1
|
Singh Z, Chiong JD, Ricardo-Noordberg JF, Kamal S, Majewski MB. Charge separation in a copper(I) donor-chromophore-acceptor assembly for both photoanode and photocathode sensitization. Dalton Trans 2024. [PMID: 39258478 DOI: 10.1039/d4dt01681e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
A copper(I) donor-chromophore-acceptor triad bearing 1,8-napthalenemonoimide as the electron acceptor and triphenylamine as the electron donor was synthesized. Photophysical and electrochemical characterization suggest stepwise photoinduced charge separation upon excitation of the copper(I)-based metal-to-ligand charge transfer (MLCT) transition. Analyses of femtosecond transient absorption data of the triad show that intersystem crossing from the 1MLCT to the 3MLCT state is followed by two electron-transfer steps with time constants of 20 ps and 722 ps yielding a presumed final charge-separated state with a radical cation on the donor and radical anion on the acceptor that has an 18 ns lifetime in acetonitrile. Finally, this triad was anchored onto n-type (ZnO) and p-type (NiO) semiconductor surfaces to construct a photoanode and photocathode respectively. Successful photocurrent generation from both electrodes upon white light illumination confirms the potential utilization of such systems in dye-sensitized photoelectrochemical cells.
Collapse
Affiliation(s)
- Zujhar Singh
- Department of Chemistry and Biochemistry and Centre for NanoScience Research, Concordia University, 7141 Sherbrooke Street West, Montreal, Quebec, H4B 1R6, Canada.
| | - Joseph D Chiong
- Department of Chemistry and Biochemistry and Centre for NanoScience Research, Concordia University, 7141 Sherbrooke Street West, Montreal, Quebec, H4B 1R6, Canada.
| | - Joseph F Ricardo-Noordberg
- Department of Chemistry and Biochemistry and Centre for NanoScience Research, Concordia University, 7141 Sherbrooke Street West, Montreal, Quebec, H4B 1R6, Canada.
| | - Saeid Kamal
- Department of Chemistry and Laboratory for Advanced Spectroscopy and Imaging Research (LASIR), The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Marek B Majewski
- Department of Chemistry and Biochemistry and Centre for NanoScience Research, Concordia University, 7141 Sherbrooke Street West, Montreal, Quebec, H4B 1R6, Canada.
| |
Collapse
|
2
|
Mishra R, Jain K, Sharma VP, Kishor S, Ramaniah LM. Heteroleptic Cu(I) bis-diimine complexes as sensitizers in dye-sensitized solar cells (DSSCs): on some factors affecting intramolecular charge transfer. Phys Chem Chem Phys 2022; 24:17217-17232. [PMID: 35793081 DOI: 10.1039/d2cp01880b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A set of eight heteroleptic bis-diimine copper dye complexes with two different ancillary ligands (functionalised 2,9-dimethyl-1,10-phenanthroline (dmp) and functionalised 6,6'-diphenyl-2,2'-bipyridine (dpbpy)) are investigated for their potential use as sensitizers in dye-sensitized solar cells (DSSCs), using first principles density functional theory (DFT) and time dependent DFT (TDDFT). A detailed analysis of the structural properties, projected density of electronic states and Kohn-Sham energy levels, and optical absorption spectra in the UV-visible region reveals that substituting the thiophene group in the ancillary ligand, and enhancing conjugation in the anchoring ligand, lead to increase in the light harvesting efficiency (LHE). However, a natural transition orbital (NTO) analysis, shows that the nature of charge transfer depends mainly on the nature of the parent ancillary group and is not significantly affected by the structural modifications. Importantly, the lower energy excitations lead to favourable mixed metal to ligand charge transfer (MLCT) and ligand to ligand charge transfer (LLCT), as well as good electron injection. The best charge transfer directionality is found in the dmp-based dyes, particularly thiophene substituted dyes, thus making these the more effective sensitizers in DSSCs.
