1
|
Purohit S, Rana R, Tyagi A, Bahuguna A, Oswal P, Anshika, Kumar A. Organosulphur and organoselenium compounds as ligands for catalytic systems in the Sonogashira coupling. Org Biomol Chem 2024; 22:6215-6245. [PMID: 38873754 DOI: 10.1039/d4ob00552j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Sonogashira coupling is a reaction of aryl/vinyl halides with terminal alkynes. It is used for the synthesis of conjugated enynes. Generally, copper (Cu) is required as a mediator for this reaction. It requires a long reaction time, high catalyst loading, or expensive ligands. Recently, homogeneous, heterogeneous, and nanocatalysts have been developed using organosulphur and organoselenium compounds as building blocks. Preformed complexes of metals with organosulphur and organoselenium ligands are used for homogeneous catalysis. Heterogeneous catalytic systems have also been developed using Cu, Pd, and Ni as metals. The nanocatalytic systems (synthesized using such ligands) include copper selenides and stabilized palladium(0) nanospecies. This article aims to cover the developments in the field of the processes and techniques used so far to generate catalytically relevant organic ligands having sulphur or selenium donor sites, the utility of such ligands in the syntheses of homogeneous, heterogeneous, and nanocatalytic systems, and critical analysis of their application in the catalysis of this coupling reaction. The results of catalysis are analyzed in terms of the effects of the S/Se donor, halogen atom of aryl halide, the effect of the presence/absence of electron-withdrawing or electron-donating groups or substituents on the aromatic ring of haloarenes/substituted phenylacetylenes, as well as the position (ortho or para) of the substitution. Substrate scope is discussed for all the kinds of catalysis. The supremacy of heterogeneous and nanocatalytic systems indicates promising future prospects.
Collapse
Affiliation(s)
- Suraj Purohit
- Department of Chemistry, School of Physical Sciences, Doon University, Dehradun, 248001, India.
| | - Ramakshi Rana
- Department of Chemistry, School of Physical Sciences, Doon University, Dehradun, 248001, India.
| | - Anupma Tyagi
- Department of Chemistry, School of Physical Sciences, Doon University, Dehradun, 248001, India.
| | - Anurag Bahuguna
- Department of Chemistry, School of Physical Sciences, Doon University, Dehradun, 248001, India.
| | - Preeti Oswal
- Department of Chemistry, Texas A&M University, College Station, 77842-3012, USA
| | - Anshika
- Department of Chemistry, School of Physical Sciences, Doon University, Dehradun, 248001, India.
| | - Arun Kumar
- Department of Chemistry, School of Physical Sciences, Doon University, Dehradun, 248001, India.
| |
Collapse
|
2
|
Siewert JE, Schumann A, Wellnitz T, Dankert F, Hering-Junghans C. Triphosphiranes as phosphinidene-transfer agents - synthesis of regular and chelating NHC phosphinidene adducts. Dalton Trans 2023; 52:15747-15756. [PMID: 37846491 DOI: 10.1039/d3dt02690f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
In this contribution we describe the general use of aryl-substituted triphosphiranes (Ar3P3; Ar = Mes, Dip, Tip) as phosphinidene transfer reagents towards N-heterocyclic carbenes (NHCs) to give a library of twelve N-heterocyclic carbene phosphinidene adducts of the type ArPNHC (NHCPs), in which the NHCs have varying steric profiles, allowing a systematic evaluation of their structural and NMR-spectroscopic properties. In the next series of experiments we utilized 1,3- and 1,4-phenylene bridged bis-NHCs to access a new class of chelating bis(NHCP)s, of which three derivatives could be structurally characterized. The 1,4-phenylene derivatives were shown to be susceptible to P-CNHC bond cleavage when irradiated with an LED (396 nm), providing a rare example of phosphinidene release from NHCPs. The coordination chemistry of 1,3-phenylene bridged bis(NHCP)s towards GeCl2(dioxane) and GaI3 was investigated and revealed the formation of ion-separated cationic complexes, with significant charge transfer from the ligand to the metal center according to NBO analyses.
Collapse
Affiliation(s)
- Jan-Erik Siewert
- Leibniz Institut für Katalyse e.V. (LIKAT), A.-Einstein-Str. 29a, 18059 Rostock, Germany.
| | - André Schumann
- Leibniz Institut für Katalyse e.V. (LIKAT), A.-Einstein-Str. 29a, 18059 Rostock, Germany.
| | - Tim Wellnitz
- Leibniz Institut für Katalyse e.V. (LIKAT), A.-Einstein-Str. 29a, 18059 Rostock, Germany.
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg Am Hubland, 97074 Würzburg, Germany
| | - Fabian Dankert
- Leibniz Institut für Katalyse e.V. (LIKAT), A.-Einstein-Str. 29a, 18059 Rostock, Germany.
