1
|
McGrogan A, Byrne EL, Guiney R, Headen TF, Youngs TGA, Chrobok A, Holbrey JD, Swadźba-Kwaśny M. The structure of protic ionic liquids based on sulfuric acid, doped with excess of sulfuric acid or with water. Phys Chem Chem Phys 2023; 25:9785-9795. [PMID: 36647728 DOI: 10.1039/d2cp04292d] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Neutron scattering with isotopic substitution was used to study the structure of concentrated sulfuric acid, and two protic ionic liquids (PILs): a Brønsted-acidic PIL, synthesised using pyridine and excess of sulfuric acid, [Hpy][HSO4]·H2SO4, and a hydrated PIL, in which an equimolar mixture of sulfuric acid and pyridine has been doped with water, [Hpy][HSO4]·2H2O. Brønsted acidic PILs are excellent solvents/catalysts for esterifications, driving reaction to completion by phase-separating water and ester products. Water-doped PILs are efficient solvents/antisolvents in biomass fractionation. This study was carried out to provide an insight into the relationship between the performance of PILs in the two respective processes and their liquid structure. It was found that a persistent sulfate/sulfuric acid/water network structure was retained through the transition from sulfuric acid to PILs, even in the presence of 2 moles (∼17 wt%) of water. Hydrogen sulfate PILs have the propensity to incorporate water into hydrogen-bonded anionic chains, with strong and directional hydrogen bonds, which essentially form a new water-in-salt solvent system, with its own distinct structure and physico-chemical properties. It is the properties of this hydrated PIL that can be credited both for the good performance in esterification and beneficial solvent/antisolvent behaviour in biomass fractionation.
Collapse
Affiliation(s)
- Anne McGrogan
- The QUILL Research Centre, School of Chemistry and Chemical Engineering, Queen's University Belfast, Belfast, BT9 5AG, UK.
| | - Emily L Byrne
- The QUILL Research Centre, School of Chemistry and Chemical Engineering, Queen's University Belfast, Belfast, BT9 5AG, UK.
| | - Robert Guiney
- The QUILL Research Centre, School of Chemistry and Chemical Engineering, Queen's University Belfast, Belfast, BT9 5AG, UK.
| | - Thomas F Headen
- Rutherford Appleton Laboratory, Chilton, Didcot, OX11 0QX, UK
| | | | - Anna Chrobok
- Department of Chemical Organic Technology and Petrochemistry, Silesian University of Technology, Krzywoustego 4, 44-100, Gilwice, Poland
| | - John D Holbrey
- The QUILL Research Centre, School of Chemistry and Chemical Engineering, Queen's University Belfast, Belfast, BT9 5AG, UK.
| | - Małgorzata Swadźba-Kwaśny
- The QUILL Research Centre, School of Chemistry and Chemical Engineering, Queen's University Belfast, Belfast, BT9 5AG, UK.
| |
Collapse
|
2
|
Laurent H, Baker DL, Soper AK, Ries ME, Dougan L. Bridging Structure, Dynamics, and Thermodynamics: An Example Study on Aqueous Potassium Halides. J Phys Chem B 2021; 125:12774-12786. [PMID: 34757756 DOI: 10.1021/acs.jpcb.1c06728] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Aqueous salt systems are ubiquitous in all areas of life. The ions in these solutions impose important structural and dynamic perturbations to water. In this study, we employ a combined neutron scattering, nuclear magnetic resonance, and computational modeling approach to deconstruct ion-specific perturbations to water structure and dynamics and shed light on the molecular origins of bulk thermodynamic properties of the solutions. Our approach uses the atomistic scale resolution offered to us by neutron scattering and computational modeling to investigate how the properties of particular short-ranged microenvironments within aqueous systems can be related to bulk properties of the system. We find that by considering only the water molecules in the first hydration shell of the ions that the enthalpy of hydration can be determined. We also quantify the range over which ions perturb water structure by calculating the average enthalpic interaction between a central halide anion and the surrounding water molecules as a function of distance and find that the favorable anion-water enthalpic interactions only extend to ∼4 Å. We further validate this by showing that ions induce structure in their solvating water molecules by examining the distribution of dipole angles in the first hydration shell of the ions but that this perturbation does not extend into the bulk water. We then use these structural findings to justify mathematical models that allow us to examine perturbations to rotational and diffusive dynamics in the first hydration shell around the potassium halide ions from NMR measurements. This shows that as one moves down the halide series from fluorine to iodine, and ionic charge density is therefore reduced, that the enthalpy of hydration becomes less negative. The first hydration shell also becomes less well structured, and rotational and diffusive motions of the hydrating water molecules are increased. This reduction in structure and increase in dynamics are likely the origin of the previously observed increased entropy of hydration as one moves down the halide series. These results also suggest that simple monovalent potassium halide ions induce mostly local perturbations to water structure and dynamics.
