1
|
Zhang W, Wu X, Peng X, Tian Y, Yuan H. Solution Processable Metal-Organic Frameworks: Synthesis Strategy and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2412708. [PMID: 39470040 DOI: 10.1002/adma.202412708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/30/2024] [Indexed: 10/30/2024]
Abstract
Metal-organic frameworks (MOFs), constructed by inorganic secondary building units with organic linkers via reticular chemistry, inherently suffer from poor solution processability due to their insoluble nature, resulting from their extensive crystalline networks and structural rigidity. The ubiquitous occurrence of precipitation and agglomeration of MOFs upon formation poses a significant obstacle to the scale-up production of MOF-based monolith, aerogels, membranes, and electronic devices, thus restricting their practical applications in various scenarios. To address the previously mentioned challenge, significant strides have been achieved over the past decade in the development of various strategies aimed at preparing solution-processable MOF systems. In this review, the latest advance in the synthetic strategies for the construction of solution-processable MOFs, including direct dispersion in ionic liquids, surface modification, controllable calcination, and bottom-up synthesis, is comprehensively summarized. The respective advantages and disadvantages of each method are discussed. Additionally, the intriguing applications of solution-processable MOF systems in the fields of liquid adsorbent, molecular capture, sensing, and separation are systematically discussed. Finally, the challenges and opportunities about the continued advancement of solution-processable MOFs and their potential applications are outlooked.
Collapse
Affiliation(s)
- Wanglin Zhang
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Xuanhao Wu
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Xiaoyan Peng
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Yefei Tian
- School of Materials Science and Engineering, Chang'an University, No. 75 Changan Middle Road, Xi'an, Shaanxi, 710064, P. R. China
| | - Hongye Yuan
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| |
Collapse
|
2
|
Jia Q, Lasseuguette E, Kaur H, Naden AB, Ferrari MC, Wright PA. Zinc triazolate oxalate CALF-20 with platelet morphology and its PEBAX-based mixed matrix membranes for CO 2/N 2 separation. Chem Commun (Camb) 2024; 60:11128-11131. [PMID: 39268921 DOI: 10.1039/d4cc03461a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
CALF-20, [Zn2(1,2,4-triazolate)2(oxalate)] shows remarkable performance in post-combustion carbon capture, even under humid conditions1 but its reported crystal morphology hinders its applicability in mixed matrix membranes (MMMs). Here, a route to its preparation as platelets a few tens of nm thick is reported. These were incorporated into a PEBAX MH1567 polymer matrix and the resultant MMMs display improvement in CO2 permeability and CO2/N2 selectivity.
Collapse
Affiliation(s)
- Qian Jia
- EaStCHEM School of Chemistry, University of St Andrews, Purdie Building, North Haugh, St Andrews KY16, 9ST, UK.
| | - Elsa Lasseuguette
- School of Engineering, University of Edinburgh, Robert Stevenson Rd, Edinburgh EH9 3FB, UK.
| | - Harpreet Kaur
- EaStCHEM School of Chemistry, University of St Andrews, Purdie Building, North Haugh, St Andrews KY16, 9ST, UK.
| | - Aaron B Naden
- EaStCHEM School of Chemistry, University of St Andrews, Purdie Building, North Haugh, St Andrews KY16, 9ST, UK.
| | - Maria-Chiara Ferrari
- School of Engineering, University of Edinburgh, Robert Stevenson Rd, Edinburgh EH9 3FB, UK.
| | - Paul A Wright
- EaStCHEM School of Chemistry, University of St Andrews, Purdie Building, North Haugh, St Andrews KY16, 9ST, UK.
| |
Collapse
|
3
|
Hasan MR, Coronas J. How Can the Filler-Polymer Interaction in Mixed Matrix Membranes Be Enhanced? Chempluschem 2024:e202400456. [PMID: 39194134 DOI: 10.1002/cplu.202400456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/28/2024] [Accepted: 08/28/2024] [Indexed: 08/29/2024]
Abstract
Mixed matrix membranes (MMMs) constitute a type of molecular separation membranes in which a nanomaterial type filler is dispersed in a given polymer to enhance its selective permeation ability. The key issue in MMMs is the establishing of a proper filler-polymer interaction to avoid non-selective transport paths while increasing permeability but also to improve other membrane properties such as aging and plasticization. Along the pass years several strategies have been applied to enhance the physicochemical interaction between the fillers (e. g. silicas, zeolites, porous coordination polymers, carbonaceous materials, etc.) and the membrane polymers: increase of external surface area, priming, use of intrinsically more compatible fillers, in situ synthesis of filler, in situ polymerization, polymer side-chain modification and post-synthetic modification of filler.
Collapse
Affiliation(s)
- Md Rafiul Hasan
- Department of Chemical Engineering, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Joaquín Coronas
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza, 50018, Spain
- Chemical and Environmental Engineering Department, Universidad de Zaragoza, Zaragoza, 50018, Spain
| |
Collapse
|
4
|
Zeng Q, Guo Y, Zhao L, Wang T, Zhang L, Fan F, Fu Y. Preparation of Free-Standing Defect-Free ZIF-8/PVA Membranes via Confined Reaction at the Quasi-Interface. ACS APPLIED MATERIALS & INTERFACES 2024; 16:40243-40249. [PMID: 39028833 DOI: 10.1021/acsami.4c08304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2024]
Abstract
Developing a facile strategy to synthesize free-standing defect-free metal-organic framework (MOF) membranes with high separation selectivity and good mechanical stability is very appealing but challenging. Herein, by confining the reaction of metal and ligand at the quasi-interface, a representative membrane composed of a continuous ZIF-8 layer and poly(vinyl alcohol) (PVA) was fabricated. The continuous ZIF-8 layer endowed the membrane with high separation efficiency, while PVA acted as a filler to eliminate the defection, synergistically achieving high selective ion transport and good mechanical stability. The continuous defect-free ZIF-8/PVA membrane showed excellent separation performance of selective ion transport with high Li+ permeance of 17.83 mol·m-2·h-1 as well as decent Li+/Mg2+ and Li+/Ca2+ selectivities of 24.60 and 244.58, respectively. The separation performance of the ZIF-8/PVA membrane remained stable after 10% strain, indicating its good mechanical stability. This work will promote the development of MOF-based membranes in practical applications.
Collapse
Affiliation(s)
- Qingqi Zeng
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang110819, P. R. China
| | - Yan Guo
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang110819, P. R. China
| | - Lin Zhao
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang110819, P. R. China
| | - Tieqiang Wang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang110819, P. R. China
| | - Liying Zhang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang110819, P. R. China
| | - Fuqiang Fan
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang110819, P. R. China
| | - Yu Fu
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang110819, P. R. China
| |
Collapse
|
5
|
Mohsenpour Tehrani M, Chehrazi E. Metal-Organic-Frameworks Based Mixed-Matrix Membranes for CO 2 Separation: An Applicable-Conceptual Approach. ACS APPLIED MATERIALS & INTERFACES 2024; 16:32906-32929. [PMID: 38907700 DOI: 10.1021/acsami.4c06914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/24/2024]
Abstract
A promising class of porous crystalline materials, metal-organic frameworks (MOFs), have recently emerged as a potential material in fabricating mixed matrix membranes (MMMs) for gas separation applications. Their unique chemistry and structural versatility offer substantial advantages over conventional fillers. This review gives an in-depth exploration of MOF chemistry, focusing on strategies to manipulate their adsorption behavior to enhance separation properties. We scrutinize the impact of various MOF-based MMM components, including polymer matrix, MOFs fillers and polymer/filler interface, on the overall gas separation performance. This involves a detailed analysis of key parameters associated with MMM preparation. Additionally, we offer a comprehensive overview of the determining factors in MOF-based MMM development for gas separation, including MOF structure, synthesis, and chemistry. Moreover, the most advances in modification strategies of MOF for CO2 separation, such as a wide variety of hybrid MOFs will be outlined, which opens the door to an improved CO2 separation process. Finally, the gas transport mechanisms of MMMs are thoroughly discussed to understand the factors affecting the gas permeation through the polymer matrix, MOFs and interface between them.
Collapse
Affiliation(s)
- Melika Mohsenpour Tehrani
- Department of Polymer Chemistry and Materials, Faculty of Chemistry and Petroleum Sciences, Shahid Beheshti University, 1983969411, Tehran, Iran
| | - Ehsan Chehrazi
- Department of Polymer Chemistry and Materials, Faculty of Chemistry and Petroleum Sciences, Shahid Beheshti University, 1983969411, Tehran, Iran
| |
Collapse
|
6
|
Qi A, Li C, Evans JD, Zhao Y, Li T. Self-Sorting of Interfacial Compatibility in MOF-Based Mixed Matrix Membranes. Angew Chem Int Ed Engl 2024; 63:e202400474. [PMID: 38590031 DOI: 10.1002/anie.202400474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/29/2024] [Accepted: 04/08/2024] [Indexed: 04/10/2024]
Abstract
Metal-organic framework (MOF)-based mixed matrix membranes (MMMs) have shown great promises to overcome the performance upper limit of polymeric membranes for various gas separation processes. However, the gas separation properties of the MMMs largely depend on the MOF-polymer interfacial compatibility which is a metric difficult to quantify. In most cases, whether a MOF filler and a polymer matrix make a good pair is not revealed until the gas transport experiments are performed. This is because there is a lack of characterization techniques to directly probe the MOF-polymer interfacial compatibility. In this work, we demonstrate a self-sorting method to rank the interface compatibility among several MOF-polymer pairs. By mixing one MOF with two polymers in an MMM, the demixing of two polymers will form two polymer domains. The MOF particles will preferably partition into the "preferred" polymer domain due to their higher interfacial affinity. By scanning different polymer pairs, a rank of MOF-polymer interfacial compatibility from high to low can be obtained. Moreover, based on this ranking, it was also found that a highly compatible MOF-polymer pair suggested by this method also corresponds to a more predictable MMM gas separation performance.