Collapse
Affiliation(s)
- Radha Mishra
- Department of Chemistry, Meerut College, Meerut, U.P.-250001, India
| | - Kalpna Jain
- Department of Physics, Digambar Jain College, Baraut, U.P.-250611, India
| | | | - Shyam Kishor
- Department of Chemistry, Janta Vedic College, Baraut, U.P.-250611, India.
| | - Lavanya M Ramaniah
- High Pressure and Synchrotron Radiation Physics Divison, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India.
| |
Collapse
|
3
|
Samira S, Hong J, Camayang JCA, Sun K, Hoffman AS, Bare SR, Nikolla E. Dynamic Surface Reconstruction Unifies the Electrocatalytic Oxygen Evolution Performance of Nonstoichiometric Mixed Metal Oxides. JACS AU 2021; 1:2224-2241. [PMID: 34977894 PMCID: PMC8715492 DOI: 10.1021/jacsau.1c00359] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Indexed: 05/26/2023]
Abstract
Compositionally versatile, nonstoichiometric, mixed ionic-electronic conducting metal oxides of the form A n+1B n O3n+1 (n = 1 → ∞; A = rare-earth-/alkaline-earth-metal cation; B = transition-metal (TM) cation) remain a highly attractive class of electrocatalysts for catalyzing the energy-intensive oxygen evolution reaction (OER). The current design strategies for describing their OER activities are largely derived assuming a static, unchanged view of their surfaces, despite reports of dynamic structural changes to 3d TM-based perovskites during OER. Herein, through variations in the A- and B-site compositions of A n+1B n O3n+1 oxides (n = 1 (A2BO4) or n = ∞ (ABO3); A = La, Sr, Ca; B = Mn, Fe, Co, Ni), we show that, in the absence of electrolyte impurities, surface restructuring is universally the source of high OER activity in these oxides and is dependent on the initial oxide composition. Oxide surface restructuring is induced by irreversible A-site cation dissolution, resulting in in situ formation of a TM oxyhydroxide shell on top of the parent oxide core that serves as the active surface for OER. The rate of surface restructuring is found to depend on (i) composition of A-site cations, with alkaline-earth-metal cations dominating lanthanide cation dissolution, (ii) oxide crystal phase, with n = 1 A2BO4 oxides exhibiting higher rates of A-site dissolution in comparison to n = ∞ ABO3 perovskites, (iii) lattice strain in the oxide induced by mixed rare-earth- and alkaline-earth-metal cations in the A-site, and (iv) oxide reducibility. Among the in situ generated 3d TM oxyhydroxide structures from A n+1B n O3n+1 oxides, Co-based structures are characterized by superior OER activity and stability, even in comparison to as-synthesized Co-oxyhydroxide, pointing to the generation of high active surface area structures through oxide restructuring. These insights are critical toward the development of revised design criteria to include surface dynamics for effectively describing the OER activity of nonstoichiometric mixed-metal oxides.
Collapse
Affiliation(s)
- Samji Samira
- Department
of Chemical Engineering and Materials Science, Wayne State University, Detroit, Michigan 48202, United States
| | - Jiyun Hong
- Stanford
Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - John Carl A. Camayang
- Department
of Chemical Engineering and Materials Science, Wayne State University, Detroit, Michigan 48202, United States
| | - Kai Sun
- Department
of Materials Science and Engineering, University
of Michigan, Ann Arbor, Michigan 48109, United States
| | - Adam S. Hoffman
- Stanford
Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Simon R. Bare
- Stanford
Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Eranda Nikolla
- Department
of Chemical Engineering and Materials Science, Wayne State University, Detroit, Michigan 48202, United States
| |
Collapse
|
4
|
Glinton K, Latifi R, Cockrell DS, Bardeaux M, Nguyen B, Tahsini L. Synthesis, characterization, and photoluminescent studies of three-coordinate Cu(i)–NHC complexes bearing unsymmetrically-substituted dipyridylamine ligands. RSC Adv 2019; 9:22417-22427. [PMID: 35519490 PMCID: PMC9066654 DOI: 10.1039/c9ra04886c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 07/15/2019] [Indexed: 11/21/2022] Open
Abstract