Collapse
Affiliation(s)
- Harrison Laurent
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, U.K
| | - Daniel L Baker
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, U.K
| | - Alan K Soper
- ISIS Facility, STFC Rutherford Appleton Laboratory, Didcot OX11 0QX, U.K
| | - Michael E Ries
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, U.K
| | - Lorna Dougan
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, U.K.,Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds LS2 9JT, U.K
| |
Collapse
|
3
|
Inexpensive and tuneable protic ionic liquids based on sulfuric acid for the biphasic synthesis of alkyl levulinates. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113166] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
4
|
Reid JE, Shimizu S, Walker AJ. Connecting precursors to a protic ionic liquid: Effects of hydrogen bond synergy in acid-base binary mixtures on the solvent-solute interactions. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2019.111746] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
5
|
Matuszek K, Brzeczek-Szafran A, Kobus D, MacFarlane DR, Swadźba-Kwaśny M, Chrobok A. Protic Ionic Liquids Based on Oligomeric Anions [(HSO4)(H2SO4)x]− (x = 0, 1, or 2) for a Clean ϵ-Caprolactam Synthesis. Aust J Chem 2019. [DOI: 10.1071/ch18384] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Inexpensive Brønsted acidic ionic liquids, suitable for industrial-scale catalysis, are reported as reaction media and catalysts for the Beckmann rearrangement of cyclohexanone oxime to ϵ-caprolactam. A family of protic ionic liquids was synthesised from nitrogen bases (1-methylimidazole, N,N,N-triethylamine, N-methylpyrrolidine, 2-picoline) and sulfuric acid by proton transfer in a simple, inexpensive, solvent-free, one-step process. The density, viscosity, conductivity, and ionicity of the synthesised ionic liquids were determined. Variation in the molar ratio of sulfuric acid (χH2SO4=0.67 and 0.75) was used to tune the acidity of these protic ionic liquids, which showed extremely high catalytic activity in the Beckmann rearrangement of cyclohexanone oxime to ϵ-caprolactam. Both the structure of the cation and the sulfuric acid molar ratio strongly affect the rearrangement of cyclohexanone oxime. The most active ionic liquid, based on the 1-metyhylimidazolium cation, χH2SO4=0.75, afforded high conversion of oxime combined with very good selectivity under mild conditions (110°C, 15min). The product could be extracted from the reaction mixture, eliminating the need for the neutralisation step that exists in conventional processes. The combination of affordable catalyst and process advantages leads to a greener alternative, competitive against existent industrial applications.
Collapse
|
6
|
Aravindakshan NP, Gemmell KE, Johnson KE, East ALL. The origin of the conductivity maximum vs. mixing ratio in pyridine/acetic acid and water/acetic acid. J Chem Phys 2018; 149:094505. [PMID: 30195290 DOI: 10.1063/1.5039623] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Explanations are provided for the first time for the historically known locations of electrical conductivity maxima versus mixing ratio (mole fraction of acid, xA) in mixtures of (i) acetic acid with water and (ii) acetic acid with pyridine. To resolve the question for the second system, density-functional-based molecular dynamic simulations were performed, at 1:1, 1:2, 1:3, 1:5, and 1:15 mixing ratios, to gain vital information about speciation. In a zeroth-order picture, the degree of ionization (and hence conductivity) would be maximal at xA = 0.5, but these two examples see this maximum shifted to the left (water/acetic acid, xAmax = 0.06), due to improved ion stability when the effective dielectric constant is high (i.e., water-rich mixtures), or right (pyridine/acetic acid xAmax = 0.83), due to improved acetate stability via "self-solvation" with acetic acid molecules (i.e., acid-rich mixtures) when the dielectric constant is low. A two-parameter equation, with theoretical justification, is shown to reproduce the entire 0 < xA < 1 range of data for electrical conductivity for both systems. Future work will pursue the applicability of these equations to other amine/carboxylic acid mixtures; preliminary fits to a third system (trimethylamine/acetic acid) give curious parameter values.