Collapse
Affiliation(s)
- Anheng Qi
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, P. R. China
| | - Conger Li
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, P. R. China
| | - Jack D Evans
- School of Physics, Chemistry and Earth Sciences, University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Yingbo Zhao
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, P. R. China
| | - Tao Li
- School of Physics, Chemistry and Earth Sciences, University of Adelaide, Adelaide, South Australia, 5005, Australia
| |
Collapse
|
7
|
Zhang B, Dai X, Wei N, Cui X, Fan F, Zhang J, Zhang D, Meng F, Qi W, Fu Y. Fabrication of Oriented MOF-Based Mixed Matrix Membrane via Ion-Induced Synchronous Synthesis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305688. [PMID: 37922529 DOI: 10.1002/smll.202305688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/16/2023] [Indexed: 11/07/2023]
Abstract
Developing a facile strategy for constructing oriented mixed matrix membranes (MMMs) with uniformly dispersed and high-loading metal-organic frameworks (MOFs) is a crucial scientific challenge in probing the enhanced capability and potential applications of MOF-polymer MMMs. Herein, a novel synchronous synthetic method for constructing oriented CuBDC/poly(m-phenylenediamine) (CuBDC/PmPD) MMM with uniform MOF dispersion at high loading at the air-solution interface via the dual function of metal ions is reported. The resulting MMM exhibits excellent separation performance in ion sieving and seawater desalination due to the structural integrity of the proposed membrane and the highly interconnected channels created through the oriented distribution of MOF in a polymer matrix. Such a cutting-edge approach may provide promising insights into the development of advanced MMMs with optimized structure and superior performances.
Collapse
Affiliation(s)
- Bing Zhang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, P. R. China
| | - Xueya Dai
- Institute of Metal Research, Shenyang National Laboratory for Materials Science, Chinese Academy of Sciences, Shenyang, 110016, P. R. China
| | - Nini Wei
- Multi-Scale Porous Materials Center, Institute of Advanced Interdisciplinary Studies & School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, P. R. China
| | - Xingchen Cui
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, P. R. China
| | - Fuqiang Fan
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, P. R. China
| | - Jidong Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Daliang Zhang
- Multi-Scale Porous Materials Center, Institute of Advanced Interdisciplinary Studies & School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, P. R. China
| | - Fanbao Meng
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, P. R. China
| | - Wei Qi
- Institute of Metal Research, Shenyang National Laboratory for Materials Science, Chinese Academy of Sciences, Shenyang, 110016, P. R. China
| | - Yu Fu
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, P. R. China
| |
Collapse
|
8
|
Zhang C, Fan L, Kang Z, Sun D. Solution processing of crystalline porous material based membranes for CO 2 separation. Chem Commun (Camb) 2024. [PMID: 38273772 DOI: 10.1039/d3cc05545k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
The carbon emission problem is a significant challenge in today's society, which has led to severe global climate issues. Membrane-based separation technology has gained considerable interest in CO2 separation due to its simplicity, environmental friendliness, and energy efficiency. Crystalline porous materials (CPMs), such as zeolites, metal-organic frameworks, covalent organic frameworks, hydrogen-bonded organic frameworks, and porous organic cages, hold great promise for advanced CO2 separation membranes because of their ordered and customizable pore structures. However, the preparation of defect-free and large-area crystalline porous material (CPM)-based membranes remains challenging, limiting their practical use in CO2 separation. To address this challenge, the solution-processing method, commonly employed in commercial polymer preparation, has been adapted for CPM membranes in recent years. Nanosheets, spheres, molecular cages, and even organic monomers, depending on the CPM type, are dissolved in suitable solvents and processed into continuous membranes for CO2 separation. This feature article provides an overview of the recent advancements in the solution processing of CPM membranes. It summarizes the differences among the solution-processing methods used for forming various CPM membranes, highlighting the key factors for achieving continuous membranes. The article also summarizes and discusses the CO2 separation performance of these membranes. Furthermore, it addresses the current issues and proposes future research directions in this field. Overall, this feature article aims to shed light on the development of solution-processing techniques for CPM membranes, facilitating their practical application in CO2 separation.
Collapse
Affiliation(s)
- Caiyan Zhang
- School of Materials Science and Engineering, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Lili Fan
- School of Materials Science and Engineering, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Zixi Kang
- School of Materials Science and Engineering, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Daofeng Sun
- School of Materials Science and Engineering, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| |
Collapse
|
9
|
Preißler-Kurzhöfer H, Lange M, Möllmer J, Erhart O, Kobalz M, Krautscheid H, Gläser R. Hydrocarbon Sorption in Flexible MOFs-Part III: Modulation of Gas Separation Mechanisms. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:241. [PMID: 38334513 PMCID: PMC10856790 DOI: 10.3390/nano14030241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/15/2024] [Accepted: 01/18/2024] [Indexed: 02/10/2024]
Abstract
Single gas sorption experiments with the C4-hydrocarbons n-butane, iso-butane, 1-butene and iso-butene on the flexible MOFs Cu-IHMe-pw and Cu-IHEt-pw were carried out with both thermodynamic equilibrium and overall sorption kinetics. Subsequent static binary gas mixture experiments of n-butane and iso-butane unveil a complex dependence of the overall selectivity on sorption enthalpy, rate of structural transition as well as steric effects. A thermodynamic separation favoring iso-butane as well as kinetic separation favoring n-butane are possible within Cu-IHMe-pw while complete size exclusion of iso-butane is achieved in Cu-IHEt-pw. This proof-of-concept study shows that the structural flexibility offers additional levers for the precise modulation of the separation mechanisms for complex mixtures with similar chemical and physical properties with real selectivities of >10.
Collapse
Affiliation(s)
- Hannes Preißler-Kurzhöfer
- Institut für Technische Chemie, Fakultät für Chemie und Mineralogie, Universität Leipzig, Linnéstraße 3, D-04103 Leipzig, Germany
- Institut für Nichtklassische Chemie e.V., Universität Leipzig, Permoserstraße 15, D-04318 Leipzig, Germany; (M.L.); (J.M.)
| | - Marcus Lange
- Institut für Nichtklassische Chemie e.V., Universität Leipzig, Permoserstraße 15, D-04318 Leipzig, Germany; (M.L.); (J.M.)
| | - Jens Möllmer
- Institut für Nichtklassische Chemie e.V., Universität Leipzig, Permoserstraße 15, D-04318 Leipzig, Germany; (M.L.); (J.M.)
| | - Oliver Erhart
- Institut für Anorganische Chemie, Fakultät für Chemie und Mineralogie, Universität Leipzig, Johannisallee 21, D-04103 Leipzig, Germany (H.K.)
| | - Merten Kobalz
- Institut für Anorganische Chemie, Fakultät für Chemie und Mineralogie, Universität Leipzig, Johannisallee 21, D-04103 Leipzig, Germany (H.K.)
| | - Harald Krautscheid
- Institut für Anorganische Chemie, Fakultät für Chemie und Mineralogie, Universität Leipzig, Johannisallee 21, D-04103 Leipzig, Germany (H.K.)
| | - Roger Gläser
- Institut für Nichtklassische Chemie e.V., Universität Leipzig, Permoserstraße 15, D-04318 Leipzig, Germany; (M.L.); (J.M.)
| |
Collapse
|
10
|
Gulbalkan H, Aksu GO, Ercakir G, Keskin S. Accelerated Discovery of Metal-Organic Frameworks for CO 2 Capture by Artificial Intelligence. Ind Eng Chem Res 2024; 63:37-48. [PMID: 38223500 PMCID: PMC10785804 DOI: 10.1021/acs.iecr.3c03817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/04/2023] [Accepted: 12/06/2023] [Indexed: 01/16/2024]
Abstract
The existence of a very large number of porous materials is a great opportunity to develop innovative technologies for carbon dioxide (CO2) capture to address the climate change problem. On the other hand, identifying the most promising adsorbent and membrane candidates using iterative experimental testing and brute-force computer simulations is very challenging due to the enormous number and variety of porous materials. Artificial intelligence (AI) has recently been integrated into molecular modeling of porous materials, specifically metal-organic frameworks (MOFs), to accelerate the design and discovery of high-performing adsorbents and membranes for CO2 adsorption and separation. In this perspective, we highlight the pioneering works in which AI, molecular simulations, and experiments have been combined to produce exceptional MOFs and MOF-based composites that outperform traditional porous materials in CO2 capture. We outline the future directions by discussing the current opportunities and challenges in the field of harnessing experiments, theory, and AI for accelerated discovery of porous materials for CO2 capture.
Collapse
Affiliation(s)
| | | | - Goktug Ercakir
- Department of Chemical and Biological
Engineering, Koç University, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey
| | - Seda Keskin
- Department of Chemical and Biological
Engineering, Koç University, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey
| |
Collapse
|
11
|
Xu K, Zhang S, Zhuang X, Zhang G, Tang Y, Pang H. Recent progress of MOF-functionalized nanocomposites: From structure to properties. Adv Colloid Interface Sci 2024; 323:103050. [PMID: 38086152 DOI: 10.1016/j.cis.2023.103050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/29/2023] [Accepted: 11/06/2023] [Indexed: 01/13/2024]
Abstract
Metal-organic frameworks (MOFs) are novel crystalline porous materials assembled from metal ions and organic ligands. The adaptability of their design and the fine-tuning of the pore structures make them stand out in porous materials. Furthermore, by integrating MOF guest functional materials with other hosts, the novel composites have synergistic benefits in numerous fields such as batteries, supercapacitors, catalysis, gas storage and separation, sensors, and drug delivery. This article starts by examining the structural relationship between the host and guest materials, providing a comprehensive overview of the research advancements in various types of MOF-functionalized composites reported to date. The review focuses specifically on four types of spatial structures, including MOFs being (1) embedded in nanopores, (2) immobilized on surface, (3) coated as shells and (4) assembled into hybrids. In addition, specific design ideas for these four MOF-based composites are presented. Some of them involve in situ synthesis method, solvothermal method, etc. The specific properties and applications of these materials are also mentioned. Finally, a brief summary of the advantages of these four types of MOF composites is given. Hopefully, this article will help researchers in the design of MOF composite structures.