A series of heteroleptic three-coordinate Cu(i) complexes bearing monodentate N-heterocyclic carbene (NHC) ligands of the type 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene (IPr) and 1,3-bis(2,6-diisopropylphenyl)imidazolidin-2-ylidene (SIPr), and bidentate N-donor ligands of the type unsymmetrically-substituted dimethyl dipyridylamine (Me2Hdpa) and bis(mesityl)biazanaphthenequinone (mesBIAN) have been synthesized. The complexes [Cu(IPr)(3,4′-Me2Hdpa)]PF6, 1; [Cu(IPr)(3,5′-Me2Hdpa)]PF6, 2; [Cu(IPr)(3,6′-Me2Hdpa)]PF6, 3; [Cu(IPr)(mesBIAN)]PF6, 6; [Cu(SIPr)(3,4′-Me2Hdpa)]PF6, 7; [Cu(SIPr)(3,5′-Me2Hdpa)]PF6, 8; and [Cu(SIPr)(3,3′-Me2Hdpa)]PF6, 11 have been characterized by 1H and 13C NMR spectroscopies, elemental analysis, cyclic voltammetry, and photophysical studies in solid and solution phase. Single crystal X-ray structures were obtained for all complexes except 11. The crystallographic data reveal a mononuclear structure for all complexes with the copper atom ligated by one C and two N atoms. The UV-Vis absorption spectra of all dipyridylamine complexes in CH2Cl2 show a strong ligand-centered absorption band around 250 nm and a strong metal-to-ligand charge transfer (MLCT) band around 300 nm. When irradiated with UV light, the complexes exhibit strong emission maxima at 453–482 nm with photoluminescence quantum yields (PLQY) ranging from 0.21 to 0.87 in solid state. While the PLQY values are comparable to those of the symmetrical [Cu(IPr)(Me2Hdpa)]PF6 complexes, a stabilizing CH–π interaction has been reduced in the current systems. In particular, complex 3 lacks any strong CH–π interaction, but emits more efficiently than 1 and 2 wherein the interactions exist. Structural data analysis was performed to clarify the role of ligands' plane angle and the NH/CH⋯F interactions to the observed light interaction of unsymmetrical [Cu(NHC)(Me2Hdpa)]PF6 complexes. DFT calculations were performed to assist in the assignment of the electronic structure and excited state behavior of the complexes. The photoluminescent Cu(i)–NHC complexes bearing unsymmetrical dipyridylamine ligands have been synthesized and characterized. The structure–light reactivity has been elucidated.![]()
Collapse
Affiliation(s)
- Kwame Glinton
- Department of Chemistry
- Oklahoma State University
- Oklahoma 74078
- USA
| | - Reza Latifi
- Department of Chemistry
- Oklahoma State University
- Oklahoma 74078
- USA
| | | | - Matthew Bardeaux
- Department of Chemistry
- Oklahoma State University
- Oklahoma 74078
- USA
| | - Bachkhoa Nguyen
- Department of Chemistry
- Oklahoma State University
- Oklahoma 74078
- USA
| | - Laleh Tahsini
- Department of Chemistry
- Oklahoma State University
- Oklahoma 74078
- USA
| |
Collapse
|
5
|
Leoni E, Mohanraj J, Holler M, Mohankumar M, Nierengarten I, Monti F, Sournia-Saquet A, Delavaux-Nicot B, Jean-Franco Is Nierengarten, Armaroli N. Heteroleptic Copper(I) Complexes Prepared from Phenanthroline and Bis-Phosphine Ligands: Rationalization of the Photophysical and Electrochemical Properties. Inorg Chem 2018; 57:15537-15549. [PMID: 30481016 DOI: 10.1021/acs.inorgchem.8b02879] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The electronic and structural properties of ten heteroleptic [Cu(NN)(PP)]+ complexes have been investigated. NN indicates 1,10-phenanthroline (phen) or 4,7-diphenyl-1,10-phenanthroline (Bphen); each of these ligands is combined with five PP bis-phosphine chelators, i.e., bis(diphenylphosphino)methane (dppm), 1,2-bis(diphenylphosphino)ethane (dppe), 1,3-bis(diphenylphosphino)propane (dppp), 1,2-bis(diphenylphosphino)benzene (dppb), and bis[(2-diphenylphosphino)phenyl] ether (POP). All complexes are mononuclear, apart from those based on dppm, which are dinuclear. Experimental data-also taken from the literature and including electrochemical properties, X-ray crystal structures, UV-vis absorption spectra in CH2Cl2, luminescence spectra and lifetimes in solution, in PMMA, and as powders-have been rationalized with the support of density functional theory calculations. Temperature dependent studies (78-358 K) have been performed for selected complexes to assess thermally activated delayed fluorescence. The main findings are (i) dependence of the ground-state geometry on the crystallization conditions, with the same complex often yielding different crystal structures; (ii) simple model compounds with imposed C2 v symmetry ([Cu(phen)(PX3)2]+; X = H or CH3) are capable of modeling structural parameters as a function of the P-Cu-P bite angle, which plays a key role in dictating the overall structure of [Cu(NN)(PP)]+ complexes; (iii) as the P-Cu-P angle increases, the energy of the metal-to-ligand charge transfer absorption bands linearly increases; (iv) the former correlation does not hold for emission spectra, which are red-shifted for the weaker luminophores; (v) the larger the number of intramolecular π-interactions within the complex in the ground state, the higher the luminescence quantum yield, underpinning a geometry locking effect that limits the structural flattening of the excited state. This work provides a general framework to rationalize the structure-property relationships of [Cu(NN)(PP)]+, a class of compounds of increasing relevance for electroluminescent devices, photoredox catalysis, and solar-to-fuels conversion, which so far have been investigated in an unsystematic fashion, eluding a comprehensive understanding.