Collapse
Affiliation(s)
- Nikhil P Aravindakshan
- Department of Chemistry and Biochemistry, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Kyle E Gemmell
- Department of Chemistry and Biochemistry, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Keith E Johnson
- Department of Chemistry and Biochemistry, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Allan L L East
- Department of Chemistry and Biochemistry, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| |
Collapse
|
7
|
Greff da Silveira L, Jacobs M, Prampolini G, Livotto PR, Cacelli I. Development and Validation of Quantum Mechanically Derived Force-Fields: Thermodynamic, Structural, and Vibrational Properties of Aromatic Heterocycles. J Chem Theory Comput 2018; 14:4884-4900. [PMID: 30040902 DOI: 10.1021/acs.jctc.8b00218] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A selection of several aromatic molecules, representative of the important class of heterocyclic compounds, has been considered for testing and validating an automated Force Field (FF) parametrization protocol, based only on Quantum Mechanical data. The parametrization is carried out separately for the intra- and intermolecular contributions, employing respectively the Joyce and Picky software packages, previously implemented and refined in our research group. The whole approach is here automated and integrated with a computationally effective yet accurate method, devised very recently ( J. Chem. THEORY Comput., 2018, 14, 543-556) to evaluate a large number of dimer interaction energies. The resulting quantum mechanically derived FFs are then used in extensive molecular dynamics simulations, in order to evaluate a number of thermodynamic, structural, and dynamic properties of the heterocycle's gas and liquid phases. The comparison with the available experimental data is good and furnishes a validation of the presented approach, which can be confidently exploited for the design of novel and more complex materials.
Collapse
Affiliation(s)
- Leandro Greff da Silveira
- Instituto de Química , Universidade Federal do Rio Grande do Sul , Avenida Bento Gonçalves 9500 , CEP 91501-970 Porto , Alegre , Brazil
| | - Matheus Jacobs
- Instituto de Química , Universidade Federal do Rio Grande do Sul , Avenida Bento Gonçalves 9500 , CEP 91501-970 Porto , Alegre , Brazil.,Institut für Physik , Humboldt-Universität zu Berlin , Newtonstrasse 15 , 12489 , Berlin , Germany.,IRIS Adelrshof , Humboldt-Universität zu Berlin , Zum Großen Windkanal 6 , 12489 , Berlin , Germany
| | - Giacomo Prampolini
- Istituto di Chimica dei Composti OrganoMetallici (ICCOM-CNR) , Area della Ricerca, via G. Moruzzi 1 , I-56124 Pisa , Italy
| | - Paolo Roberto Livotto
- Instituto de Química , Universidade Federal do Rio Grande do Sul , Avenida Bento Gonçalves 9500 , CEP 91501-970 Porto , Alegre , Brazil
| | - Ivo Cacelli
- Istituto di Chimica dei Composti OrganoMetallici (ICCOM-CNR) , Area della Ricerca, via G. Moruzzi 1 , I-56124 Pisa , Italy.,Dipartimento di Chimica e Chimica Industriale , Università di Pisa , Via G. Moruzzi 13 , I-56124 Pisa , Italy
| |
Collapse
|
8
|
Brown LC, Hogg JM, Gilmore M, Moura L, Imberti S, Gärtner S, Gunaratne HQN, O'Donnell RJ, Artioli N, Holbrey JD, Swadźba-Kwaśny M. Frustrated Lewis pairs in ionic liquids and molecular solvents - a neutron scattering and NMR study of encounter complexes. Chem Commun (Camb) 2018; 54:8689-8692. [PMID: 29938294 DOI: 10.1039/c8cc03794a] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The presence of the weakly-associated encounter complex in the model frustrated Lewis pair solution (FLP): tris(tert-butyl)phosphine (P(tBu)3) and tris(pentafluorophenyl)borane (BCF) in benzene, was confirmed via PB correlation analysis from neutron scattering data. On average, ca. 5% of dissolved FLP components were in the associated state. NMR spectra of the FLP in benzene gave no evidence of such association, in agreement with earlier reports and the transient nature of the encounter complex. In contrast, the corresponding FLP solution in the ionic liquid, 1-decyl-3-methylimidazolium bistriflamide, [C10mim][NTf2], generated NMR signals that can be attributed to formation of encounter complexes involving over 20% of the dissolved species. The low diffusivity characteristics of ionic liquids is suggested to enhance high populations of encounter complex. The FLP in the ionic liquid solution retained its ability to split hydrogen.
