , University of California Irvine , Irvine , California 92697 , United States
| | - Narbe Mardirossian
- Division of Chemistry and Chemical Engineering , California Institute of Technology , 1200 E. California Boulevard , Pasadena , California 91125 , United States
| | - Filipp Furche
- Department of Chemistry , University of California Irvine , Irvine , California 92697 , United States
| | - Francesco Paesani
- Department of Chemistry and Biochemistry , University of California San Diego , La Jolla , California 92093 , United States.,Materials Science and Engineering , University of California San Diego , La Jolla , California 92093 , United States.,San Diego Supercomputer Center , University of California San Diego , La Jolla , California 92093 , United States
| |
Collapse
|
32
|
Zimnyakov DA, Yuvchenko SA, Volchkov SS. Effective dielectric function of laser-pumped anatase nanoparticles: influence of free carriers trapping and depletion of valence band. OPTICS EXPRESS 2018; 26:32941-32957. [PMID: 30645454 DOI: 10.1364/oe.26.032941] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 11/13/2018] [Indexed: 06/09/2023]
Abstract
Anatase nanoparticles were examined using the z-scan technique with simultaneous measurements of the intensity of the scattered laser light. In the course of the z-scan experiments, the average intensity of probing laser pulses varied between 1.0·106 W/cm2 and 1.08·1011 W/cm2 at the wavelength equal to 355 nm and between 1.0·107 W/cm2 and 1.0·1012 W/cm2 at 532 nm. The pulse duration was equal to 10 ns in all cases. A method for recovery of an effective dielectric function of nanoparticles is suggested. It was found that, in the case of the interband transition, the recovered dielectric functions for a short duration of the laser pulse sequences can be fitted by parametric dependencies corresponding to the Lorentz model. A kinetic model describing the changes in the population of mobile carriers is considered. It was found that the efficiency of the charge recombination is considerably less than the efficiency of the trapping. The dwell time of the mobile charge carriers before being captured was estimated as ≈13 ms.
Collapse
|
33
|
Strand J, Kaviani M, Gao D, El-Sayed AM, Afanas'ev VV, Shluger AL. Intrinsic charge trapping in amorphous oxide films: status and challenges. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2018; 30:233001. [PMID: 29692368 DOI: 10.1088/1361-648x/aac005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We review the current understanding of intrinsic electron and hole trapping in insulating amorphous oxide films on semiconductor and metal substrates. The experimental and theoretical evidences are provided for the existence of intrinsic deep electron and hole trap states stemming from the disorder of amorphous metal oxide networks. We start from presenting the results for amorphous (a) HfO2, chosen due to the availability of highest purity amorphous films, which is vital for studying their intrinsic electronic properties. Exhaustive photo-depopulation spectroscopy measurements and theoretical calculations using density functional theory shed light on the atomic nature of electronic gap states responsible for deep electron trapping observed in a-HfO2. We review theoretical methods used for creating models of amorphous structures and electronic structure calculations of amorphous oxides and outline some of the challenges in modeling defects in amorphous materials. We then discuss theoretical models of electron polarons and bi-polarons in a-HfO2 and demonstrate that these intrinsic states originate from low-coordinated ions and elongated metal-oxygen bonds in the amorphous oxide network. Similarly, holes can be captured at under-coordinated O sites. We then discuss electron and hole trapping in other amorphous oxides, such as a-SiO2, a-Al2O3, a-TiO2. We propose that the presence of low-coordinated ions in amorphous oxides with electron states of significant p and d character near the conduction band minimum can lead to electron trapping and that deep hole trapping should be common to all amorphous oxides. Finally, we demonstrate that bi-electron trapping in a-HfO2 and a-SiO2 weakens Hf(Si)-O bonds and significantly reduces barriers for forming Frenkel defects, neutral O vacancies and O2- ions in these materials. These results should be useful for better understanding of electronic properties and structural evolution of thin amorphous films under carrier injection conditions.
