1
|
Boeckers H, Chaudhary A, Martinović P, Walker AV, McElwee-White L, Swiderek P. Electron-induced deposition using Fe(CO) 4MA and Fe(CO) 5 - effect of MA ligand and process conditions. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2024; 15:500-516. [PMID: 38745584 PMCID: PMC11092064 DOI: 10.3762/bjnano.15.45] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 04/18/2024] [Indexed: 05/16/2024]
Abstract
The electron-induced decomposition of Fe(CO)4MA (MA = methyl acrylate), which is a potential new precursor for focused electron beam-induced deposition (FEBID), was investigated by surface science experiments under UHV conditions. Auger electron spectroscopy was used to monitor deposit formation. The comparison between Fe(CO)4MA and Fe(CO)5 revealed the effect of the modified ligand architecture on the deposit formation in electron irradiation experiments that mimic FEBID and cryo-FEBID processes. Electron-stimulated desorption and post-irradiation thermal desorption spectrometry were used to obtain insight into the fate of the ligands upon electron irradiation. As a key finding, the deposits obtained from Fe(CO)4MA and Fe(CO)5 were surprisingly similar, and the relative amount of carbon in deposits prepared from Fe(CO)4MA was considerably less than the amount of carbon in the MA ligand. This demonstrates that electron irradiation efficiently cleaves the neutral MA ligand from the precursor. In addition to deposit formation by electron irradiation, the thermal decomposition of Fe(CO)4MA and Fe(CO)5 on an Fe seed layer prepared by EBID was compared. While Fe(CO)5 sustains autocatalytic growth of the deposit, the MA ligand hinders the thermal decomposition in the case of Fe(CO)4MA. The heteroleptic precursor Fe(CO)4MA, thus, offers the possibility to suppress contributions of thermal reactions, which can compromise control over the deposit shape and size in FEBID processes.
Collapse
Affiliation(s)
- Hannah Boeckers
- Institute for Applied and Physical Chemistry (IAPC), Faculty 2 (Chemistry/Biology), University of Bremen, Leobener Str. 5, 28359 Bremen, Germany
| | - Atul Chaudhary
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Petra Martinović
- Institute for Applied and Physical Chemistry (IAPC), Faculty 2 (Chemistry/Biology), University of Bremen, Leobener Str. 5, 28359 Bremen, Germany
| | - Amy V Walker
- Department of Materials Science and Engineering RL10, University of Texas at Dallas, 800 W. Campbell Rd, Richardson, Texas 75080, United States
| | - Lisa McElwee-White
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Petra Swiderek
- Institute for Applied and Physical Chemistry (IAPC), Faculty 2 (Chemistry/Biology), University of Bremen, Leobener Str. 5, 28359 Bremen, Germany
| |
Collapse
|
2
|
Utke I, Swiderek P, Höflich K, Madajska K, Jurczyk J, Martinović P, Szymańska I. Coordination and organometallic precursors of group 10 and 11: Focused electron beam induced deposition of metals and insight gained from chemical vapour deposition, atomic layer deposition, and fundamental surface and gas phase studies. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.213851] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
3
|
Wang YN, Wang SD, Chang XP, Li HF, Zhang JM, Xu L, Wang SY. A New Fluorescence MOF for Highly Sensitive Detection of Acetylacetone. ChemistrySelect 2021. [DOI: 10.1002/slct.202004531] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Y. N. Wang
- College of Chemistry and Chemical Engineering Xinyang Normal University Xinyang Henan 464000 China
| | - S. D. Wang
- College of Chemistry and Chemical Engineering Xinyang Normal University Xinyang Henan 464000 China
| | - X. P. Chang
- College of Chemistry and Chemical Engineering Xinyang Normal University Xinyang Henan 464000 China
| | - H. F. Li
- School of Science Xi'an Technological University Xi'an 710032 China
| | - J. M. Zhang
- College of Chemistry and Chemical Engineering Xinyang Normal University Xinyang Henan 464000 China
| | - L. Xu
- College of Chemistry and Chemical Engineering Xinyang Normal University Xinyang Henan 464000 China
| | - S. Y. Wang
- College of Chemistry and Chemical Engineering Xinyang Normal University Xinyang Henan 464000 China
| |
Collapse
|
4
|