Collapse
Affiliation(s)
- Lucy C Brown
- The QUILL Research Centre, School of Chemistry and Chemical Engineering, Queen's University of Belfast, Belfast BT9 5AG, UK.
| | - James M Hogg
- The QUILL Research Centre, School of Chemistry and Chemical Engineering, Queen's University of Belfast, Belfast BT9 5AG, UK.
| | - Mark Gilmore
- The QUILL Research Centre, School of Chemistry and Chemical Engineering, Queen's University of Belfast, Belfast BT9 5AG, UK.
| | - Leila Moura
- The QUILL Research Centre, School of Chemistry and Chemical Engineering, Queen's University of Belfast, Belfast BT9 5AG, UK.
| | - Silvia Imberti
- ISIS, Rutherford Appleton Laboratory, Harwell Science & Innovation Campus, Didcot, Oxfordshire OX11 0DE, UK
| | - Sabrina Gärtner
- ISIS, Rutherford Appleton Laboratory, Harwell Science & Innovation Campus, Didcot, Oxfordshire OX11 0DE, UK
| | - H Q Nimal Gunaratne
- The QUILL Research Centre, School of Chemistry and Chemical Engineering, Queen's University of Belfast, Belfast BT9 5AG, UK.
| | - Ruairi J O'Donnell
- The QUILL Research Centre, School of Chemistry and Chemical Engineering, Queen's University of Belfast, Belfast BT9 5AG, UK.
| | - Nancy Artioli
- The QUILL Research Centre, School of Chemistry and Chemical Engineering, Queen's University of Belfast, Belfast BT9 5AG, UK.
| | - John D Holbrey
- The QUILL Research Centre, School of Chemistry and Chemical Engineering, Queen's University of Belfast, Belfast BT9 5AG, UK.
| | - Małgorzata Swadźba-Kwaśny
- The QUILL Research Centre, School of Chemistry and Chemical Engineering, Queen's University of Belfast, Belfast BT9 5AG, UK.
| |
Collapse
|
9
|
Gilmore M, Moura LM, Turner AH, Swadźba-Kwaśny M, Callear SK, McCune JA, Scherman OA, Holbrey JD. A comparison of choline:urea and choline:oxalic acid deep eutectic solvents at 338 K. J Chem Phys 2018; 148:193823. [DOI: 10.1063/1.5010246] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Mark Gilmore
- School of Chemistry and Chemical Engineering, The Queen’s University of Belfast, Belfast BT9 5AG, Northern Ireland,
United Kingdom
| | - Leila M. Moura
- School of Chemistry and Chemical Engineering, The Queen’s University of Belfast, Belfast BT9 5AG, Northern Ireland,
United Kingdom
| | - Adam H. Turner
- School of Chemistry and Chemical Engineering, The Queen’s University of Belfast, Belfast BT9 5AG, Northern Ireland,
United Kingdom
| | - Małgorzata Swadźba-Kwaśny
- School of Chemistry and Chemical Engineering, The Queen’s University of Belfast, Belfast BT9 5AG, Northern Ireland,
United Kingdom
| | - Samantha K. Callear
- ISIS, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE,
United Kingdom
| | - Jade A. McCune
- Melville Laboratory for Polymer Synthesis, Department of Chemistry, University of Cambridge, Lensfield Road,
Cambridge CB2 1EW, United Kingdom
| | - Oren A. Scherman
- Melville Laboratory for Polymer Synthesis, Department of Chemistry, University of Cambridge, Lensfield Road,
Cambridge CB2 1EW, United Kingdom
| | - John D. Holbrey
- School of Chemistry and Chemical Engineering, The Queen’s University of Belfast, Belfast BT9 5AG, Northern Ireland,
United Kingdom
| |
Collapse
|
10
|
Reid JESJ, Bernardes CES, Agapito F, Martins F, Shimizu S, Minas da Piedade ME, Walker AJ. Structure-property relationships in protic ionic liquids: a study of solvent-solvent and solvent-solute interactions. Phys Chem Chem Phys 2018; 19:28133-28138. [PMID: 29022017 DOI: 10.1039/c7cp05076c] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The ionic nature of a functionalized protic ionic liquid cannot be rationalized simply through the differences in aqueous proton dissociation constants between the acid precursor and the conjugate acid of the base precursor. The extent of proton transfer, i.e. the equilibrium ionicity, of a tertiary ammonium acetate protic ionic liquid can be significantly increased by introducing an hydroxyl functional group on the cation, compared to the alkyl or amino-functionalized analogues. This increase in apparent ionic nature correlates well with variations in solvent-solute and solvent-solvent interaction parameters, as well as with physicochemical properties such as viscosity.