Collapse
Affiliation(s)
- Kun Xu
- School of Chemistry and Chemical Engineering, Testing Center, Yangzhou University, Yangzhou 225009, PR China
| | - Songtao Zhang
- School of Chemistry and Chemical Engineering, Testing Center, Yangzhou University, Yangzhou 225009, PR China
| | - Xiaoli Zhuang
- School of Chemistry and Chemical Engineering, Testing Center, Yangzhou University, Yangzhou 225009, PR China
| | - Guangxun Zhang
- School of Chemistry and Chemical Engineering, Testing Center, Yangzhou University, Yangzhou 225009, PR China
| | - Yijian Tang
- School of Chemistry and Chemical Engineering, Testing Center, Yangzhou University, Yangzhou 225009, PR China
| | - Huan Pang
- School of Chemistry and Chemical Engineering, Testing Center, Yangzhou University, Yangzhou 225009, PR China.
| |
Collapse
|
12
|
Jo YM, Jo YK, Lee JH, Jang HW, Hwang IS, Yoo DJ. MOF-Based Chemiresistive Gas Sensors: Toward New Functionalities. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2206842. [PMID: 35947765 DOI: 10.1002/adma.202206842] [Citation(s) in RCA: 53] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Indexed: 06/15/2023]
Abstract
The sensing performances of gas sensors must be improved and diversified to enhance quality of life by ensuring health, safety, and convenience. Metal-organic frameworks (MOFs), which exhibit an extremely high surface area, abundant porosity, and unique surface chemistry, provide a promising framework for facilitating gas-sensor innovations. Enhanced understanding of conduction mechanisms of MOFs has facilitated their use as gas-sensing materials, and various types of MOFs have been developed by examining the compositional and morphological dependences and implementing catalyst incorporation and light activation. Owing to their inherent separation and absorption properties and catalytic activity, MOFs are applied as molecular sieves, absorptive filtering layers, and heterogeneous catalysts. In addition, oxide- or carbon-based sensing materials with complex structures or catalytic composites can be derived by the appropriate post-treatment of MOFs. This review discusses the effective techniques to design optimal MOFs, in terms of computational screening and synthesis methods. Moreover, the mechanisms through which the distinctive functionalities of MOFs as sensing materials, heterostructures, and derivatives can be incorporated in gas-sensor applications are presented.
Collapse
Affiliation(s)
- Young-Moo Jo
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA
| | - Yong Kun Jo
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Jong-Heun Lee
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Ho Won Jang
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
| | - In-Sung Hwang
- Sentech Gmi Co. Ltd, Seoul, 07548, Republic of Korea
| | - Do Joon Yoo
- SentechKorea Co. Ltd, Paju, 10863, Republic of Korea
| |
Collapse
|
13
|
Hindricks KDJ, Erdmann J, Marten C, Herrmann T, Behrens P, Schaate A. Synthesis and photochemical modification of monolayer thin MOF flakes for incorporation in defect free polymer composites. RSC Adv 2023; 13:27447-27455. [PMID: 37711374 PMCID: PMC10498359 DOI: 10.1039/d3ra04530g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 08/31/2023] [Indexed: 09/16/2023] Open
Abstract
Metal-organic frameworks (MOFs) with benzophenone linker molecules are characterized by their ability to undergo photochemical postsynthetic modification. While this approach opens up almost unlimited possibilities for tailoring materials to specific applications, the processability of the large particles is still lacking. In this work, we present a new approach to fabricate micro flakes of the stable Zr-bzpdc-MOF (bzpdc = benzophenone-4-4'-dicarboxylate) with a thickness of only a few monolayers. The crystalline and nanoporous flakes form dispersions in acetone that are stable for months. Embedding the flakes in polymer composites was investigated as one of many possible applications. Zr-bzpdc-MOF micro flakes were decorated with poly(dimethylsiloxane) (PDMS) via a photochemical postsynthetic modification and incorporated into silicon elastomers. The PDMS functionalization allows covalent cross-linking between the MOF and the polymer while maintaining the porosity of the MOF. The resulting hybrid materials provide defect-free interfaces and show preferential adsorption of CO2 over CH4, making them attractive for gas separation or sensing applications. The work should serve as a basis for bringing bzpdc-MOFs into real-world applications - in polymeric membranes, but also beyond.
Collapse
Affiliation(s)
- Karen D J Hindricks
- Institute of Inorganic Chemistry, Leibniz University Hannover Callinstr. 9 30167 Hannover Germany
- Cluster of Excellence PhoenixD (Photonics, Optics and Engineering - Innovation Across Disciplines) Welfengarten 1A 30167 Hannover Germany
| | - Jessica Erdmann
- Institute of Inorganic Chemistry, Leibniz University Hannover Callinstr. 9 30167 Hannover Germany
| | - Celine Marten
- Institute of Inorganic Chemistry, Leibniz University Hannover Callinstr. 9 30167 Hannover Germany
| | - Timo Herrmann
- Institute of Inorganic Chemistry, Leibniz University Hannover Callinstr. 9 30167 Hannover Germany
- Laboratory of Nano and Quantum Engineering Schneiderberg 39 30167 Hannover Germany
| | - Peter Behrens
- Institute of Inorganic Chemistry, Leibniz University Hannover Callinstr. 9 30167 Hannover Germany
- Cluster of Excellence PhoenixD (Photonics, Optics and Engineering - Innovation Across Disciplines) Welfengarten 1A 30167 Hannover Germany
- Laboratory of Nano and Quantum Engineering Schneiderberg 39 30167 Hannover Germany
| | - Andreas Schaate
- Institute of Inorganic Chemistry, Leibniz University Hannover Callinstr. 9 30167 Hannover Germany
- Cluster of Excellence PhoenixD (Photonics, Optics and Engineering - Innovation Across Disciplines) Welfengarten 1A 30167 Hannover Germany
- Laboratory of Nano and Quantum Engineering Schneiderberg 39 30167 Hannover Germany
| |
Collapse
|
14
|
Chen G, Liu G, Pan Y, Liu G, Gu X, Jin W, Xu N. Zeolites and metal-organic frameworks for gas separation: the possibility of translating adsorbents into membranes. Chem Soc Rev 2023. [PMID: 37377411 DOI: 10.1039/d3cs00370a] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Zeolites and metal-organic frameworks (MOFs) represent an attractive class of crystalline porous materials that possesses regular pore structures. The inherent porosity of these materials has led to an increasing focus on gas separation applications, encompassing adsorption and membrane separation techniques. Here, a brief overview of the critical properties and fabrication approaches for zeolites and MOFs as adsorbents and membranes is given. The separation mechanisms, based on pore sizes and the chemical properties of nanochannels, are explored in depth, considering the distinct characteristics of adsorption and membrane separation. Recommendations for judicious selection and design of zeolites and MOFs for gas separation purposes are emphasized. By examining the similarities and differences between the roles of nanoporous materials as adsorbents and membranes, the feasibility of zeolites and MOFs from adsorption separation to membrane separation is discussed. With the rapid development of zeolites and MOFs towards adsorption and membrane separation, challenges and perspectives of this cutting-edge area are also addressed.
Collapse
Affiliation(s)
- Guining Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu Road (S), Nanjing, 211816, China.
| | - Guozhen Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu Road (S), Nanjing, 211816, China.
| | - Yang Pan
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu Road (S), Nanjing, 211816, China.
| | - Gongping Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu Road (S), Nanjing, 211816, China.
- Suzhou Laboratory, Suzhou 215125, China
| | - Xuehong Gu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu Road (S), Nanjing, 211816, China.
| | - Wanqin Jin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu Road (S), Nanjing, 211816, China.
| | - Nanping Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu Road (S), Nanjing, 211816, China.
- Suzhou Laboratory, Suzhou 215125, China
| |
Collapse
|
15
|
Fateminia Z, Chiniforoshan H, Ghafarinia V. Novel Core/Shell Nylon 6,6/La-TMA MOF Electrospun Nanocomposite Membrane and CO 2 Capture Assessments of the Membrane and Pure La-TMA MOF. ACS OMEGA 2023; 8:22742-22751. [PMID: 37396212 PMCID: PMC10308571 DOI: 10.1021/acsomega.3c01616] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/30/2023] [Indexed: 07/04/2023]
Abstract
Membrane technology plays a vital, applicable, and essential role in human life and industry. The high adsorption capacity of membranes can be employed for capturing air pollutants and greenhouse gases. In this work, we tried to develop a shaped industrial form of a metal-organic framework as an adsorbent material with the ability to capture CO2 in the laboratory phase. To do so, a core/shell Nylon 6,6/La-TMA MOF nanofiber composite membrane was synthesized. This organic/inorganic nanomembrane is a kind of nonwoven electrospun fiber that was prepared using the coaxial electrospinning approach. FE-SEM, surface area calculations, nitrogen adsorption/desorption, XRD grazing incidence on thin films, and histogram diagrams were applied to assess the quality of the membrane. This composite membrane as well as pure La-TMA MOF were assessed as CO2 adsorbent materials. The CO2 adsorption abilities of the core/shell Nylon 6,6/La-TMA MOF membrane and pure La-TMA MOF were as high as 0.219 and 0.277 mmol/g, respectively. As a result of preparing the nanocomposite membrane from microtubes of La-TMA MOF, the %A of the micro La-TMA MOF (% 43.060) increased to % 48.524 for Nylon 6,6/La-TMA MOF.