Ji Y, Qin D, Zheng J, Shi Q, Wang J, Lin Q, Chen J, Gao Y, Li G, An T. Mechanism of the atmospheric chemical transformation of acetylacetone and its implications in night-time second organic aerosol formation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 720:137610. [PMID: 32146400 DOI: 10.1016/j.scitotenv.2020.137610] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/24/2020] [Accepted: 02/26/2020] [Indexed: 06/10/2023]
Abstract
Recently, a high concentration of acetylacetone (AcAc) has been measured in China, and its day-time chemistry with OH reaction has been evaluated. The phenomenon has profound implications in air pollution, human health and climate change. To systematically understand the atmospheric chemistry of AcAc and its role in the atmosphere, the night-time chemistry of AcAc with O3 and NO3 radical were investigated in this work in detail using density functional theory. The results show that for O3- and NO3-initiated atmospheric oxidation reactions of AcAc, the barrier energies of O3/NO3-addition are found to be much lower than those of H-abstraction, suggesting that O3/NO3-addition to AcAc is a major contributing pathway in the atmospheric chemical transformation reactions. The total degradation rate constants were calculated to be 2.36 × 10-17 and 1.92 × 10-17 cm3 molecule-1 s-1 for the O3- and NO3-initiated oxidation of AcAc at 298 K, respectively. The half-life of AcAc+O3 in some polluted areas (such as, Pearl River Delta and Yangtze River Delta) is close to 3 h under typical tropospheric conditions. Due to its short half-life, the ozonolysis of AcAc plays a more significant role in the night-time hours, leading to fast transformations to form primary ozonides (POZs). A prompt, thermal decomposition of POZs occurred to yield methylglyoxal, acetic acid and Criegee intermediates, which mainly contributed to the formation of secondary organic aerosol (SOA). Subsequently, using the high-resolution time-of-flight chemical ionization mass spectrometer (HR-ToF-CIMS), a non-negligible concentration of AcAc was measured in the field observation during the night-time in Nanjing, China. The obtained results reveal that the atmospheric oxidation of AcAc can successively contribute to the formation of SOA under polluted environments regardless of the time (day-time or night-time). This is due to its high reactivity to tropospheric oxidant species (such as, O3 and NO3 radicals at night-time).
Collapse
Affiliation(s)
- Yuemeng Ji
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Dandan Qin
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Jun Zheng
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Qiuju Shi
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Jiaxin Wang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Qinhao Lin
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Jiangyao Chen
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Yanpeng Gao
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Guiying Li
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Taicheng An
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
5
|
Interaction of Slow Electrons with Thermally Evaporated Manganese(II) Acetylacetonate Complexes. J Phys Chem A 2020; 124:2186-2192. [PMID: 32142277 DOI: 10.1021/acs.jpca.9b10119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Complexes of metal acetylacetonate are used as general precursors for the synthesis of metal oxide nanomaterials. In the present work, we study the interaction of low-energy (<10 eV) electrons, produced abundantly as secondary electrons during the bombardment of the substrate by the primary particles, with thermally evaporated manganese(II) acetylacetonate complexes. We found that the acetylacetonate anion ([acac]-) is the major anionic species produced, while the second most abundant is the parent anion [Mn(II)(acac)2]-. This observation differs from those reported from electron attachment to Cu(acac)2, for which [Cu(II)(acac)2]- is the predominant anion [Kopyra et al. Phys. Chem. Chem. Phys. 2018, 20, 7746]. The experimental data are supported by theory to provide information on the physical-chemistry processes initiated by slow electrons to the organometallic precursor and to interpret the different behavior of Mn(acac)2 compared to Cu(acac)2.