Collapse
Affiliation(s)
- Joshua E S J Reid
- York Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York YO10 5DD, UK
| | | | | | | | | | | | | |
Collapse
|
11
|
Headen TF, Cullen PL, Patel R, Taylor A, Skipper NT. The structures of liquid pyridine and naphthalene: the effects of heteroatoms and core size on aromatic interactions. Phys Chem Chem Phys 2018; 20:2704-2715. [DOI: 10.1039/c7cp06689a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Spatial and orientational structures of liquid naphthalene and pyridine revealed using neutron scattering combined with empirical potential structure refinement.
Collapse
Affiliation(s)
- T. F. Headen
- ISIS Neutron Facility, STFC Rutherford Appleton Laboratory, Harwell Campus
- Didcot
- UK
| | - P. L. Cullen
- University College London, Dept. Physics and Astronomy
- London
- UK
| | - R. Patel
- University College London, Dept. Physics and Astronomy
- London
- UK
| | - A. Taylor
- University College London, Dept. Physics and Astronomy
- London
- UK
| | - N. T. Skipper
- University College London, Dept. Physics and Astronomy
- London
- UK
| |
Collapse
|
12
|
Turner AH, Imberti S, Swadźba-Kwaśny M, Holbrey JD. Applying neutron diffraction with isotopic substitution to the structure and proton-transport pathways in protic imidazolium bis{(trifluoromethyl)sulfonyl}imide ionic liquids. Faraday Discuss 2018; 206:247-263. [DOI: 10.1039/c7fd00143f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Neutron diffraction with isotopic substitution has been applied to examine the potential for complex-ion formation in protic imidazolium bis{(trifluoromethyl)sulfonyl}imide ionic liquids.
Collapse
Affiliation(s)
- Adam H. Turner
- School of Chemistry and Chemical Engineering
- The Queen’s University of Belfast
- Belfast
- UK
| | - Silvia Imberti
- ISIS
- Rutherford Appleton Laboratory
- Harwell Science & Innovation Campus
- Didcot
- UK
| | | | - John D. Holbrey
- School of Chemistry and Chemical Engineering
- The Queen’s University of Belfast
- Belfast
- UK
| |
Collapse
|
13
|
Steinke N, Genina A, Lorenz CD, McLain SE. Salt Interactions in Solution Prevent Direct Association of Urea with a Peptide Backbone. J Phys Chem B 2017; 121:1866-1876. [DOI: 10.1021/acs.jpcb.6b12542] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Nicola Steinke
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, U.K
| | - Anna Genina
- Department of Physics, King’s College London, London SE1 9NH, U.K
| | | | - Sylvia E. McLain
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, U.K
| |
Collapse
|
14
|
13C and 1H NMR measurements to investigate the kinetics and the mechanism of acetic acid (CH3CO2H) ionization as a model for organic acid dissociation dynamics for polymeric membrane water filtration. J Mol Liq 2017. [DOI: 10.1016/j.molliq.2016.11.108] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
15
|
Rhys NH, Gillams RJ, Collins LE, Callear SK, Lawrence MJ, McLain SE. On the structure of an aqueous propylene glycol solution. J Chem Phys 2016; 145:224504. [DOI: 10.1063/1.4971208] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Natasha H. Rhys
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Richard J. Gillams
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Louise E. Collins
- King’s College London, Institute of Pharmaceutical Science, London SE1 9NH, United Kingdom
| | - Samantha K. Callear
- STFC, ISIS Facility, Rutherford Appleton Laboratory, Didcot OX11 0QU United Kingdom
| | - M. Jayne Lawrence
- King’s College London, Institute of Pharmaceutical Science, London SE1 9NH, United Kingdom
| | - Sylvia E. McLain
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| |
Collapse
|
16
|
Towey JJ, Soper AK, Dougan L. Low-Density Water Structure Observed in a Nanosegregated Cryoprotectant Solution at Low Temperatures from 285 to 238 K. J Phys Chem B 2016; 120:4439-48. [DOI: 10.1021/acs.jpcb.6b01185] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- J. J. Towey
- Faculty
of Engineering, University of Nottingham, Nottingham NG7 2NR, U.K
| | - A. K. Soper
- ISIS
Facility, Rutherford Appleton Laboratory, Chilton, Didcot, Oxon OX11 OQX, U.K
| | - L. Dougan
- School
of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, U.K
| |
Collapse
|
17
|
|