Collapse
Affiliation(s)
- Zohreh Fateminia
- Department
of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Hossein Chiniforoshan
- Department
of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Vahid Ghafarinia
- Department
of Electrical and Computer Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| |
Collapse
|
16
|
Soleimani R, Saeedi Dehaghani AH. A theoretical probe into the separation of CO 2/CH 4/N 2 mixtures with polysulfone/polydimethylsiloxane-nano zinc oxide MMM. Sci Rep 2023; 13:9543. [PMID: 37308483 DOI: 10.1038/s41598-023-36051-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 05/28/2023] [Indexed: 06/14/2023] Open
Abstract
In the current investigation, molecular dynamics (MD) and Grand Canonical Monte Carlo (GCMC) simulation as remarkable and competent approaches have been employed for understanding structural and transport properties of MMMs in the realm of gas separation. The two commonly used polymers i.e. polysulfone (Psf) and polydimethylsiloxane (PDMS) as well as zinc oxide (ZnO) nanoparticle (NP) were used to carefully examine the transport properties of three light gasses (CO2, N2 and CH4) through simple Psf, Psf/PDMS composite loaded by different amounts of ZnO NP. Also, the fractional free volume (FFV), X-ray diffraction (XRD), glass transition temperature (Tg), and Equilibrium density were calculated to scrutinize the structural characterizations of the membranes. Moreover, the effect of feed pressure (4-16 bar) on gas separation performance of simulated MMMs was investigated. Results obtained in different experiments showed a clear improvement in the performance of simulated membranes by adding PDMS to PSf matrix. The selectivity of studied MMMs was in the range from 50.91 to 63.05 at pressures varying from 4 to 16 bar for the CO2/N2 gas pair, whereas the corresponding value for CO2/CH4 system was found to be in the range 27.27-46.24. For 6 wt% ZnO in 80%PSf + 20%PDMS membrane, high permeabilities of 78.02, 2.86 and 1.33 barrers were observed for CO2, CH4 and N2 gases, respectively. The 90%PSf + 10%PDMS membrane with 2% ZnO had a highest CO2/N2 selectivity value of 63.05 and its CO2 permeability at 8 bar was 57 barrer.
Collapse
Affiliation(s)
- Reza Soleimani
- Faculty of Chemical Engineering, Tarbiat Modares University, P.O. Box 14115-143, Tehran, Iran
| | - Amir Hossein Saeedi Dehaghani
- Department of Petroleum Engineering, Faculty of Chemical Engineering, Tarbiat Modares University, P.O. Box 14115-143, Tehran, Iran.
| |
Collapse
|
17
|
Ciria-Ramos I, Tejedor I, Caparros L, Doñagueda B, Lacruz O, Urtizberea A, Roubeau O, Gascón I, Haro M. Evaluation of triphenylene-based MOF ultrathin films for lithium batteries. Dalton Trans 2023; 52:7196-7207. [PMID: 37162287 DOI: 10.1039/d3dt00876b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Metal-organic frameworks (MOFs) are attractive candidates to meet the requirement of next-generation batteries, as functional materials with a high surface area, well-defined metal centers, and organic linkers through coordination bonds. Due to their great tunability, MOFs have been investigated as electrodes or electrolytes in lithium batteries and more recently as protective layers in anode-less batteries. Here, we synthesize a Ni3(HHTP)2 MOF directly at the air-liquid interface of a Langmuir trough and grow the electrode on a conductive substrate by the transference process. The characterization during Langmuir film formation shows that the addition of crystallization time during the compression process enhances the formation of 2D crystalline domains, as observed by in situ grazing-incidence X-ray diffraction. Next, the transferred Ni3(HHTP)2 ultrathin films were studied as working electrodes in Li batteries in a half-cell configuration and compared with bare copper. The results show that the Ni3(HHTP)2 film protects the Cu collector from oxidation, and the negative charge accumulates in the organic ligand during the lithiation process while NiII oxidizes to NiIII, unlike other triphenylene-based MOFs with CuII or CoII metal nodes. The galvanostatic plating-stripping cycles of the batteries show that the inclusion of the crystallization time improves the coulombic efficiency, especially significantly in the first cycles when the SEI is formed. This work shows the Langmuir technique as a useful tool to test MOF based materials for batteries with the advantages of using a low amount of raw materials and without the need to introduce additives (binder and electron conductor) in the electrodes. The electrochemical study of this type of electrode allows a first screening to synthesize electrodes based on MOFs and can be a tool for the preparation of protective coatings under optimized conditions.
Collapse
Affiliation(s)
- Isabel Ciria-Ramos
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza, 50009, Spain.
- Departamento de Química Física, Facultad de Ciencias, Universidad de Zaragoza, Plaza San Francisco, Zaragoza, 50009, Spain
| | - Inés Tejedor
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza, 50009, Spain.
- Departamento de Química Física, Facultad de Ciencias, Universidad de Zaragoza, Plaza San Francisco, Zaragoza, 50009, Spain
| | - Lucía Caparros
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza, 50009, Spain.
- Departamento de Química Física, Facultad de Ciencias, Universidad de Zaragoza, Plaza San Francisco, Zaragoza, 50009, Spain
| | - Beatriz Doñagueda
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza, 50009, Spain.
- Departamento de Química Física, Facultad de Ciencias, Universidad de Zaragoza, Plaza San Francisco, Zaragoza, 50009, Spain
| | - Oscar Lacruz
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza, 50009, Spain.
- Departamento de Química Física, Facultad de Ciencias, Universidad de Zaragoza, Plaza San Francisco, Zaragoza, 50009, Spain
| | - Ainhoa Urtizberea
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza, 50009, Spain.
- Departamento de Ciencia y Tecnologia de Materiales y Fluidos, EINA, Universidad de Zaragoza, Zaragoza, 50018, Spain
| | - Olivier Roubeau
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza, 50009, Spain.
| | - Ignacio Gascón
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza, 50009, Spain.
- Departamento de Química Física, Facultad de Ciencias, Universidad de Zaragoza, Plaza San Francisco, Zaragoza, 50009, Spain
| | - Marta Haro
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza, 50009, Spain.
- Departamento de Química Física, Facultad de Ciencias, Universidad de Zaragoza, Plaza San Francisco, Zaragoza, 50009, Spain
| |
Collapse
|
18
|
Gao Z, Li B, Li Z, Yu T, Wang S, Fang Q, Qiu S, Xue M. Free-Standing Metal-Organic Framework Membranes Made by Solvent-Free Space-Confined Conversion for Efficient H 2/CO 2 Separation. ACS APPLIED MATERIALS & INTERFACES 2023; 15:19241-19249. [PMID: 37029737 DOI: 10.1021/acsami.3c02208] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Metal-organic frameworks (MOFs) are promising candidates for the advanced membrane materials based on their diverse structures, modifiable pore environment, precise pore sizes, etc. Nevertheless, the use of supports and large amounts of solvents in traditional solvothermal synthesis of MOF membranes is considered inefficient, costly, and environmentally problematic, coupled with challenges in their scalable manufacturing. In this work, we report a solvent-free space-confined conversion (SFSC) approach for the fabrication of a series of free-standing MOF (ZIF-8, Zn(EtIm)2, and Zn2(BIm)4) membranes. This approach excludes the employment of solvents and supports that require tedious pretreatment and, thus, makes the process more environment-friendly and highly efficient. The free-standing membranes feature a robust and unique architecture, which comprise dense surface layers and highly porous interlayer with large amounts of irregular-shaped micron-scale pore cavities, inducing satisfactory H2/CO2 selectivities and exceptional H2 permeances. The ZIF-8 membrane affords a considerable H2 permeance of 2653.7 GPU with a competitive H2/CO2 selectivity of 17.1, and the Zn(EtIm)2 membrane exhibits a high H2/CO2 selectivity of 22.1 with an excellent H2 permeance (6268.7 GPU). The SFSC approach potentially provides a new pathway for preparing free-standing MOF membranes under solvent-free conditions, rendering it feasible for scale-up production of membrane materials for gas separation.
Collapse
Affiliation(s)
- Zhuangzhuang Gao
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Baoju Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Zhan Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Tongwen Yu
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, P. R. China
| | - Shuchang Wang
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, P. R. China
| | - Qianrong Fang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Shilun Qiu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Ming Xue
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, P. R. China
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, P. R. China
| |
Collapse
|
19
|
Vrtovec N, Jurjevec S, Zabukovec Logar N, Mazaj M, Kovačič S. Metal Oxide-Derived MOF-74 Polymer Composites through Pickering Emulsion-Templating: Interfacial Recrystallization, Hierarchical Architectures, and CO 2 Capture Performances. ACS APPLIED MATERIALS & INTERFACES 2023; 15:18354-18361. [PMID: 36996820 PMCID: PMC10103051 DOI: 10.1021/acsami.3c01796] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 03/21/2023] [Indexed: 06/19/2023]
Abstract
Currently, metal-organic framework (MOF)-polymer composites are attracting great interest as a step forward in making MOFs a useful material for industrially relevant applications. However, most of the research is engaged with finding promising MOF/polymer pairs and less with the synthetic methods by which these materials are then combined, albeit hybridization has a significant impact on the properties of the new composite macrostructure. Thus, the focus of this work is on the innovative hybridization of MOFs and polymerized high internal phase emulsions (polyHIPEs), two classes of materials that exhibit porosity at different length scales. The main thrust is the in situ secondary recrystallization, i.e., growth of MOFs from metal oxides previously fixed in polyHIPEs by the Pickering HIPE-templating, and further structure-function study of composites through the CO2 capture behavior. The combination of Pickering HIPE polymerization and secondary recrystallization at the metal oxide-polymer interface proved advantageous, as MOF-74 isostructures based on different metal cations (M2+ = Mg, Co, or Zn) could be successfully shaped in the polyHIPEs' macropores without affecting the properties of the individual components. The successful hybridization resulted in highly porous, co-continuous MOF-74-polyHIPE composite monoliths forming an architectural hierarchy with pronounced macro-microporosity, in which the MOF microporosity is almost completely accessible for gases, i.e., about 87% of the micropores, and the monoliths exhibit excellent mechanical stability. The well-structured porous architecture of the composites showed superior CO2 capture performance compared to the parent MOF-74 powders. Both adsorption and desorption kinetics are significantly faster for composites. Regeneration by temperature swing adsorption recovers about 88% of the total adsorption capacity of the composite, while it is lower for the parent MOF-74 powders (about 75%). Finally, the composites exhibit about 30% improvement in CO2 uptake under working conditions compared to the parent MOF-74 powders, and some of the composites are able to retain 99% of the original adsorption capacity after five adsorption/desorption cycles.