Collapse
Affiliation(s)
- Enrico Leoni
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche , Via Gobetti 101 , 40129 Bologna , Italy.,Laboratorio Tecnologie dei Materiali Faenza , ENEA , Via Ravegnana 186 , 48018 Faenza (RA) , Italy
| | - John Mohanraj
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche , Via Gobetti 101 , 40129 Bologna , Italy
| | - Michel Holler
- Laboratoire de Chimie des Matériaux Moléculaires , Université de Strasbourg et CNRS (LIMA - UMR 7042) , 25 rue Becquerel , 67087 Strasbourg Cedex 2 , France
| | - Meera Mohankumar
- Laboratoire de Chimie des Matériaux Moléculaires , Université de Strasbourg et CNRS (LIMA - UMR 7042) , 25 rue Becquerel , 67087 Strasbourg Cedex 2 , France
| | - Iwona Nierengarten
- Laboratoire de Chimie des Matériaux Moléculaires , Université de Strasbourg et CNRS (LIMA - UMR 7042) , 25 rue Becquerel , 67087 Strasbourg Cedex 2 , France
| | - Filippo Monti
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche , Via Gobetti 101 , 40129 Bologna , Italy
| | - Alix Sournia-Saquet
- Laboratoire de Chimie de Coordination du CNRS (UPR 8241) , Université de Toulouse (UPS, INPT) , 205 Route de Narbonne , 31077 Toulouse Cedex 4 , France
| | - Béatrice Delavaux-Nicot
- Laboratoire de Chimie de Coordination du CNRS (UPR 8241) , Université de Toulouse (UPS, INPT) , 205 Route de Narbonne , 31077 Toulouse Cedex 4 , France
| | - Jean-Franco Is Nierengarten
- Laboratoire de Chimie des Matériaux Moléculaires , Université de Strasbourg et CNRS (LIMA - UMR 7042) , 25 rue Becquerel , 67087 Strasbourg Cedex 2 , France
| | - Nicola Armaroli
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche , Via Gobetti 101 , 40129 Bologna , Italy
| |
Collapse
|
6
|
Nolte TM, Peijnenburg WJGM. Use of quantum-chemical descriptors to analyse reaction rate constants between organic chemicals and superoxide/hydroperoxyl (O2•−/HO2•). Free Radic Res 2018; 52:1118-1131. [DOI: 10.1080/10715762.2018.1529867] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Tom M. Nolte
- Department of Environmental Science, Institute for Water and Wetland Research, Radboud University Nijmegen, Nijmegen, the Netherlands
- Laboratory of Inorganic Chemistry, Eidgenossische Technische Hochschule (ETH) Zurich, Zurich, Switzerland
| | - Willie J. G. M. Peijnenburg
- National Institute of Public Health and the Environment, Bilthoven, The Netherlands
- Institute of Environmental Sciences (CML), Leiden University, Leiden, The Netherlands
| |
Collapse
|
7
|
Redox-coupled structural changes in copper chemistry: Implications for atom transfer catalysis. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2017.11.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
8
|
Garakyaraghi S, McCusker CE, Khan S, Koutnik P, Bui AT, Castellano FN. Enhancing the Visible-Light Absorption and Excited-State Properties of Cu(I) MLCT Excited States. Inorg Chem 2018; 57:2296-2307. [PMID: 29393633 DOI: 10.1021/acs.inorgchem.7b03169] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A computationally inspired Cu(I) metal-to-ligand charge transfer (MLCT) chromophore, [Cu(sbmpep)2]+ (sbmpep = 2,9-di(sec-butyl)-3,8-dimethyl-4,7-di(phenylethynyl)-1,10-phenanthroline), was synthesized in seven total steps, prepared from either dichloro- or dibromophenanthroline precursors. Complete synthesis, structural characterization, and electrochemistry, in addition to static and dynamic photophysical properties of [Cu(sbmpep)2]+, are reported on all relevant time scales. UV-Vis