Collapse
|
6
|
Chakraborty G, Das P, Mandal SK. Polar Sulfone-Functionalized Oxygen-Rich Metal-Organic Frameworks for Highly Selective CO 2 Capture and Sensitive Detection of Acetylacetone at ppb Level. ACS APPLIED MATERIALS & INTERFACES 2020; 12:11724-11736. [PMID: 32011848 DOI: 10.1021/acsami.9b22658] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A rational combination of an oxygen-rich pyridyl substituted tetrapodal ligand, tetrakis(4-pyridyloxymethylene)methane (TPOM), and a polar sulfone-functionalized conjugated bent dicarboxylate linker, dibenzothiophene-5,5'-dioxide-3,7-dicarboxylic acid (H2(3,7-DBTDC)), with d10 metal centers, Zn(II) and Cd(II), has led to the construction of two new three-dimensional (3D) metal-organic frameworks,{[Zn2(TPOM)(3,7-DBTDC)2]·7H2O·DMA}n (1) and {[Cd2(TPOM)(3,7-DBTDC)2]·6H2O·3DMF}n (2). Single-crystal X-ray analysis indicates that 1 is a 3D framework with a dinuclear repeating unit having two different Zn(II) centers (tetrahedral and square pyramidal) and 2 is a 3D framework comprised of a dinuclear repeating unit with one crystallographically independent distorted pentagonal bipyramidal Cd(II) coordinated to chelating/bridging carboxylates and nitrogen atoms of the TPOM ligand. In both cases, the pores are aligned with oxygen atoms of the TPOM ligand and decorated with polar sulfone moieties. On the basis of the stability established by thermogravimetric analysis and powder X-ray diffraction (PXRD) and the presence of large solvent accessible voids (25.4% for 1 and 40.6% for 2), gas sorption studies of different gases (N2, CO2, and CH4) and water vapor have been explored for both 1 and 2. The CO2 sorption isotherm depicts type I isotherm with an uptake of 93.6 cm3 g-1 (for 1) and 100.6 cm3 g-1 (for 2) at 195 K. Additionally, sorption of CO2 is highly selective over that of N2 and CH4 for both 1 and 2 due to the strong quadrupolar interactions between sulfone moieties and CO2 molecules. Configurational bias Monte Carlo (CBMC) molecular simulation has further justified the highly selective CO2 capture. On the other hand, the luminescence nature of 1 and 2 has been employed for highly selective detection of acetylacetone in aqueous methanol with a limit of 59 ppb in 1 and 66 ppb in 2, which are among the best reported values so far in the literature. The Stern-Volmer plots, spectral overlap, density functional theory calculations, CBMC simulation, and time-resolved lifetime measurements have been utilized for an extensive mechanistic study. The exclusive selectivity for acetylacetone in 1 and 2 have been confirmed by competitive selectivity test. Both exhibited good recyclability and stability after sensing experiments analyzed by fluorescence, PXRD, and field emission scanning electron microscopy studies.
Collapse
Affiliation(s)
- Gouri Chakraborty
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, Manauli PO, S.A.S. Nagar, Mohali, Punjab 140306, India
| | - Prasenjit Das
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, Manauli PO, S.A.S. Nagar, Mohali, Punjab 140306, India
| | - Sanjay K Mandal
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, Manauli PO, S.A.S. Nagar, Mohali, Punjab 140306, India
| |
Collapse
|
7
|
Kang XM, Fan XY, Hao PY, Wang WM, Zhao B. A stable zinc–organic framework with luminescence detection of acetylacetone in aqueous solution. Inorg Chem Front 2019. [DOI: 10.1039/c8qi01260a] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A stable Zn-based MOF has been prepared, presenting the first example of a recyclable luminescent sensor for recognizing acetylacetone in aqueous solution.