Collapse
Affiliation(s)
- Nika Vrtovec
- National
Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Sarah Jurjevec
- National
Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Nataša Zabukovec Logar
- National
Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
- University
of Nova Gorica, Vipavska
13, 5000 Nova Gorica, Slovenia
| | - Matjaž Mazaj
- National
Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Sebastijan Kovačič
- National
Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| |
Collapse
|
20
|
Figueroa-Quintero L, Villalgordo-Hernández D, Delgado-Marín JJ, Narciso J, Velisoju VK, Castaño P, Gascón J, Ramos-Fernández EV. Post-Synthetic Surface Modification of Metal-Organic Frameworks and Their Potential Applications. SMALL METHODS 2023; 7:e2201413. [PMID: 36789569 DOI: 10.1002/smtd.202201413] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/21/2022] [Indexed: 06/18/2023]
Abstract
Metal-organic frameworks (MOFs) are porous hybrid materials with countless potential applications. Most of these rely on their porous structure, tunable composition, and the possibility of incorporating and expanding their functions. Although functionalization of the inner surface of MOF crystals has received considerable attention in recent years, methods to functionalize selectively the outer crystal surface of MOFs are developed to a lesser extent, despite their importance. This article summarizes different types of post-synthetic modifications and possible applications of modified materials such as: catalysis, adsorption, drug delivery, mixed matrix membranes, and stabilization of porous liquids.
Collapse
Affiliation(s)
- Leidy Figueroa-Quintero
- Laboratorio de Materiales Avanzados, Departamento de Química Inorgánica - Instituto Universitario de Materiales de Alicante Universidad de Alicante, E-03080, Alicante, Spain
| | - David Villalgordo-Hernández
- Laboratorio de Materiales Avanzados, Departamento de Química Inorgánica - Instituto Universitario de Materiales de Alicante Universidad de Alicante, E-03080, Alicante, Spain
| | - José J Delgado-Marín
- Laboratorio de Materiales Avanzados, Departamento de Química Inorgánica - Instituto Universitario de Materiales de Alicante Universidad de Alicante, E-03080, Alicante, Spain
| | - Javier Narciso
- Laboratorio de Materiales Avanzados, Departamento de Química Inorgánica - Instituto Universitario de Materiales de Alicante Universidad de Alicante, E-03080, Alicante, Spain
| | - Vijay Kumar Velisoju
- KAUST Catalysis Center, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Pedro Castaño
- KAUST Catalysis Center, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Jorge Gascón
- KAUST Catalysis Center, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Enrique V Ramos-Fernández
- Laboratorio de Materiales Avanzados, Departamento de Química Inorgánica - Instituto Universitario de Materiales de Alicante Universidad de Alicante, E-03080, Alicante, Spain
| |
Collapse
|
21
|
Li C, Qi A, Ling Y, Tao Y, Zhang YB, Li T. Establishing gas transport highways in MOF-based mixed matrix membranes. SCIENCE ADVANCES 2023; 9:eadf5087. [PMID: 37000883 PMCID: PMC10065440 DOI: 10.1126/sciadv.adf5087] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 02/27/2023] [Indexed: 06/19/2023]
Abstract
Achieving percolation pathways in a metal-organic framework (MOF)-based mixed matrix membrane (MMM) without compromising its mechanical properties is challenging. We developed phase separated (PS)-MMMs with an interconnected MOF domain running across the whole membrane. Through demixing two immiscible polyimides, the MOF particles were selectively partitioned into one of the preferred polymer domains at over 50 volume % local packing density, leading to a percolated network at only 19 weight % MOF loading. The CO2 permeability of this PS-MMM is 6.6 times that of the pure polymer membrane, while the CO2/N2 and CO2/CH4 selectivity remain largely unchanged. Meanwhile, benefiting from its unique co-continuous morphology, the PS-MMM also exhibited markedly improved membrane ductility compared to the conventional MMM at similar MOF loading. PS-MMMs offer a practical solution to simultaneously achieve high membrane permeability and good mechanical properties.
Collapse
Affiliation(s)
- Conger Li
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Anheng Qi
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yang Ling
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yu Tao
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yue-Biao Zhang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Shanghai Key Laboratory of High-Resolution Electron Microscopy, ShanghaiTech University, Shanghai 201210, China
| | - Tao Li
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
22
|
Bioinspired inhibition of aggregation in metal-organic frameworks (MOFs). iScience 2023; 26:106239. [PMID: 36915688 PMCID: PMC10006690 DOI: 10.1016/j.isci.2023.106239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/30/2023] [Accepted: 02/15/2023] [Indexed: 02/19/2023] Open
Abstract
Different from traditional procedures of using solid stabilizers like polymers and surfactants, here we demonstrate that water, as a very "soft" matter, could function as a "spacer" to prevent the aggregation of metal-organic frameworks (MOFs) in aqueous dispersions. Our theoretical calculations reveal in case of an excess of positively charged metal nodes of MOFs, where water molecules are ligated to metal nodes that greatly enhance MOFs' solution dispersibility through electrostatic stabilization. This discovery has motivated us to develop a facile experimental approach for producing a category of "clean" MOF dispersions without foreign additives. Potential application has been demonstrated for the size fractionation of MOFs, which results in small-size MOFs (50-80 nm) characteristic of superior electrocatalytic oxygen evolution activities (256 mV at 10 mA cm-2, Tafel slope of 49 mV dec-1 and durability >30 h). This work would provide new clues for aqueous processing of MOFs for many emerging applications.
Collapse
|
23
|
Dong A, Chen D, Li Q, Qian J. Metal-Organic Frameworks for Greenhouse Gas Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2201550. [PMID: 36563116 DOI: 10.1002/smll.202201550] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/15/2022] [Indexed: 06/17/2023]
Abstract
Using petrol to supply energy for a car or burning coal to heat a building generates plenty of greenhouse gas (GHG) emissions, including carbon dioxide (CO2 ), water vapor (H2 O), methane (CH4 ), nitrous oxide (N2 O), ozone (O3 ), fluorinated gases. These up-and-coming metal-organic frameworks (MOFs) are structurally endowed with rigid inorganic nodes and versatile organic linkers, which have been extensively used in the GHG-related applications to improve the lives and protect the environment. Porous MOF materials and their derivatives have been demonstrated to be competitive and promising candidates for GHG separation, storage and conversions as they shows facile preparation, large porosity, adjustable nanostructure, abundant topology, and tunable physicochemical property. Enormous progress has been made in GHG storage and separation intrinsically stemmed from the different interaction between guest molecule and host framework from MOF itself in the recent five years. Meanwhile, the use of porous MOF materials to transform GHG and the influence of external conditions on the adsorption performance of MOFs for GHG are also enclosed. In this review, it is also highlighted that the existing challenges and future directions are discussed and envisioned in the rational design, facile synthesis and comprehensive utilization of MOFs and their derivatives for practical applications.
Collapse
Affiliation(s)
- Anrui Dong
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325000, P. R. China
| | - Dandan Chen
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325000, P. R. China
| | - Qipeng Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
- College of Chemistry and Chemical Engineering, Zhaotong University, Zhaotong, 657099, P. R. China
| | - Jinjie Qian
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325000, P. R. China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
| |
Collapse
|
24
|
Liu JJ, Jiang ZW, Hsu SW. Investigation of the Performance of Heterogeneous MOF-Silver Nanocube Nanocomposites as CO 2 Reduction Photocatalysts by In Situ Raman Spectroscopy. ACS APPLIED MATERIALS & INTERFACES 2023; 15:6716-6725. [PMID: 36705642 DOI: 10.1021/acsami.2c18510] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Here, we fabricated two different heterogeneous nanocomposites, core-shell MOF-AgNC and corner MOF-AgNC, as photocatalysts for CO2 conversion by generating metal-organic frameworks (MOFs) on silver nanocube templates. These MOF-AgNC nanocomposites showed good CO2 adsorption features and high CO2 reduction reactivity. The performances of these MOF-AgNC nanocomposites in CO2 adsorption and CO2 reduction reactions can be characterized by in situ Raman spectrum measurement. The corner MOF-AgNC nanocomposite exhibited a faster CO2 adsorption rate than the core-shell MOF-AgNC nanocomposite, which was due to the higher surface area/volume ratio of the MOF in corner MOF-AgNC. The CO2 reaction reactivity and mechanisms (products of the reaction) of CO2 reduction also depended on the morphologies of MOF-AgNC nanocomposites, which were caused by different reaction environments at the interface between the MOF and AgNCs. The CO2 reduction reactivity of MOF-AgNC nanocomposites also exhibited high sensitivity to the irradiation intensity and wavelength, which was caused by the variation of the number of hot electrons and their positions in AgNCs with the irradiation intensity and irradiation wavelength, respectively. This method for the synthesis of heterogeneous nanocomposites should make it possible to design photocatalysts for various reactions by carefully designing the morphology and composition of nanocomposites.