Collapse
Affiliation(s)
- Jack Strand
- Department of Physics, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | | | | | | | | | | |
Collapse
|
34
|
Elmaslmane AR, Watkins MB, McKenna KP. First-Principles Modeling of Polaron Formation in TiO2 Polymorphs. J Chem Theory Comput 2018; 14:3740-3751. [DOI: 10.1021/acs.jctc.8b00199] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- A. R. Elmaslmane
- Department of Physics, University of York, Heslington, York YO10 5DD, United Kingdom
| | - M. B. Watkins
- School of Mathematics and Physics, University of Lincoln, Brayford Pool, Lincoln LN6 7TS, United Kingdom
| | - K. P. McKenna
- Department of Physics, University of York, Heslington, York YO10 5DD, United Kingdom
| |
Collapse
|
35
|
Gono P, Wiktor J, Ambrosio F, Pasquarello A. Surface Polarons Reducing Overpotentials in the Oxygen Evolution Reaction. ACS Catal 2018. [DOI: 10.1021/acscatal.8b01120] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Patrick Gono
- Chaire de Simulation à l’Echelle Atomique (CSEA), Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Julia Wiktor
- Chaire de Simulation à l’Echelle Atomique (CSEA), Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Francesco Ambrosio
- Chaire de Simulation à l’Echelle Atomique (CSEA), Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Alfredo Pasquarello
- Chaire de Simulation à l’Echelle Atomique (CSEA), Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
36
|
Tuning defects in oxides at room temperature by lithium reduction. Nat Commun 2018; 9:1302. [PMID: 29615620 PMCID: PMC5882908 DOI: 10.1038/s41467-018-03765-0] [Citation(s) in RCA: 178] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 03/09/2018] [Indexed: 12/21/2022] Open
Abstract
Defects can greatly influence the properties of oxide materials; however, facile defect engineering of oxides at room temperature remains challenging. The generation of defects in oxides is difficult to control by conventional chemical reduction methods that usually require high temperatures and are time consuming. Here, we develop a facile room-temperature lithium reduction strategy to implant defects into a series of oxide nanoparticles including titanium dioxide (TiO2), zinc oxide (ZnO), tin dioxide (SnO2), and cerium dioxide (CeO2). Our lithium reduction strategy shows advantages including all-room-temperature processing, controllability, time efficiency, versatility and scalability. As a potential application, the photocatalytic hydrogen evolution performance of defective TiO2 is examined. The hydrogen evolution rate increases up to 41.8 mmol g−1 h−1 under one solar light irradiation, which is ~3 times higher than that of the pristine nanoparticles. The strategy of tuning defect oxides used in this work may be beneficial for many other related applications. Defective oxides are attractive for energy conversion and storage applications, but it remains challenging to implant defects in oxides under mild conditions. Here, the authors develop a versatile lithium reduction strategy to engineer the defects of oxides at room temperature leading to enhanced photocatalytic properties.
Collapse
|
37
|
Vequizo JJM, Kamimura S, Ohno T, Yamakata A. Oxygen induced enhancement of NIR emission in brookite TiO 2 powders: comparison with rutile and anatase TiO 2 powders. Phys Chem Chem Phys 2018; 20:3241-3248. [PMID: 29105714 DOI: 10.1039/c7cp06975h] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Brookite TiO2 attracts considerable attention in photocatalysis owing to its superior performance in several photocatalytic reactions. In this work, we investigated the behavior of charge carriers in brookite, rutile, and anatase TiO2 by using photoluminescence (PL) and transient absorption (TA) spectroscopies. PL measurements revealed that brookite TiO2 exhibits a visible and a NIR emission at ∼520 nm and ∼860 nm, respectively. Addition of methanol vapor quenched both the visible and NIR emissions by the hole-consuming reaction of methanol. However, exposure to O2 shows curious behaviors: the visible emission was quenched but the NIR emission was enhanced. These results can be accounted for by the enhancement of upward band bending resulting in the effective separation of electrons and holes into the bulk and the surface, respectively. Furthermore, the shallowly trapped electrons, which are responsible for visible PL, are consumed by O2; hence, the visible emission is quenched. However, in the case of NIR emission, the deeply trapped electrons are responsible and they are mainly located at the surface defects. The O2 adsorption promotes the hole accumulation at the surface and then assists the recombination of these deeply trapped electrons, resulting in the enhancement of the NIR emission. We also found that the lifetime of NIR emission (τ1 = 43 ± 0 ns and τ2 = 589 ± 1 ns) was much longer than that of visible emission (τ1 = 15 ± 0 ns and τ2 = 23 ± 0 ns), since the mobility of these deeply trapped electrons to encounter with holes is lower than that of the shallowly trapped electrons. However, even for this slow NIR emission, the actual lifetime of the deeply trapped electrons estimated by TA (1.5 ± 0.0 μs and 17 ± 0 μs) was one or two orders of magnitude longer, confirming that non-radiative recombination is dominant and it is much slower than radiative recombination: TAS and PL provide detailed information on the radiative and non-radiative recombination processes. The PL of anatase and rutile TiO2 powders was also measured and the difference from brookite TiO2 was discussed.