Collapse
Affiliation(s)
- Xiao-Min Kang
- College of Chemistry and Key Laboratory of Advanced Energy Material Chemistry
- Nankai University
- Tianjin 300071
- China
| | - Xi-Yu Fan
- College of Chemistry and Key Laboratory of Advanced Energy Material Chemistry
- Nankai University
- Tianjin 300071
- China
| | - Peng-Yuan Hao
- College of Chemistry and Key Laboratory of Advanced Energy Material Chemistry
- Nankai University
- Tianjin 300071
- China
| | - Wen-Min Wang
- Department of Chemistry
- Tianjin University
- Tianjin 300072
- China
| | - Bin Zhao
- College of Chemistry and Key Laboratory of Advanced Energy Material Chemistry
- Nankai University
- Tianjin 300071
- China
| |
Collapse
|
8
|
Ji Y, Zheng J, Qin D, Li Y, Gao Y, Yao M, Chen X, Li G, An T, Zhang R. OH-Initiated Oxidation of Acetylacetone: Implications for Ozone and Secondary Organic Aerosol Formation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:11169-11177. [PMID: 30160952 DOI: 10.1021/acs.est.8b03972] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Acetylacetone (AcAc) is a common atmospheric oxygenated volatile organic compound due to broad industrial applications, but its atmospheric oxidation mechanism is not fully understood. We investigate the mechanism, kinetics, and atmospheric fate of the OH-initiated oxidation for the enolic and ketonic isomers of AcAc using quantum chemical and kinetic rate calculations. OH addition to enol-AcAc is more favorable than addition to keto-AcAc, with the total rate constant of 1.69 × 10-13 exp(1935/T) cm3 molecule-1 s-1 over the temperature range of 200-310 K. For the reaction of the enol-AcAc with OH, the activation energies of H-abstraction are at least 4 kcal mol-1 higher than those of OH-addition, and the rate constants for OH-addition are by 2-3 orders of magnitude higher than those for H-abstraction. Oxidation of AcAc is predicted to yield significant amounts of acetic acid and methylglyoxal, larger than those are currently recognized. A lifetime of less than a few hours for AcAc is estimated throughout the tropospheric conditions. In addition, we present field measurements in Beijing and Nanjing, China, showing significant concentrations of AcAc in the two urban locations. Our results reveal that the OH-initiated oxidation of AcAc contributes importantly to ozone and SOA formation under polluted environments.
Collapse
Affiliation(s)
- Yuemeng Ji
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control , Guangdong University of Technology , Guangzhou 510006 , P. R. China
| | - Jun Zheng
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology , Nanjing University of Information Science & Technology , Nanjing 210044 , P. R. China
| | - Dandan Qin
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control , Guangdong University of Technology , Guangzhou 510006 , P. R. China
| | - Yixin Li
- Department of Atmospheric Sciences and Department of Chemistry , Texas A&M University , College Station , Texas 77843 , United States
| | - Yanpeng Gao
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control , Guangdong University of Technology , Guangzhou 510006 , P. R. China
| | - Meijing Yao
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control , Guangdong University of Technology , Guangzhou 510006 , P. R. China
| | - Xingyu Chen
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control , Guangdong University of Technology , Guangzhou 510006 , P. R. China
| | - Guiying Li
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control , Guangdong University of Technology , Guangzhou 510006 , P. R. China
| | - Taicheng An
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control , Guangdong University of Technology , Guangzhou 510006 , P. R. China
| | - Renyi Zhang
- Department of Atmospheric Sciences and Department of Chemistry , Texas A&M University , College Station , Texas 77843 , United States
| |
Collapse
|
9
|
Lacko M, Papp P, Szymańska IB, Szłyk E, Matejčík Š. Electron interaction with copper(II) carboxylate compounds. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2018; 9:384-398. [PMID: 29515952 PMCID: PMC5815308 DOI: 10.3762/bjnano.9.38] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 01/02/2018] [Indexed: 06/08/2023]
Abstract
