1
|
Eagleton A, Ko M, Stolz RM, Vereshchuk N, Meng Z, Mendecki L, Levenson AM, Huang C, MacVeagh KC, Mahdavi-Shakib A, Mahle JJ, Peterson GW, Frederick BG, Mirica KA. Fabrication of Multifunctional Electronic Textiles Using Oxidative Restructuring of Copper into a Cu-Based Metal-Organic Framework. J Am Chem Soc 2022; 144:23297-23312. [PMID: 36512516 PMCID: PMC9801431 DOI: 10.1021/jacs.2c05510] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Indexed: 12/15/2022]
Abstract
This paper describes a novel synthetic approach for the conversion of zero-valent copper metal into a conductive two-dimensional layered metal-organic framework (MOF) based on 2,3,6,7,10,11-hexahydroxytriphenylene (HHTP) to form Cu3(HHTP)2. This process enables patterning of Cu3(HHTP)2 onto a variety of flexible and porous woven (cotton, silk, nylon, nylon/cotton blend, and polyester) and non-woven (weighing paper and filter paper) substrates with microscale spatial resolution. The method produces conductive textiles with sheet resistances of 0.1-10.1 MΩ/cm2, depending on the substrate, and uniform conformal coatings of MOFs on textile swatches with strong interfacial contact capable of withstanding chemical and physical stresses, such as detergent washes and abrasion. These conductive textiles enable simultaneous detection and detoxification of nitric oxide and hydrogen sulfide, achieving part per million limits of detection in dry and humid conditions. The Cu3(HHTP)2 MOF also demonstrated filtration capabilities of H2S, with uptake capacity up to 4.6 mol/kgMOF. X-ray photoelectron spectroscopy and diffuse reflectance infrared spectroscopy show that the detection of NO and H2S with Cu3(HHTP)2 is accompanied by the transformation of these species to less toxic forms, such as nitrite and/or nitrate and copper sulfide and Sx species, respectively. These results pave the way for using conductive MOFs to construct extremely robust electronic textiles with multifunctional performance characteristics.
Collapse
Affiliation(s)
- Aileen
M. Eagleton
- Department
of Chemistry, Burke Laboratory, Dartmouth
College, Hanover, New Hampshire 03755, United States
| | - Michael Ko
- Department
of Chemistry, Burke Laboratory, Dartmouth
College, Hanover, New Hampshire 03755, United States
| | - Robert M. Stolz
- Department
of Chemistry, Burke Laboratory, Dartmouth
College, Hanover, New Hampshire 03755, United States
| | - Nataliia Vereshchuk
- Department
of Chemistry, Burke Laboratory, Dartmouth
College, Hanover, New Hampshire 03755, United States
| | - Zheng Meng
- Department
of Chemistry, Burke Laboratory, Dartmouth
College, Hanover, New Hampshire 03755, United States
| | - Lukasz Mendecki
- Department
of Chemistry, Burke Laboratory, Dartmouth
College, Hanover, New Hampshire 03755, United States
| | - Adelaide M. Levenson
- Department
of Chemistry, Burke Laboratory, Dartmouth
College, Hanover, New Hampshire 03755, United States
| | - Connie Huang
- Department
of Chemistry, Burke Laboratory, Dartmouth
College, Hanover, New Hampshire 03755, United States
| | - Katherine C. MacVeagh
- Department
of Chemistry, Burke Laboratory, Dartmouth
College, Hanover, New Hampshire 03755, United States
| | - Akbar Mahdavi-Shakib
- Department
of Chemistry, Frontier Institute for Research
in Sensor Technology (FIRST), University of Maine, Orono, Maine 04469, United States
| | - John J. Mahle
- DEVCOM
Chemical Biological Center, 8198 Blackhawk Road, Aberdeen Proving Ground, Maryland 21010-5424, United States
| | - Gregory W. Peterson
- DEVCOM