Collapse
Affiliation(s)
- Junie Jhon M Vequizo
- Graduate School of Engineering, Toyota Technological Institute, 2-12-1 Hisakata, Tempaku, Nagoya 468-8511, Japan.
| | | | | | | |
Collapse
|
38
|
Affiliation(s)
- Ting-wei Chen
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Ya-nan Hao
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Yu-chen Ma
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| |
Collapse
|
39
|
Wei Y, Li L, Fang W, Long R, Prezhdo OV. Weak Donor-Acceptor Interaction and Interface Polarization Define Photoexcitation Dynamics in the MoS 2/TiO 2 Composite: Time-Domain Ab Initio Simulation. NANO LETTERS 2017; 17:4038-4046. [PMID: 28586230 DOI: 10.1021/acs.nanolett.7b00167] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
To realize the full potential of transition metal dichalcogenides interfaced with bulk semiconductors for solar energy applications, fast photoinduced charge separation, and slow electron-hole recombination are needed. Using a combination of time-domain density functional theory with nonadiabatic molecular dynamics, we demonstrate that the key features of the electron transfer (ET), energy relaxation and electron-hole recombination in a MoS2-TiO2 system are governed by the weak van der Waals interfacial interaction and interface polarization. Electric fields formed at the interface allow charge separation to happen already during the photoexcitation process. Those electrons that still reside inside MoS2, transfer into TiO2 slowly and by the nonadiabatic mechanism, due to weak donor-acceptor coupling. The ET time depends on excitation energy, because the TiO2 state density grows with energy, increasing the nonadiabatic transfer rate, and because MoS2 sulfur atoms start to contribute to the photoexcited state at higher energies, increasing the coupling. The ET is slower than electron-phonon energy relaxation because the donor-acceptor coupling is weak, rationalizing the experimentally observed injection of primarily hot electrons. The weak van der Waals MoS2-TiO2 interaction ensures a long-lived charge separated state and a short electron-hole coherence time. The injection is promoted primarily by phonons within the 200-800 cm-1 range. Higher frequency modes are particularly important for the electron-hole recombinations, because they are able to accept large amounts of electronic energy. The predicted time scales for the forward and backward ET, and energy relaxation can be measured by time-resolved spectroscopies. The reported simulations generate a detailed time-domain atomistic description of the complex interplay of the charge and energy transfer processes at the MoS2/TiO2 interface that are of fundamental importance to photovoltaic and photocatalytic applications. The results suggest that even though the photogenerated charge-separated state is long-lived, the slower charge separation, compared to the electron-phonon energy relaxation, can present problems in practical applications.
Collapse
Affiliation(s)
- Yaqing Wei
- College of Chemistry, Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education, Beijing Normal University , Beijing, 100875, People's Republic of China
| | - Linqiu Li
- Department of Chemistry, University of Southern California , Los Angeles, California 90089, United States
| | - Weihai Fang
- College of Chemistry, Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education, Beijing Normal University , Beijing, 100875, People's Republic of China
| | - Run Long
- College of Chemistry, Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education, Beijing Normal University , Beijing, 100875, People's Republic of China
| | - Oleg V Prezhdo
- Department of Chemistry, University of Southern California , Los Angeles, California 90089, United States
| |
Collapse
|
40
|
Berardo E, Kaplan F, Bhaskaran-Nair K, Shelton WA, van Setten MJ, Kowalski K, Zwijnenburg MA. Benchmarking the Fundamental Electronic Properties of small TiO2 Nanoclusters by GW and Coupled Cluster Theory Calculations. J Chem Theory Comput 2017. [DOI: 10.1021/acs.jctc.7b00538] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Enrico Berardo
- Department
of Chemistry, Imperial College London, South Kensington, London SW7 2AZ, United Kingdom
- Department
of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, United Kingdom
| | - Ferdinand Kaplan
- Institute
of Nanotechnology, Karlsruhe Institute of Technology, Campus North, D-76344 Karlsruhe, Germany
| | - Kiran Bhaskaran-Nair
- Cain
Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - William A. Shelton
- Cain
Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Michiel J. van Setten
- Nanoscopic
Physics, Institute of Condensed Matter and Nanosciences, Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
| | - Karol Kowalski
- William R.