In the present study we have performed electron collision experiments with copper carboxylate complexes: [Cu2(t-BuNH2)2(µ-O2CC2F5)4], [Cu2(s-BuNH2)2(µ-O2CC2F5)4], [Cu2(EtNH2)2(µ-O2CC2F5)4], and [Cu2(µ-O2CC2F5)4]. Mass spectrometry was used to identify the fragmentation pattern of the coordination compounds produced in crossed electron - molecular beam experiments and to measure the dependence of ion yields of positive and negative ions on the electron energy. The dissociation pattern of positive ions contains a sequential loss of both the carboxylate ligands and/or the amine ligands from the complexes. Moreover, the fragmentation of the ligands themselves is visible in the mass spectrum below m/z 140. For the studied complexes the metallated ions containing both ligands, e.g., Cu2(O2CC2F5)(RNH2)+, Cu2(O2CC2F5)3(RNH2)2+ confirm the evaporation of whole complex molecules. A significant production of Cu+ ion was observed only for [Cu2(µ-O2CC2F5)4], a weak yield was detected for [Cu2(EtNH2)2(µ-O2CC2F5)4] as well. The dissociative electron attachment processes leading to formation of negative ions are similar for all investigated molecules as the highest unoccupied molecular orbital of the studied complexes has Cu-N and Cu-O antibonding character. For all complexes, formation of the Cu2(O2CC2F5)4-• anion is observed together with mononuclear DEA fragments Cu(O2CC2F5)3-, Cu(O2CC2F5)2- and Cu(O2CC2F5)-•. All dominant DEA fragments of these complexes are formed through single particle resonant processes close to 0 eV.
Collapse
Affiliation(s)
- Michal Lacko
- Department of Experimental Physics, Faculty of Mathematics, Physics and Informatics, Comenius University in Bratislava, Mlynská dolina F2, 842 48 Bratislava, Slovakia
| | - Peter Papp
- Department of Experimental Physics, Faculty of Mathematics, Physics and Informatics, Comenius University in Bratislava, Mlynská dolina F2, 842 48 Bratislava, Slovakia
| | - Iwona B Szymańska
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland
| | - Edward Szłyk
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland
| | - Štefan Matejčík
- Department of Experimental Physics, Faculty of Mathematics, Physics and Informatics, Comenius University in Bratislava, Mlynská dolina F2, 842 48 Bratislava, Slovakia
| |
Collapse
|
10
|
Warneke Z, Rohdenburg M, Warneke J, Kopyra J, Swiderek P. Electron-driven and thermal chemistry during water-assisted purification of platinum nanomaterials generated by electron beam induced deposition. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2018; 9:77-90. [PMID: 29441253 PMCID: PMC5789382 DOI: 10.3762/bjnano.9.10] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 12/06/2017] [Indexed: 06/01/2023]
Abstract
Focused electron beam induced deposition (FEBID) is a versatile tool for the direct-write fabrication of nanostructures on surfaces. However, FEBID nanostructures are usually highly contaminated by carbon originating from the precursor used in the process. Recently, it was shown that platinum nanostructures produced by FEBID can be efficiently purified by electron irradiation in the presence of water. If such processes can be transferred to FEBID deposits produced from other carbon-containing precursors, a new general approach to the generation of pure metallic nanostructures could be implemented. Therefore this study aims to understand the chemical reactions that are fundamental to the water-assisted purification of platinum FEBID deposits generated from trimethyl(methylcyclopentadienyl)platinum(IV) (MeCpPtMe3). The experiments performed under ultrahigh vacuum conditions apply a combination of different desorption experiments coupled with mass spectrometry to analyse reaction products. Electron-stimulated desorption monitors species that leave the surface during electron exposure while post-irradiation thermal desorption spectrometry reveals products that evolve during subsequent thermal treatment. In addition, desorption of volatile products was also observed when a deposit produced by electron exposure was subsequently brought into contact with water. The results distinguish between contributions of thermal chemistry, direct chemistry between water and the deposit, and electron-induced reactions that all contribute to the purification process. We discuss reaction kinetics for the main volatile products CO and CH4 to obtain mechanistic information. The results provide novel insights into the chemistry that occurs during purification of FEBID nanostructures with implications also for the stability of the carbonaceous matrix of nanogranular FEBID materials under humid conditions.