absorption spectroscopy revealed significant increases in oscillator strength along with a concomitant bathochromic shift in the MLCT absorption bands with respect to structurally related model complexes (ε = 16 500 M-1 cm-1 at 491 nm). Strong red photoluminescence (Φ = 2.7%, λmax = 687 nm) was observed from [Cu(sbmpep)2]+, which featured an average excited-state lifetime of 1.4 μs in deaerated dichloromethane. Cyclic and differential pulse voltammetry revealed ∼300 mV positive shifts in the measured one-electron reversible reduction and oxidation waves in relation to a Cu(I) model complex possessing identical structural elements without the π-conjugated 4,7-substituents. The excited-state redox potential of [Cu(sbmpep)2]+ was estimated to be -1.36 V, a notably powerful reductant for driving photoredox chemistry. The combination of conventional and ultrafast transient absorption and luminescence spectroscopy successfully map the excited-state dynamics of [Cu(sbmpep)2]+ from initial photoexcitation to the formation of the lowest-energy MLCT excited state and ultimately its relaxation to the ground state. This newly conceived molecule appears poised for photosensitization reactions involving energy and electron-transfer processes relevant to photochemical upconversion, photoredox catalysis, and solar fuels photochemistry.
Collapse
Affiliation(s)
- Sofia Garakyaraghi
- Department of Chemistry, North Carolina State University , Raleigh, North Carolina 27695-8204, United States
| | - Catherine E McCusker
- Department of Chemistry, North Carolina State University , Raleigh, North Carolina 27695-8204, United States
| | - Saba Khan
- Department of Chemistry, North Carolina State University , Raleigh, North Carolina 27695-8204, United States
| | - Petr Koutnik
- Department of Chemistry, North Carolina State University , Raleigh, North Carolina 27695-8204, United States
| | - Anh Thy Bui
- Department of Chemistry, North Carolina State University , Raleigh, North Carolina 27695-8204, United States
| | - Felix N Castellano
- Department of Chemistry, North Carolina State University , Raleigh, North Carolina 27695-8204, United States
| |
Collapse
|
9
|
|
10
|
Kohler L, Hayes D, Hong J, Carter TJ, Shelby ML, Fransted KA, Chen LX, Mulfort KL. Synthesis, structure, ultrafast kinetics, and light-induced dynamics of CuHETPHEN chromophores. Dalton Trans 2018; 45:9871-83. [PMID: 26924711 DOI: 10.1039/c6dt00324a] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Five heteroleptic Cu(i)bis(phenanthroline) chromophores with distinct variation in the steric bulk at the 2,9-phenanthroline position were synthesized using the HETPHEN method, and their ground and excited state properties are described. Analysis of the crystal structures reveals a significant distortion from tetrahedral geometry around the Cu(i) centre which is attributed to favourable aromatic interactions between the two phenanthroline ligands. Ultrafast and nanosecond transient optical spectroscopies reveal that the excited state lifetime can be tuned across two orders of magnitude up to 74 nanoseconds in acetonitrile by changing the 2,9-substituent from hydrogen to sec-butyl. X-ray transient absorption spectroscopy at the Cu K-edge confirmed Cu(i) oxidation to Cu(ii) and revealed a decrease of the Cu-N bond lengths in the excited state. The ground and excited state characterization presented here will guide the integration of CuHETPHEN chromophores into complex electron donor-acceptor architectures.