Collapse
Affiliation(s)
- Jian-Jia Liu
- Department of Chemical Engineering, Nation Cheng Kung University, No. 1 University Road, East Dist., Tainan City 70101, Taiwan (R.O.C.)
| | - Zhi-Wu Jiang
- Department of Chemical Engineering, Nation Cheng Kung University, No. 1 University Road, East Dist., Tainan City 70101, Taiwan (R.O.C.)
| | - Su-Wen Hsu
- Department of Chemical Engineering, Nation Cheng Kung University, No. 1 University Road, East Dist., Tainan City 70101, Taiwan (R.O.C.)
| |
Collapse
|
25
|
Zhou S, Shekhah O, Jin T, Jia J, Datta SJ, Bhatt PM, Eddaoudi M. A CO2-recognition metal-organic framework membrane for continuous carbon capture. Chem 2023. [DOI: 10.1016/j.chempr.2023.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
26
|
Li R, Chen JP, Freger V. A new fabrication approach for mixed matrix membrane fabricated with interstitially sealed MOF nanoparticles. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
27
|
Metal organic frameworks and their composites as effective tools for sensing environmental hazards: An up to date tale of mechanism, current trends and future prospects. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214859] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
28
|
Tan X, Robijns S, Thür R, Ke Q, De Witte N, Lamaire A, Li Y, Aslam I, Van Havere D, Donckels T, Van Assche T, Van Speybroeck V, Dusselier M, Vankelecom I. Truly combining the advantages of polymeric and zeolite membranes for gas separations. Science 2022; 378:1189-1194. [PMID: 36520897 DOI: 10.1126/science.ade1411] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Mixed-matrix membranes (MMMs) have been investigated to render energy-intensive separations more efficiently by combining the selectivity and permeability performance, robustness, and nonaging properties of the filler with the easy processing, handling, and scaling up of the polymer. However, truly combining all in one single material has proven very challenging. In this work, we filled a commercial polyimide with ultrahigh loadings of a high-aspect ratio, CO2-philic Na-SSZ-39 zeolite with a three-dimensional channel system that precisely separates gas molecules. By carefully designing both zeolite and MMM synthesis, we created a gas-percolation highway across a flexible and aging-resistant (more than 1 year) membrane. The combination of a CO2-CH4 mixed-gas selectivity of ~423 and a CO2 permeability of ~8300 Barrer outperformed all existing polymer-based membranes and even most zeolite-only membranes.
Collapse
Affiliation(s)
- Xiaoyu Tan
- Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS), KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Sven Robijns
- Center for Sustainable Catalysis and Engineering, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Raymond Thür
- Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS), KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Quanli Ke
- Center for Sustainable Catalysis and Engineering, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Niels De Witte
- Department of Chemical Engineering, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Aran Lamaire
- Center for Molecular Modeling, Ghent University, Tech Lane Ghent Science Park, Technologiepark 46, 9052 Zwijnaarde, Belgium
| | - Yun Li
- Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS), KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Imran Aslam
- Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS), KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Daan Van Havere
- Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS), KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Thibaut Donckels
- Center for Sustainable Catalysis and Engineering, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Tom Van Assche
- Department of Chemical Engineering, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Veronique Van Speybroeck
- Center for Molecular Modeling, Ghent University, Tech Lane Ghent Science Park, Technologiepark 46, 9052 Zwijnaarde, Belgium
| | - Michiel Dusselier
- Center for Sustainable Catalysis and Engineering, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Ivo Vankelecom
- Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS), KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| |
Collapse
|
29
|
Highly selective electrochemical CO2 reduction to formate using Sn@Cu electrocatalyst. J APPL ELECTROCHEM 2022. [DOI: 10.1007/s10800-022-01815-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
30
|
Wan Y, Miao Y, Zhong R, Zou R. High-Selective CO 2 Capture in Amine-Decorated Al-MOFs. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4056. [PMID: 36432342 PMCID: PMC9697124 DOI: 10.3390/nano12224056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/10/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
Amine-functionalized metal-organic framework (MOF) material is a promising CO2 captor in the post-combustion capture process owing to its large CO2 working capacity as well as high CO2 selectivity and easy regeneration. In this study, an ethylenediamine (ED)-decorated Al-based MOFs (named ED@MOF-520) with a high specific area and permanent porosity are prepared and evaluated to study the adsorption and separation of CO2 from N2. The results show that ED@MOF-520 adsorbent displays a superior CO2 capture performance with a CO2/N2 separation factor of 50 at 273 K, 185% times increase in the CO2/N2 separation efficiency in comparison with blank MOF-520. Furthermore, ED@MOF-520 exhibits a moderate-strength interaction with 29 kJ mol-1 adsorption heat for CO2 uptake, which not only meets the requirement of CO2 adsorption but also has good cycle stability. This work provides a promising adsorbent with a high CO2/N2 separation factor to deal with carbon peak and carbon neutrality.
Collapse
Affiliation(s)
- Yinji Wan
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, No. 18 Fuxue Road, Changping District, Beijing 102249, China
| | - Yefan Miao
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, No. 18 Fuxue Road, Changping District, Beijing 102249, China
| | - Ruiqin Zhong
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, No. 18 Fuxue Road, Changping District, Beijing 102249, China
| | - Ruqiang Zou
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, School of Materials Science and Engineering, Peking University, No. 5 Yiheyuan Road, Haidian District, Beijing 100871, China
| |
Collapse
|
31
|
Barzegar B, Feyzi F. Investigation of the effect of pristine and functionalized carbon nanotubes in cellulose acetate butyrate for mixed-gas separation: a molecular simulation study. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
32
|
Sun Y, Geng C, Zhang Z, Qiao Z, Zhong C. Two-dimensional basic cobalt carbonate supported ZIF-67 composites towards mixed matrix membranes for efficient CO2/N2 separation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
33
|
Proton conduction and electrochemical enzyme-free glucose sensitive sensing based on a newly constructed Co-MOF and its composite with hydroxyl carbon nanotubes. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.116095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
34
|
Jia Q, Lasseuguette E, Lozinska MM, Ferrari MC, Wright PA. Hybrid Benzimidazole-Dichloroimidazole Zeolitic Imidazolate Frameworks Based on ZIF-7 and Their Application in Mixed Matrix Membranes for CO 2/N 2 Separation. ACS APPLIED MATERIALS & INTERFACES 2022; 14:46615-46626. [PMID: 36194177 PMCID: PMC9585523 DOI: 10.1021/acsami.2c12908] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/12/2022] [Indexed: 05/18/2023]
Abstract
Mixed-linker zeolitic imidazolate frameworks (ZIFs) with the sodalite (sod) topology type and based on ZIF-7 have been prepared by direct synthesis from the mixtures of benzimidazole (BzIm) and 4,5-dichloroimidazole (dcIm). Incorporation of dcIm into the ZIF-7 structure gives ZIF-7/COK-17 hybrids with rhombohedral symmetry that do not show the "open-to-closed form" structural transition upon solvent removal exhibited by ZIF-7. They show Type I isotherms for low molecular weight gases and high affinity for CO2 even at low partial pressures. Synthesis under mild conditions gives ZIF nanoparticles (250-400 nm) suitable for incorporation into mixed matrix membranes (MMMs): these were prepared with both glassy (Matrimid) and rubbery (PEBAX 1657) polymers. Permeation tests at 298 K and 1.2 bar reveal that the incorporation of Zn(BzIm0.55dcIm0.45)2 nanoparticles at up to ca. 12 wt % gives defect-free membranes with enhanced CO2 permeability in both polymer matrices, with retention of selectivity (Matrimid) or with an enhancement in selectivity that is most pronounced for the smaller nanoparticles (PEBAX). The membrane with the best performance exhibits a selectivity of ca. 200 for CO2/N2 (a 4-fold increase compared to the pure polymer) and a CO2 permeability of 64 Barrer. At the relatively low loadings investigated, the MMMs' performance obeys the Maxwell model, and the intrinsic property of diffusivity of the ZIFs can be extracted as a result.
Collapse
Affiliation(s)
- Qian Jia
- EaStCHEM
School of Chemistry, University of St Andrews, Purdie Building, North Haugh, St AndrewsKY16 9ST, United Kingdom
| | - Elsa Lasseuguette
- School
of Engineering, University of Edinburgh, Robert Stevenson Road, EdinburghEH9 3FB, United Kingdom
| | - Magdalena M. Lozinska
- EaStCHEM
School of Chemistry, University of St Andrews, Purdie Building, North Haugh, St AndrewsKY16 9ST, United Kingdom
| | - Maria-Chiara Ferrari
- School
of Engineering, University of Edinburgh, Robert Stevenson Road, EdinburghEH9 3FB, United Kingdom
| | - Paul A. Wright
- EaStCHEM
School of Chemistry, University of St Andrews, Purdie Building, North Haugh, St AndrewsKY16 9ST, United Kingdom
| |
Collapse
|
35
|
|
36
|
Tight UF membranes with ultrahigh water flux prepared by in-situ growing ZIF particles in NIPS process for greatly enhanced dye removal efficiency. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
37
|
Li Y, Wen G, Li J, Li Q, Zhang H, Tao B, Zhang J. Synthesis and shaping of metal-organic frameworks: a review. Chem Commun (Camb) 2022; 58:11488-11506. [PMID: 36165339 DOI: 10.1039/d2cc04190a] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Metal-organic frameworks (MOFs) possess excellent advantages, such as high porosity, large specific surface area, and an adjustable structure, showing good potential for applications in gas adsorption and separation, catalysis, conductivity, sensing, magnetism, etc. However, they still suffer from significant limitations in terms of the scale-up synthesis and shaping, hindering the realization of large-scale commercial applications. Despite some attempts having been devoted to addressing this, challenges remain. In this paper, we outline the advantages and drawbacks of existing synthetic routes such as electrochemistry, microwave, ultrasonic radiation, green solvent reflux, room temperature stirring, steam-assisted transformation, mechanochemistry, and fluid chemistry in terms of scale-up production. Then, the shaping methods of MOFs such as extrusion, mechanical compaction, rolling granulation, spray drying, gel technology, embedded granulation, phase inversion, 3D printing and other shaping methods for the preparation of membranes, coatings and nanoparticles are discussed. Finally, perspectives on the large-scale synthesis and shaping of MOFs are also proposed. This work helps provide in-depth insight into the scale-up production and shaping process of MOFs and boost commercial applications of MOFs.