Collapse
Affiliation(s)
- Ziyan Warneke
- University of Bremen, Faculty 2 (Chemistry/Biology), Institute of Applied and Physical Chemistry, Leobener Straße / NW 2, Postfach 330440, D-28334 Bremen, Germany
| | - Markus Rohdenburg
- University of Bremen, Faculty 2 (Chemistry/Biology), Institute of Applied and Physical Chemistry, Leobener Straße / NW 2, Postfach 330440, D-28334 Bremen, Germany
| | - Jonas Warneke
- University of Bremen, Faculty 2 (Chemistry/Biology), Institute of Applied and Physical Chemistry, Leobener Straße / NW 2, Postfach 330440, D-28334 Bremen, Germany
- Pacific Northwest National Laboratory, Physical Science Division, Richland, WA, USA
| | - Janina Kopyra
- Siedlce University, Faculty of Sciences, 4 Maja 54, 08-110 Siedlce, Poland
| | - Petra Swiderek
- University of Bremen, Faculty 2 (Chemistry/Biology), Institute of Applied and Physical Chemistry, Leobener Straße / NW 2, Postfach 330440, D-28334 Bremen, Germany
| |
Collapse
|
11
|
Kopyra J, Rabilloud F, Abdoul-Carime H. Interaction of gas phase copper(ii) acetylacetonate with slow electrons. Phys Chem Chem Phys 2018; 20:7746-7753. [DOI: 10.1039/c7cp08149a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Understanding the fundamental processes underlying the interaction of organometallic compounds with low energy electrons is desirable for optimizing methodologies for nanoscale applications.
Collapse
Affiliation(s)
- Janina Kopyra
- Siedlce University
- Faculty of Sciences
- 08-110 Siedlce
- Poland
| | | | | |
Collapse
|
12
|
Sodhi RK, Paul S. An Overview of Metal Acetylacetonates: Developing Areas/Routes to New Materials and Applications in Organic Syntheses. CATALYSIS SURVEYS FROM ASIA 2017. [DOI: 10.1007/s10563-017-9239-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
13
|
Kang XM, Cheng RR, Xu H, Wang WM, Zhao B. A Sensitive Luminescent Acetylacetone Probe Based on Zn-MOF with Six-Fold Interpenetration. Chemistry 2017; 23:13289-13293. [DOI: 10.1002/chem.201702533] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Indexed: 12/21/2022]
Affiliation(s)
- Xiao-Min Kang
- College of Chemistry; Key Laboratory of Advanced Energy Material Chemistry; MOE and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); Nankai University; Tianjin 300071 P. R. China
| | - Rui-Rui Cheng
- College of Chemistry; Key Laboratory of Advanced Energy Material Chemistry; MOE and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); Nankai University; Tianjin 300071 P. R. China
| | - Hang Xu
- College of Chemistry; Key Laboratory of Advanced Energy Material Chemistry; MOE and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); Nankai University; Tianjin 300071 P. R. China
| | - Wen-Min Wang
- College of Chemistry; Key Laboratory of Advanced Energy Material Chemistry; MOE and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); Nankai University; Tianjin 300071 P. R. China
| | - Bin Zhao
- College of Chemistry; Key Laboratory of Advanced Energy Material Chemistry; MOE and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); Nankai University; Tianjin 300071 P. R. China
| |
Collapse
|
14
|
Marashdeh A, Tiesma T, van Velzen NJC, Harder S, Havenith RWA, De Hosson JTM, van Dorp WF. The rational design of a Au(I) precursor for focused electron beam induced deposition. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2017; 8:2753-2765. [PMID: 29354346 PMCID: PMC5753056 DOI: 10.3762/bjnano.8.274] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 11/29/2017] [Indexed: 05/23/2023]
Abstract
Au(I) complexes are studied as precursors for focused electron beam induced processing (FEBIP). FEBIP is an advanced direct-write technique for nanometer-scale chemical synthesis. The stability and volatility of the complexes are characterized to design an improved precursor for pure Au deposition. Aurophilic interactions are found to play a key role. The short lifetime of ClAuCO in vacuum is explained by strong, destabilizing Au-Au interactions in the solid phase. While aurophilic interactions do not affect the stability of ClAuPMe3, they leave the complex non-volatile. Comparison of crystal structures of ClAuPMe3 and MeAuPMe3 shows that Au-Au interactions are much weaker or partially even absent for the latter structure. This explains its high volatility. However, MeAuPMe3 dissociates unfavorably during FEBIP, making it an unsuitable precursor. The study shows that Me groups reduce aurophilic interactions, compared to Cl groups, which we attribute to electronic rather than steric effects. Therefore we propose MeAuCO as a potential FEBIP precursor. It is expected to have weak Au-Au interactions, making it volatile. It is stable enough to act as a volatile source for Au deposition, being stabilized by 6.5 kcal/mol. Finally, MeAuCO is likely to dissociate in a single step to pure Au.