Collapse
Affiliation(s)
- Lars Kohler
- Division of Chemical Sciences and Engineering, Argonne National Laboratory, 9700 South Cass Ave, Argonne, IL 60439, USA.
| | - Dugan Hayes
- Division of Chemical Sciences and Engineering, Argonne National Laboratory, 9700 South Cass Ave, Argonne, IL 60439, USA.
| | - Jiyun Hong
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| | - Tyler J Carter
- Division of Chemical Sciences and Engineering, Argonne National Laboratory, 9700 South Cass Ave, Argonne, IL 60439, USA.
| | - Megan L Shelby
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| | - Kelly A Fransted
- Division of Chemical Sciences and Engineering, Argonne National Laboratory, 9700 South Cass Ave, Argonne, IL 60439, USA.
| | - Lin X Chen
- Division of Chemical Sciences and Engineering, Argonne National Laboratory, 9700 South Cass Ave, Argonne, IL 60439, USA. and Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| | - Karen L Mulfort
- Division of Chemical Sciences and Engineering, Argonne National Laboratory, 9700 South Cass Ave, Argonne, IL 60439, USA.
| |
Collapse
|
11
|
Garakyaraghi S, Koutnik P, Castellano FN. Photoinduced structural distortions and singlet–triplet intersystem crossing in Cu(i) MLCT excited states monitored by optically gated fluorescence spectroscopy. Phys Chem Chem Phys 2017. [DOI: 10.1039/c7cp03343e] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Comprehensive analysis of the photo-induced structural distortions and singlet–triplet intersystem crossing dynamics of a series of Cu(i) phenanthroline chromophores.
Collapse
Affiliation(s)
| | - Petr Koutnik
- Department of Chemistry
- North Carolina State University
- Raleigh
- USA
| | | |
Collapse
|
12
|
Pandey RK, Rana U, Chakraborty C, Moriyama S, Higuchi M. Proton Conductive Nanosheets Formed by Alignment of Metallo-Supramolecular Polymers. ACS APPLIED MATERIALS & INTERFACES 2016; 8:13526-13531. [PMID: 27164027 DOI: 10.1021/acsami.6b02393] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Linear Fe(II)-based metallo-supramolecular polymer chains were precisely aligned by the simple replacement of the counteranion with an N,N'-bis(4-benzosulfonic acid)perylene-3,4,9,10-tetracarboxylbisimide (PSA) dianion, which linked the polymer chains strongly. A parallel alignment of the polymer chains promoted by the PSA dianions yielded nanosheets formation. The nanosheets' structure was analyzed with FESEM, HRTEM, UV-vis, and XRD in detail. The nanosheets showed more than 5 times higher proton conductivity than the original polymer due to the smooth ionic conduction through the aligned polymer chains. The complex impedance plot with two semicircles also suggested the presence of grain boundaries in the polymer nanosheets.
Collapse
Affiliation(s)
- Rakesh K Pandey
- Electronic Functional Materials Group, National Institute for Materials Science (NIMS) , Tsukuba 305-0044, Japan
| | - Utpal Rana
- Electronic Functional Materials Group, National Institute for Materials Science (NIMS) , Tsukuba 305-0044, Japan
| | - Chanchal Chakraborty
- International Center for Materials Nanoarchitectonics (MANA), NIMS , Tsukuba 305-0044, Japan
| | - Satoshi Moriyama
- International Center for Materials Nanoarchitectonics (MANA), NIMS , Tsukuba 305-0044, Japan
| | - Masayoshi Higuchi
- Electronic Functional Materials Group, National Institute for Materials Science (NIMS) , Tsukuba 305-0044, Japan
| |
Collapse
|
13
|
Metal–Organic and Organic TADF-Materials: Status, Challenges and Characterization. Top Curr Chem (Cham) 2016; 374:22. [DOI: 10.1007/s41061-016-0022-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 03/21/2016] [Indexed: 10/22/2022]
|
14
|
Bergmann L, Hedley GJ, Baumann T, Bräse S, Samuel IDW. Direct observation of intersystem crossing in a thermally activated delayed fluorescence copper complex in the solid state. SCIENCE ADVANCES 2016; 2:e1500889. [PMID: 26767194 PMCID: PMC4705038 DOI: 10.1126/sciadv.1500889] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 11/02/2015] [Indexed: 05/20/2023]
Abstract
Intersystem crossing in thermally activated delayed fluorescence (TADF) materials is an important process that controls the rate at which singlet states convert to triplets; however, measuring this directly in TADF materials is difficult. TADF is a significant emerging technology that enables the harvesting of triplets as well as singlet excited states for emission in organic light emitting diodes. We have observed the picosecond time-resolved photoluminescence of a highly luminescent, neutral copper(I) complex in the solid state that shows TADF. The time constant of intersystem crossing is measured to be 27 picoseconds. Subsequent overall reverse intersystem crossing is slow, leading to population equilibration and TADF with an average lifetime of 11.5 microseconds. These first measurements of intersystem crossing in the solid state in this class of mononuclear copper(I) complexes give a better understanding of the excited-state processes and mechanisms that ensure efficient TADF.