Collapse
Affiliation(s)
- Ying Li
- State Key Laboratory of Safety and Control for Chemicals, SINOPEC Research Institute of Safety Engineering Co., Ltd., Qingdao City, Shandong Province, China.
| | - Guilin Wen
- State Key Laboratory of Safety and Control for Chemicals, SINOPEC Research Institute of Safety Engineering Co., Ltd., Qingdao City, Shandong Province, China.
| | - Jianzhe Li
- State Key Laboratory of Safety and Control for Chemicals, SINOPEC Research Institute of Safety Engineering Co., Ltd., Qingdao City, Shandong Province, China.
| | - Qingrun Li
- State Key Laboratory of Safety and Control for Chemicals, SINOPEC Research Institute of Safety Engineering Co., Ltd., Qingdao City, Shandong Province, China.
| | - Hongxing Zhang
- State Key Laboratory of Safety and Control for Chemicals, SINOPEC Research Institute of Safety Engineering Co., Ltd., Qingdao City, Shandong Province, China.
| | - Bin Tao
- State Key Laboratory of Safety and Control for Chemicals, SINOPEC Research Institute of Safety Engineering Co., Ltd., Qingdao City, Shandong Province, China.
| | - Jianzhong Zhang
- State Key Laboratory of Safety and Control for Chemicals, SINOPEC Research Institute of Safety Engineering Co., Ltd., Qingdao City, Shandong Province, China.
| |
Collapse
|
38
|
Abstract
Biogas and biohydrogen, due to their renewable nature and zero carbon footprint, are considered two of the gaseous biofuels that will replace conventional fossil fuels. Biogas from anaerobic digestion must be purified and converted into high-quality biomethane prior to use as a vehicle fuel or injection into natural gas networks. Likewise, the enrichment of biohydrogen from dark fermentation requires the removal of CO2, which is the main pollutant of this new gaseous biofuel. Currently, the removal of CO2 from both biogas and biohydrogen is carried out by means of physical/chemical technologies, which exhibit high operating costs and corrosion problems. Biological technologies for CO2 removal from biogas, such as photosynthetic enrichment and hydrogenotrophic enrichment, are still in an experimental development phase. In this context, membrane separation has emerged as the only physical/chemical technology with the potential to improve the performance of CO2 separation from both biogas and biohydrogen, and to reduce investment and operating costs, as a result of the recent advances in the field of nanotechnology and materials science. This review will focus on the fundamentals, potential and limitations of CO2 and H2 membrane separation technologies. The latest advances on membrane materials for biogas and biohydrogen purification will be systematically reviewed.
Collapse
|
39
|
Fan F, Zeng Q, Zhang Z, Zhang L, Zhang X, Wang T, Fu Y. In situ fabrication of bendable epitaxial metal-organic framework films via spraying. Chem Commun (Camb) 2022; 58:11123-11126. [PMID: 36106383 DOI: 10.1039/d2cc03889g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Epitaxial metal-organic framework (MOF) films have shown huge potential for use in separation applications. Herein, bendable epitaxial MOF films are fabricated via spraying. The synthesized MOF films show excellent oil-in-water emulsion separation performance even after being bent for multiple times at high curvatures.
Collapse
Affiliation(s)
- Fuqiang Fan
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, P. R. China.
| | - Qingqi Zeng
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, P. R. China.
| | - Zhihui Zhang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, P. R. China.
| | - Liying Zhang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, P. R. China.
| | - Xuemin Zhang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, P. R. China.
| | - Tieqiang Wang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, P. R. China.
| | - Yu Fu
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, P. R. China.
| |
Collapse
|
40
|
Cheng Y, Datta SJ, Zhou S, Jia J, Shekhah O, Eddaoudi M. Advances in metal-organic framework-based membranes. Chem Soc Rev 2022; 51:8300-8350. [PMID: 36070414 DOI: 10.1039/d2cs00031h] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Membrane-based separations have garnered considerable attention owing to their high energy efficiency, low capital cost, small carbon footprint, and continuous operation mode. As a class of highly porous crystalline materials with well-defined pore systems and rich chemical functionalities, metal-organic frameworks (MOFs) have demonstrated great potential as promising membrane materials over the past few years. Different types of MOF-based membranes, including polycrystalline membranes, mixed matrix membranes (MMMs), and nanosheet-based membranes, have been developed for diversified applications with remarkable separation performances. In this comprehensive review, we first discuss the general classification of membranes and outline the historical development of MOF-based membranes. Subsequently, particular attention is devoted to design strategies for MOF-based membranes, along with detailed discussions on the latest advances on these membranes for various gas and liquid separation processes. Finally, challenges and future opportunities for the industrial implementation of these membranes are identified and outlined with the intent of providing insightful guidance on the design and fabrication of high-performance membranes in the future.
Collapse
Affiliation(s)
- Youdong Cheng
- Functional Materials, Design, Discovery and Development (FMD3), Advanced Membrane & Porous Materials Center (AMPMC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.
| | - Shuvo Jit Datta
- Functional Materials, Design, Discovery and Development (FMD3), Advanced Membrane & Porous Materials Center (AMPMC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.
| | - Sheng Zhou
- Functional Materials, Design, Discovery and Development (FMD3), Advanced Membrane & Porous Materials Center (AMPMC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.
| | - Jiangtao Jia
- Functional Materials, Design, Discovery and Development (FMD3), Advanced Membrane & Porous Materials Center (AMPMC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.
| | - Osama Shekhah
- Functional Materials, Design, Discovery and Development (FMD3), Advanced Membrane & Porous Materials Center (AMPMC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.
| | - Mohamed Eddaoudi
- Functional Materials, Design, Discovery and Development (FMD3), Advanced Membrane & Porous Materials Center (AMPMC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.
| |
Collapse
|
41
|
Facile membrane preparation from colloidally stable metal-organic framework-polymer nanoparticles. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
42
|
Engineering CAU-10-H for preparation of mixed matrix membrane for gas separations. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
43
|
Deng Y, Wang Y, Xiao X, Saucedo BJ, Zhu Z, Xie M, Xu X, Yao K, Zhai Y, Zhang Z, Chen J. Progress in Hybridization of Covalent Organic Frameworks and Metal-Organic Frameworks. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2202928. [PMID: 35986438 DOI: 10.1002/smll.202202928] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/24/2022] [Indexed: 06/15/2023]
Abstract
Metal-organic frameworks (MOFs) and covalent organic frameworks (COFs) hybrid materials are a class of porous crystalline materials that integrate MOFs and COFs with hierarchical pore structures. As an emerging porous frame material platform, MOF/COF hybrid materials have attracted tremendous attention, and the field is advancing rapidly and extending into more diverse fields. Extensive studies have shown that a broad variety of MOF/COF hybrid materials with different structures and specific properties can be synthesized from diverse building blocks via different chemical reactions, driving the rapid growth of the field. The allowed complementary utilization of π-conjugated skeletons and nanopores for functional exploration has endowed these hybrid materials with great potential in challenging energy and environmental issues. It is necessary to prepare a "family tree" to accurately trace the developments in the study of MOF/COF hybrid materials. This review comprehensively summarizes the latest achievements and advancements in the design and synthesis of MOF/COF hybrid materials, including COFs covalently bonded to the surface functional groups of MOFs (MOF@COF), MOFs grown on the surface of COFs (COF@MOF), bridge reaction between COF and MOF (MOF+COF), and their various applications in catalysis, energy storage, pollutant adsorption, gas separation, chemical sensing, and biomedicine. It concludes with remarks concerning the trend from the structural design to functional exploration and potential applications of MOF/COF hybrid materials.
Collapse
Affiliation(s)
- Yang Deng
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, P. R. China
| | - Yue Wang
- Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, P. R. China
| | - Xiao Xiao
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Brett Jacob Saucedo
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Zhijun Zhu
- Institute of Molecular Metrics, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Mingsen Xie
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, P. R. China
| | - Xinru Xu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, P. R. China
| | - Kun Yao
- Shenzhen Zhongxing New Material Technology Company Ltd., Shenzhen, 518000, P. R. China
| | - Yanling Zhai
- Institute of Molecular Metrics, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Zhen Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, P. R. China
| | - Jun Chen
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| |
Collapse
|
44
|
Liu Y, Sim J, Hailemariam RH, Lee J, Rho H, Park KD, Kim DW, Woo YC. Status and future trends of hollow fiber biogas separation membrane fabrication and modification techniques. CHEMOSPHERE 2022; 303:134959. [PMID: 35580646 DOI: 10.1016/j.chemosphere.2022.134959] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/04/2022] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
With the increasing global demand for energy, renewable and sustainable biogas has attracted considerable attention. However, the presence of various gases such as methane, carbon dioxide (CO2), nitrogen, and hydrogen sulfide in biogas, and the potential emission of acid gases, which may adversely influence the environment, limits the efficient application of biogas in many fields. Consequently, researchers have focused on the upgrade and purification of biogas to eliminate impurities and obtain high-quality and high-purity biomethane with an increased combustion efficiency. In this context, the removal of CO2 gas, which is the most abundant contaminant in biogas, is of significance. Compared to conventional biogas purification processes such as water scrubbing, chemical absorption, pressure swing adsorption, and cryogenic separation, advanced membrane separation technologies are simpler to implement, easier to scale, and incur lower costs. Notably, hollow fiber membranes enhance the gas separation efficiency and decrease costs because their large specific surface area provides a greater range of gas transport. Several reviews have described biogas upgrading technologies and gas separation membranes composed of different materials. In this review, five commonly used commercial biogas upgrading technologies, as well as biological microalgae-based techniques are compared, the advantages and limitations of polymeric and mixed matrix hollow fiber membranes are highlighted, and methods to fabricate and modify hollow fiber membranes are described. This will provide more ideas and methods for future low-cost, large-scale industrial biogas upgrading using membrane technology.