Collapse
Affiliation(s)
- Ali Marashdeh
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, Netherlands
- Department of Chemistry, Faculty of Science, Al-Balqa’ Applied University, Salt, Jordan
| | - Thiadrik Tiesma
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, Netherlands
| | - Niels J C van Velzen
- Stratingh Institute for Chemistry, University of Groningen, 9747 AG Groningen, Netherlands
| | - Sjoerd Harder
- Inorganic and Organometallic Chemistry, Friedrich-Alexander Universität Erlangen-Nürnberg, Egerlandstr. 1, 91058 Erlangen, Germany
| | - Remco W A Havenith
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, Netherlands
- Stratingh Institute for Chemistry, University of Groningen, 9747 AG Groningen, Netherlands
- Department of Inorganic and Physical Chemistry, University of Ghent, B-9000 Ghent, Belgium
| | - Jeff T M De Hosson
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, Netherlands
| | | |
Collapse
|
15
|
Postler J, Renzler M, Kaiser A, Huber S, Probst M, Scheier P, Ellis AM. Electron-Induced Chemistry of Cobalt Tricarbonyl Nitrosyl (Co(CO) 3NO) in Liquid Helium Nanodroplets. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2015; 119:20917-20922. [PMID: 26401190 PMCID: PMC4568542 DOI: 10.1021/acs.jpcc.5b05260] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 08/11/2015] [Indexed: 06/05/2023]
Abstract
Electron addition to cobalt tricarbonyl nitrosyl (Co(CO3NO) and its clusters has been explored in helium nanodroplets. Anions were formed by adding electrons with controlled energies, and reaction products were identified by mass spectrometry. Dissociative electron attachment (DEA) to the Co(CO)3NO monomer gave reaction products similar to those reported in earlier gas phase experiments. However, loss of NO was more prevalent than loss of CO, in marked contrast to the gas phase. Since the Co-N bond is significantly stronger than the Co-C bond, this preference for NO loss must be driven by selective reaction dynamics at low temperature. For [Co(CO)3NO] N clusters, the DEA chemistry is similar to that of the monomer, but the anion yields as a function of electron energy show large differences, with the relatively sharp resonances of the monomer being replaced by broad profiles peaking at much higher electron energies. A third experiment involved DEA of Co(CO)3NO on a C60 molecule in an attempt to simulate the effect of a surface. Once again, broad ion yield curves are seen, but CO loss now becomes the most probable reaction channel. The implication of these findings for understanding focused electron beam induced deposition of cobalt is described.
Collapse
Affiliation(s)
- Johannes Postler
- Institut
für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria
| | - Michael Renzler
- Institut
für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria
| | - Alexander Kaiser
- Institut
für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria
| | - Stefan
E. Huber
- Institut
für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria
| | - Michael Probst
- Institut
für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria
| | - Paul Scheier
- Institut
für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria
| | - Andrew M. Ellis
- Department
of Chemistry, University of Leicester, University Road, Leicester, LE1 7RH, U. K.
| |
Collapse
|