Chemical Biological Center, 8198 Blackhawk Road, Aberdeen Proving Ground, Maryland 21010-5424, United States
| | - Brian G. Frederick
- Department
of Chemistry, Frontier Institute for Research
in Sensor Technology (FIRST), University of Maine, Orono, Maine 04469, United States
| | - Katherine A. Mirica
- Department
of Chemistry, Burke Laboratory, Dartmouth
College, Hanover, New Hampshire 03755, United States
| |
Collapse
|
2
|
Nicholls AJ, Barber T, Baxendale IR. The Synthesis and Utility of Metal-Nitrosophenolato Compounds-Highlighting the Baudisch Reaction. Molecules 2019; 24:E4018. [PMID: 31698829 PMCID: PMC6891451 DOI: 10.3390/molecules24224018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 10/31/2019] [Accepted: 11/01/2019] [Indexed: 11/17/2022] Open
Abstract
The syntheses of the title compounds demonstrate a privileged introduction of a nitroso (and a hydroxyl via the Baudisch reaction) group to an aromatic ring. These complexes first appeared in the literature as early as 1939, and a range of applications has subsequently been published. However, optimisations of the preparative sequences were not considered, and as such, the reactions have seldom been utilised in recent years; indeed, there remains confusion in the literature as to how such complexes form. In this review, we aim to demystify the misunderstanding surrounding these remarkable complexes and consider their renewed application in the 21st century.
Collapse
Affiliation(s)
| | | | - Ian R. Baxendale
- Department of Chemistry, University of Durham, South Road, Durham DH1 3LE, UK; (A.J.N.); (T.B.)
| |
Collapse
|
3
|
Deka H, Ghosh S, Gogoi K, Saha S, Mondal B. Nitric Oxide Reactivity of a Cu(II) Complex of an Imidazole-Based Ligand: Aromatic C-Nitrosation Followed by the Formation of N-Nitrosohydroxylaminato Complex. Inorg Chem 2017; 56:5034-5040. [PMID: 28387516 DOI: 10.1021/acs.inorgchem.7b00069] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A binuclear Cu(II) complex, 1, [Cu2(L-)2(OAc)](OAc) of imidazole-based ligand LH {LH = 2-(bis(2-ethyl-5-methyl-1H-imidazol-4-yl)methyl)phenol} was synthesized and characterized spectroscopically and structurally. Addition of an equivalent amount of nitric oxide (NO) by a gastight syringe to the acetonitrile:methanol (5:1, v/v) solution of complex 1 at room temperature resulted in the reduction of Cu(II) center to Cu(I) with concomitant C-nitrosation of the ligand. Spectroscopic characterization of the resulting Cu(I) complex (1a) of the C-nitrosylated ligand, L' {L' = 2-(bis(2-ethyl-5-methyl-1H-imidazol-4-yl)methyl)-4-nitroso-phenol} has been done. The Cu(I) complex, 1a, further reacted with NO to result in the corresponding N-nitrosohydroxylaminato complex, 2, [Cu2(L-ONNO)2](OAc)2 through the formation of a Cu(I)-nitrosyl intermediate. A small fraction of the nitrosyl intermediate decomposed to the corresponding Cu(II) complex 3, [Cu(L')2], and N2O in a parallel reaction.
Collapse
Affiliation(s)
- Hemanta Deka
- Department of Chemistry, Indian Institute of Technology Guwahati , North Guwahati, Assam 781039, India
| | - Somnath Ghosh
- Department of Chemistry, Indian Institute of Technology Guwahati , North Guwahati, Assam 781039, India
| | - Kuldeep Gogoi
- Department of Chemistry, Indian Institute of Technology Guwahati , North Guwahati, Assam 781039, India
| | - Soumen Saha
- Department of Chemistry, Indian Institute of Technology Guwahati , North Guwahati, Assam 781039, India
| | - Biplab Mondal
- Department of Chemistry, Indian Institute of Technology Guwahati , North Guwahati, Assam 781039, India
| |
Collapse
|