Collapse
Affiliation(s)
- Yuying Liu
- Department of Environment Research, Korea Institute of Civil Engineering and Building Technology (KICT), 283, Goyang-Daero, Ilsanseo-Gu, Goyang-Si, Gyeonggi-Do, 10223, Republic of Korea; Department of Chemical and Biomolecular Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Jeonghoo Sim
- Department of Environment Research, Korea Institute of Civil Engineering and Building Technology (KICT), 283, Goyang-Daero, Ilsanseo-Gu, Goyang-Si, Gyeonggi-Do, 10223, Republic of Korea; Department of Civil and Environment Engineering, University of Science and Technology (UST), 217 Gajeong-Ro, Yuseong-Gu, Daejeon, 34113, Republic of Korea
| | - Ruth Habte Hailemariam
- Department of Environment Research, Korea Institute of Civil Engineering and Building Technology (KICT), 283, Goyang-Daero, Ilsanseo-Gu, Goyang-Si, Gyeonggi-Do, 10223, Republic of Korea; Department of Civil and Environment Engineering, University of Science and Technology (UST), 217 Gajeong-Ro, Yuseong-Gu, Daejeon, 34113, Republic of Korea
| | - Jonghun Lee
- Department of Environment Research, Korea Institute of Civil Engineering and Building Technology (KICT), 283, Goyang-Daero, Ilsanseo-Gu, Goyang-Si, Gyeonggi-Do, 10223, Republic of Korea
| | - Hojung Rho
- Department of Environment Research, Korea Institute of Civil Engineering and Building Technology (KICT), 283, Goyang-Daero, Ilsanseo-Gu, Goyang-Si, Gyeonggi-Do, 10223, Republic of Korea
| | - Kwang-Duck Park
- Department of Environment Research, Korea Institute of Civil Engineering and Building Technology (KICT), 283, Goyang-Daero, Ilsanseo-Gu, Goyang-Si, Gyeonggi-Do, 10223, Republic of Korea
| | - Dae Woo Kim
- Department of Chemical and Biomolecular Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| | - Yun Chul Woo
- Department of Environment Research, Korea Institute of Civil Engineering and Building Technology (KICT), 283, Goyang-Daero, Ilsanseo-Gu, Goyang-Si, Gyeonggi-Do, 10223, Republic of Korea; Department of Civil and Environment Engineering, University of Science and Technology (UST), 217 Gajeong-Ro, Yuseong-Gu, Daejeon, 34113, Republic of Korea.
| |
Collapse
|
45
|
Knebel A, Caro J. Metal-organic frameworks and covalent organic frameworks as disruptive membrane materials for energy-efficient gas separation. NATURE NANOTECHNOLOGY 2022; 17:911-923. [PMID: 35995854 DOI: 10.1038/s41565-022-01168-3] [Citation(s) in RCA: 88] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
In this Review we survey the molecular sieving behaviour of metal-organic framework (MOF) and covalent organic framework (COF) membranes, which is different from that of classical zeolite membranes. The nature of MOFs as inorganic-organic hybrid materials and COFs as purely organic materials is powerful and disruptive for the field of gas separation membranes. The possibility of growing neat MOFs and COFs on membrane supports, while also allowing successful blending into polymer-filler composites, has a huge advantage over classical zeolite molecular sieves. MOFs and COFs allow synthetic access to more than 100,000 different structures and tailor-made molecular gates. Additionally, soft evacuation below 100 °C is often enough to achieve pore activation. Therefore, a huge number of synthetic methods for supported MOF and COF membrane thin films, such as solvothermal synthesis, seed-mediated growth and counterdiffusion, exist. Among them, methods with high scale-up potential, for example, layer-by-layer dip- and spray-coating, chemical and physical vapour deposition, and electrochemical methods. Additionally, physical methods have been developed that involve external stimuli, such as electric fields and light. A particularly important point is their ability to react to stimuli, which has allowed the 'drawbacks' of the non-ideality of the molecular sieving properties to be exploited in a completely novel research direction. Controllable gas transport through membrane films is a next-level property of MOFs and COFs, leading towards adaptive process deviation. MOF and COF particles are highly compatible with polymers, which allows for mixed-matrix membranes. However, these membranes are not simple MOF-polymer blends, as they require improved polymer-filler interactions, such as cross-linking or surface functionalization.
Collapse
Affiliation(s)
- A Knebel
- Otto Schott Institute of Materials Research, Friedrich Schiller University Jena, Jena, Germany.
| | - J Caro
- Institute of Physical Chemistry and Electrochemistry, Leibniz University Hannover, Hannover, Germany.
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, China.
| |
Collapse
|
46
|
Ebadi Amooghin A, Sanaeepur H, Luque R, Garcia H, Chen B. Fluorinated metal-organic frameworks for gas separation. Chem Soc Rev 2022; 51:7427-7508. [PMID: 35920324 DOI: 10.1039/d2cs00442a] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Fluorinated metal-organic frameworks (F-MOFs) as fast-growing porous materials have revolutionized the field of gas separation due to their tunable pore apertures, appealing chemical features, and excellent stability. A deep understanding of their structure-performance relationships is critical for the synthesis and development of new F-MOFs. This critical review has focused on several strategies for the precise design and synthesis of new F-MOFs with structures tuned for specific gas separation purposes. First, the basic principles and concepts of F-MOFs as well as their structure, synthesis and modification and their structure to property relationships are studied. Then, applications of F-MOFs in adsorption and membrane gas separation are discussed. A detailed account of the design and capabilities of F-MOFs for the adsorption of various gases and the governing principles is provided. In addition, the exceptional characteristics of highly stable F-MOFs with engineered pore size and tuned structures are put into perspective to fabricate selective membranes for gas separation. Systematic analysis of the position of F-MOFs in gas separation revealed that F-MOFs are benchmark materials in most of the challenging gas separations. The outlook and future directions of the science and engineering of F-MOFs and their challenges are highlighted to tackle the issues of overcoming the trade-off between capacity/permeability and selectivity for a serious move towards industrialization.
Collapse
Affiliation(s)
- Abtin Ebadi Amooghin
- Department of Chemical Engineering, Faculty of Engineering, Arak University, Arak 38156-8-8349, Iran.
| | - Hamidreza Sanaeepur
- Department of Chemical Engineering, Faculty of Engineering, Arak University, Arak 38156-8-8349, Iran.
| | - Rafael Luque
- Department of Organic Chemistry, University of Cordoba, Campus de Rabanales, Edificio Marie Curie (C-3), Ctra Nnal IV-A, Km 396, E14014 Cordoba, Spain. .,Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Str., 117198, Moscow, Russian Federation
| | - Hermenegildo Garcia
- Instituto de Tecnología Química CSIC-UPV, Universitat Politècnica de València, Consejo Superior de Investigaciones Científicas, Av. de los Naranjos s/n, Valencia 46022, Spain.
| | - Banglin Chen
- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas, 78249-0698, USA.
| |
Collapse
|
47
|
Free Volume and Permeability of Mixed Matrix Membranes Made from a Terbutil-M-terphenyl Polyamide and a Porous Polymer Network. Polymers (Basel) 2022; 14:polym14153176. [PMID: 35956689 PMCID: PMC9371232 DOI: 10.3390/polym14153176] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/01/2022] [Accepted: 08/01/2022] [Indexed: 02/04/2023] Open
Abstract
A set of thermally rearranged mixed matrix membranes (TR-MMMs) was manufactured and tested for gas separation. These membranes were obtained through the thermal treatment of a precursor MMM with a microporous polymer network and an o-hydroxypolyamide,(HPA) created through a reaction of 2,2-bis(3-amino-4-hydroxyphenyl)-hexafluoropropane (APAF) and 5′-terbutil-m-terfenilo-3,3″-dicarboxylic acid dichloride (tBTmCl). This HPA was blended with different percentages of a porous polymer network (PPN) filler, which produced gas separation MMMs with enhanced gas permeability but with decreased selectivity. The thermal treatment of these MMMs gave membranes with excellent gas separation properties that did not show the selectivity decreasing trend. It was observed that the use of the PPN load brought about a small decrease in the initial mass losses, which were lower for increasing PPN loads. Regarding the glass transition temperature, it was observed that the use of the filler translated to a slightly lower Tg value. When these MMMs and TR-MMMs were compared with the analogous materials created from the isomeric 5′-terbutil-m-terfenilo-4,4″-dicarboxylic acid dichloride (tBTpCl), the permeability was lower for that of tBTmCl, compared with the one from tBTpCl, although selectivity was quite similar. This fact could be attributed to a lower rigidity as roughly confirmed by the segmental length of the polymer chain as studied by WAXS. A model for FFV calculation was proposed and its predictions compared with those evaluated from density measurements assuming a matrix-filler interaction or ideal independence. It turns out that permeability as a function of FFV for TR-MMMs follows an interaction trend, while those not thermally treated follow the non-interaction trend until relatively high PPN loads were reached.
Collapse
|
48
|
Solimando X, Babin J, Arnal-Herault C, Roizard D, Barth D, Poncot M, Royaud I, Alcouffe P, David L, Jonquieres A. Controlled grafting of multi-block copolymers for improving membrane properties for CO2 separation. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
49
|
Shi Y, Wang Z, Shi Y, Zhu S, Lu K, Zhang Y, Jin J. Micrometer-sized MOF particles incorporated mixed-matrix membranes driven by π-π interfacial interactions for improved gas separation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121258] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
50
|
Wales J, Hughes D, Marshall E, Chambers P. A Review on the Application of Metal–Organic Frameworks (MOFs) in Pressure Swing Adsorption (PSA) Nitrogen Gas Generation. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c00222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Joe Wales
- Haskel Europe Limited, North Hylton Road, Sunderland, SR5 3JD, United Kingdom
| | - David Hughes
- Department of Engineering, School of Computing, Engineering and Digital Technologies, Teesside University, Middlesbrough, TS1 3BA, U.K
| | - Ellis Marshall
- Aura Innovation Centre, University of Hull, Bridgehead Business Park, Hessle, HU13 0GD, United Kingdom
| | - Paul Chambers
- Parker Hannifin Manufacturing, Gas Separation & Filtration Division, Dukesway, Gateshead NE11 0PZ, United Kingdom
| |
Collapse
|