Wiley Environmental Molecular Science Laboratory, Battelle, Pacific Northwest National Laboratory, K8-91, P. O. Box 999, Richland, Washington 99352, United States
| | - Martijn A. Zwijnenburg
- Department
of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, United Kingdom
| |
Collapse
|
41
|
Vequizo JJM, Matsunaga H, Ishiku T, Kamimura S, Ohno T, Yamakata A. Trapping-Induced Enhancement of Photocatalytic Activity on Brookite TiO2 Powders: Comparison with Anatase and Rutile TiO2 Powders. ACS Catal 2017. [DOI: 10.1021/acscatal.7b00131] [Citation(s) in RCA: 140] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Junie Jhon M. Vequizo
- Graduate
School of Engineering, Toyota Technological Institute, 2-12-1 Hisakata, Tempaku, Nagoya 468-8511, Japan
| | - Hironori Matsunaga
- Graduate
School of Engineering, Toyota Technological Institute, 2-12-1 Hisakata, Tempaku, Nagoya 468-8511, Japan
| | - Tatsuya Ishiku
- Department
of Materials Science, Faculty of Engineering, Kyushu Institute of Technology, 1-1 Sensui-cho, Tobata-ku, Kitakyushu, Fukuoka, 804-8550, Japan
| | - Sunao Kamimura
- Department
of Materials Science, Faculty of Engineering, Kyushu Institute of Technology, 1-1 Sensui-cho, Tobata-ku, Kitakyushu, Fukuoka, 804-8550, Japan
| | - Teruhisa Ohno
- Department
of Materials Science, Faculty of Engineering, Kyushu Institute of Technology, 1-1 Sensui-cho, Tobata-ku, Kitakyushu, Fukuoka, 804-8550, Japan
| | - Akira Yamakata
- Graduate
School of Engineering, Toyota Technological Institute, 2-12-1 Hisakata, Tempaku, Nagoya 468-8511, Japan
- Precursory Research
for Embryonic Science and Technology (PRESTO), Japan Science and Technology
Agency (JST), 4-1-8 Honcho Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
42
|
Catalyst support effects on hydrogen spillover. Nature 2017; 541:68-71. [DOI: 10.1038/nature20782] [Citation(s) in RCA: 437] [Impact Index Per Article: 62.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 11/03/2016] [Indexed: 12/22/2022]
|
43
|
Wilhelm J, Seewald P, Del Ben M, Hutter J. Large-Scale Cubic-Scaling Random Phase Approximation Correlation Energy Calculations Using a Gaussian Basis. J Chem Theory Comput 2016; 12:5851-5859. [DOI: 10.1021/acs.jctc.6b00840] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jan Wilhelm
- Department
of Chemistry and National Centre for Computational Design and Discovery
of Novel Materials (MARVEL), University of Zurich, 8057 Zurich, Switzerland
| | - Patrick Seewald
- Department
of Chemistry and National Centre for Computational Design and Discovery
of Novel Materials (MARVEL), University of Zurich, 8057 Zurich, Switzerland
| | - Mauro Del Ben
- Computational
Research Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Jürg Hutter
- Department
of Chemistry and National Centre for Computational Design and Discovery
of Novel Materials (MARVEL), University of Zurich, 8057 Zurich, Switzerland
| |
Collapse
|
44
|
Guiglion P, Berardo E, Butchosa C, Wobbe MCC, Zwijnenburg MA. Modelling materials for solar fuel synthesis by artificial photosynthesis; predicting the optical, electronic and redox properties of photocatalysts. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2016; 28:074001. [PMID: 26808228 DOI: 10.1088/0953-8984/28/7/074001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
In this mini-review, we discuss what insight computational modelling can provide into the working of photocatalysts for solar fuel synthesis and how calculations can be used to screen for new promising materials for photocatalytic water splitting and carbon dioxide reduction. We will extensively discuss the different relevant (material) properties and the computational approaches (DFT, TD-DFT, GW/BSE) available to model them. We illustrate this with examples from the literature, focussing on polymeric and nanoparticle photocatalysts. We finish with a perspective on the outstanding conceptual and computational challenges.
Collapse
Affiliation(s)
- Pierre Guiglion
- Department of Chemistry, University College London, 20 Gordon street, London WC1H 0AJ, UK
| | | | | | | | | |
Collapse
|
45
|
Maggio E, Martsinovich N, Troisi A. Continuum and atomistic description of excess electrons in TiO2. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2016; 28:074004. [PMID: 26808551 DOI: 10.1088/0953-8984/28/7/074004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The modelling of an excess electron in a semiconductor in a prototypical dye sensitised solar cell is carried out using two complementary approaches: atomistic simulation of the TiO2 nanoparticle surface is complemented by a dielectric continuum model of the solvent-semiconductor interface. The two methods are employed to characterise the bound (excitonic) states formed by the interaction of the electron in the semiconductor with a positive charge opposite the interface. Density-functional theory (DFT) calculations show that the excess electron in TiO2 in the presence of a counterion is not fully localised but extends laterally over a large region, larger than system sizes accessible to DFT calculations. The numerical description of the excess electron at the semiconductor-electrolyte interface based on the continuum model shows that the exciton is also delocalised over a large area: the exciton radius can have values from tens to hundreds of Ångströms, depending on the nature of the semiconductor (characterised by the dielectric constant and the electron effective mass in our model).