Collapse
Affiliation(s)
- Larissa Bergmann
- Institute of Organic Chemistry, Karlsruhe Institute of Technology, Kaiserstraße 12, 76131 Karlsruhe, Germany
- CYNORA GmbH, Werner-von-Siemensstraße 2-6, Building 5110, 76646 Bruchsal, Germany
| | - Gordon J. Hedley
- Organic Semiconductor Centre, SUPA, School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews, Fife KY16 9SS, UK
| | - Thomas Baumann
- CYNORA GmbH, Werner-von-Siemensstraße 2-6, Building 5110, 76646 Bruchsal, Germany
| | - Stefan Bräse
- Institute of Organic Chemistry, Karlsruhe Institute of Technology, Kaiserstraße 12, 76131 Karlsruhe, Germany
- Karlsruhe Institute of Technology (KIT), Institute of Toxicology and Genetics, Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
| | - Ifor D. W. Samuel
- Organic Semiconductor Centre, SUPA, School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews, Fife KY16 9SS, UK
| |
Collapse
|
15
|
Mara MW, Bowman DN, Buyukcakir O, Shelby ML, Haldrup K, Huang J, Harpham MR, Stickrath AB, Zhang X, Stoddart JF, Coskun A, Jakubikova E, Chen LX. Electron Injection from Copper Diimine Sensitizers into TiO2: Structural Effects and Their Implications for Solar Energy Conversion Devices. J Am Chem Soc 2015; 137:9670-84. [PMID: 26154849 DOI: 10.1021/jacs.5b04612] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Copper(I) diimine complexes have emerged as low cost replacements for ruthenium complexes as light sensitizers and electron donors, but their shorter metal-to-ligand-charge-transfer (MLCT) states lifetimes and lability of transient Cu(II) species impede their intended functions. Two carboxylated Cu(I) bis-2,9-diphenylphenanthroline (dpp) complexes [Cu(I)(dpp-O(CH2CH2O)5)(dpp-(COOH)2)](+) and [Cu(I)(dpp-O(CH2CH2O)5)(dpp-(Φ-COOH)2)](+) (Φ = tolyl) with different linker lengths were synthesized in which the MLCT-state solvent quenching pathways are effectively blocked, the lifetime of the singlet MLCT state is prolonged, and the transient Cu(II) ligands are stabilized. Aiming at understanding the mechanisms of structural influence to the interfacial charge transfer in the dye-sensitized solar cell mimics, electronic and geometric structures as well as dynamics for the MLCT state of these complexes and their hybrid with TiO2 nanoparticles were investigated using optical transient spectroscopy, X-ray transient absorption spectroscopy, time-dependent density functional theory, and quantum dynamics simulations. The combined results show that these complexes exhibit strong absorption throughout the visible spectrum due to the severely flattened ground state, and a long-lived charge-separated Cu(II) has been achieved via ultrafast electron injection (<300 fs) from the (1)MLCT state into TiO2 nanoparticles. The results also indicate that the TiO2-phen distance in these systems does not have significant effect on the efficiency of the interfacial electron-transfer process. The mechanisms for electron transfer in these systems are discussed and used to develop new strategies in optimizing copper(I) diimine complexes in solar energy conversion devices.
Collapse
Affiliation(s)
- Michael W Mara
- †Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - David N Bowman
- §Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, North Carolina 27695-8204, United States
| | - Onur Buyukcakir
- ⊥Graduate School of Energy, Environment, Water and Sustainability (EEWS), Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Republic of Korea
| | - Megan L Shelby
- †Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Kristoffer Haldrup
- ∥Centre for Molecular Movies, Department of Physics, NEXMAP Section, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | | | | | | | | | - J Fraser Stoddart
- †Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Ali Coskun
- ⊥Graduate School of Energy, Environment, Water and Sustainability (EEWS), Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Republic of Korea
| | - Elena Jakubikova
- §Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, North Carolina 27695-8204, United States
| | - Lin X Chen
- †Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| |
Collapse
|