Collapse
Affiliation(s)
- Emanuele Maggio
- Department of Chemistry and Centre for Scientific Computing, University of Warwick, Coventry CV4 7AL, UK
| | | | | |
Collapse
|
46
|
Cheng J, Liu X, VandeVondele J, Sprik M. Reductive Hydrogenation of the Aqueous Rutile TiO 2 (110) Surface. Electrochim Acta 2015. [DOI: 10.1016/j.electacta.2015.03.212] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
47
|
Tanyi AR, Rafieh AI, Ekaneyaka P, Tan AL, Young DJ, Zheng Z, Chellappan V, Subramanian GS, Chandrakanthi R. Enhanced efficiency of dye-sensitized solar cells based on Mg and La co-doped TiO 2 photoanodes. Electrochim Acta 2015. [DOI: 10.1016/j.electacta.2015.07.172] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
48
|
Yu YY, Gong XQ. CO Oxidation at Rutile TiO2(110): Role of Oxygen Vacancies and Titanium Interstitials. ACS Catal 2015. [DOI: 10.1021/cs501900q] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Yan-Yan Yu
- Key Laboratory
for Advanced
Materials, Centre for Computational Chemistry and Research Institute
of Industrial Catalysis, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People’s Republic of China
| | - Xue-Qing Gong
- Key Laboratory
for Advanced
Materials, Centre for Computational Chemistry and Research Institute
of Industrial Catalysis, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People’s Republic of China
| |
Collapse
|
49
|
Yoon Y, Wang YG, Rousseau R, Glezakou VA. Impact of Nonadiabatic Charge Transfer on the Rate of Redox Chemistry of Carbon Oxides on Rutile TiO2(110) Surface. ACS Catal 2015. [DOI: 10.1021/cs501873m] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Yeohoon Yoon
- Fundamental and Computational
Sciences Directorate, Pacific Northwest National Laboratory, PO Box 999, K1-83, Richland, Washington 99352, United States
| | - Yang-Gang Wang
- Fundamental and Computational
Sciences Directorate, Pacific Northwest National Laboratory, PO Box 999, K1-83, Richland, Washington 99352, United States
| | - Roger Rousseau
- Fundamental and Computational
Sciences Directorate, Pacific Northwest National Laboratory, PO Box 999, K1-83, Richland, Washington 99352, United States
| | - Vassiliki-Alexandra Glezakou
- Fundamental and Computational
Sciences Directorate, Pacific Northwest National Laboratory, PO Box 999, K1-83, Richland, Washington 99352, United States
| |
Collapse
|
50
|
Zhang W, Liu L, Wan L, Liu L, Cao L, Xu F, Zhao J, Wu Z. Electronic structures of bare and terephthalic acid adsorbed TiO2(110)-(1 × 2) reconstructed surfaces: origin and reactivity of the band gap states. Phys Chem Chem Phys 2015; 17:20144-53. [DOI: 10.1039/c5cp01298h] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Ti2O3-row contributed band gap states are sensitive to TPA adsorption, resulting in the redistribution of Ti 3d states at the interface.
Collapse
Affiliation(s)
- Wenhua Zhang
- National Synchrotron Radiation Laboratory
- University of Science and Technology of China
- Hefei 230029
- People's Republic of China
| | - Liming Liu
- Department of Physics and Hefei National Laboratory for Physical Sciences at the Microscale
- University of Science and Technology of China
- Hefei 230026
- People's Republic of China
| | - Li Wan
- National Synchrotron Radiation Laboratory
- University of Science and Technology of China
- Hefei 230029
- People's Republic of China
| | - Lingyun Liu
- National Synchrotron Radiation Laboratory
- University of Science and Technology of China
- Hefei 230029
- People's Republic of China
| | - Liang Cao
- High Magnetic Field Laboratory
- Chinese Academy of Sciences
- Hefei 230031
- P. R. China
| | - Faqiang Xu
- National Synchrotron Radiation Laboratory
- University of Science and Technology of China
- Hefei 230029
- People's Republic of China
| | - Jin Zhao
- Department of Physics and Hefei National Laboratory for Physical Sciences at the Microscale
- University of Science and Technology of China
- Hefei 230026
- People's Republic of China
- Synergetic Innovation Center of Quantum Information & Quantum Physics
| | - Ziyu Wu
- National Synchrotron Radiation Laboratory
- University of Science and Technology of China
- Hefei 230029
- People's Republic of China
- Beijing Synchrotron Radiation Laboratory
| |
Collapse
|