- Departement für Chemie, Biochemie und Pharmazie, Universität Bern Freiestrasse 3, 3012 Bern, Switzerland
| | | |
Collapse
|
3
|
Aleksanyan DV, Churusova SG, Dubasova EV, Ananyev IV, Artyushin OI, Peregudov AS, Klemenkova ZS, Denisov GL, Kozlov VA. Experimental and computational insights into the direct cyclopalladation of different unsymmetrical, yet closely related pincer ligands with thione sulfur donors. Polyhedron 2023. [DOI: 10.1016/j.poly.2023.116303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
4
|
Arora A, Oswal P, Sharma D, Tyagi A, Purohit S, Sharma P, Kumar A. Molecular Organosulphur, Organoselenium and Organotellurium Complexes as Homogeneous Transition Metal Catalytic Systems for Suzuki Coupling. ChemistrySelect 2022. [DOI: 10.1002/slct.202201704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Aayushi Arora
- Department of Chemistry School of Physical Sciences Doon University Dehradun 248012 India
| | - Preeti Oswal
- Department of Chemistry School of Physical Sciences Doon University Dehradun 248012 India
| | - Deepali Sharma
- Department of Chemistry School of Physical Sciences Doon University Dehradun 248012 India
| | - Anupma Tyagi
- Department of Chemistry School of Physical Sciences Doon University Dehradun 248012 India
| | - Suraj Purohit
- Department of Chemistry School of Physical Sciences Doon University Dehradun 248012 India
| | - Pankaj Sharma
- Instituto de Química National Autonomous University of Mexico (UNAM) Circuito Exterior Mexico 04510
| | - Arun Kumar
- Department of Chemistry School of Physical Sciences Doon University Dehradun 248012 India
| |
Collapse
|
5
|
Sharma D, Arora A, Oswal P, Bahuguna A, Datta A, Kumar A. Organosulphur and organoselenium compounds as emerging building blocks for catalytic systems for O-arylation of phenols, a C-O coupling reaction. Dalton Trans 2022; 51:8103-8132. [PMID: 35535745 DOI: 10.1039/d1dt04371d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Diaryl ethers form an important class of organic compounds. The classic copper-mediated Ullmann diaryl ether synthesis has been known for many years and involves the coupling of phenols with aryl halides. However, the use of high reaction temperature, high catalyst loading and expensive ligands has created a need for the development of alternative catalytic systems. In the recent past, organosulphur and organoselenium compounds have been used as building blocks for developing homogeneous, heterogeneous and nanocatalysts for this C-O coupling reaction. Homogeneous catalytic systems include preformed complexes of metals with organosulphur and organoselenium ligands. The performance of such complexes is influenced dramatically by the nature of the chalcogen (S or Se) donor site of the ligand. Nanocatalytic systems (including Pd17Se15, Pd16S7 and Cu1.8S) have been designed using a single-source precursor route. Heterogeneous catalytic systems contain either metal (Cu or Pd) or metal chalcogenides (Pd17Se15 or Cu1.8S) as catalytically active species. This article aims to cover the simple and straightforward methodologies and approaches that are adopted for developing catalytically relevant organosulfur and organoselenium ligands, their homogeneous metal complexes, heterogeneous and nanocatalysts. The effects of chalcogen (S or Se) donor, halogen (Cl/Br/I) of aryl halide, nature (electron withdrawing or electron donating) of substituents present on the aromatic ring of aryl halides or substituted phenols and position (ortho or para) of substitution on the results of catalytic reactions have been critically analyzed and summarized. The effect of composition (Pd17Se15 or Pd16S7) on the performance of nanocatalytic systems is also highlighted. Substrate scope has also been discussed in all three types of catalysis. The superiority of heterogeneous catalytic systems (e.g., Pd17Se15 immobilised on graphene oxide) indicates the bright future possibilities for the development of efficient catalytic systems using similar or tailored ligands for this reaction.
Collapse
Affiliation(s)
- Deepali Sharma
- Department of Chemistry, School of Physical Sciences, Doon University, Dehradun, 248012 India.
| | - Aayushi Arora
- Department of Chemistry, School of Physical Sciences, Doon University, Dehradun, 248012 India.
| | - Preeti Oswal
- Department of Chemistry, School of Physical Sciences, Doon University, Dehradun, 248012 India.
| | - Anurag Bahuguna
- Department of Chemistry, School of Physical Sciences, Doon University, Dehradun, 248012 India.
| | - Anupama Datta
- Institute of Nuclear Medicine and Allied Sciences (INMAS), India
| | - Arun Kumar
- Department of Chemistry, School of Physical Sciences, Doon University, Dehradun, 248012 India.
| |
Collapse
|
6
|
Daniels CL, Gi E, Atterberry BA, Blome-Fernández R, Rossini AJ, Vela J. Phosphine Ligand Binding and Catalytic Activity of Group 10-14 Heterobimetallic Complexes. Inorg Chem 2022; 61:6888-6897. [PMID: 35481778 DOI: 10.1021/acs.inorgchem.2c00229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Heterobimetallic complexes have attracted much interest due to their broad range of structures and reactivities as well as unique catalytic abilities. Additionally, these complexes can be utilized as single-source precursors for the synthesis of binary intermetallic compounds. An example is the family of bis(pyridine-2-thiolato)dichloro-germanium and tin complexes of group 10 metals (Pd and Pt). The reactivity of these heterobimetallic complexes is highly tunable through substitution of the group 14 element and the neutral ligand bound to the transition metal. Here, we study the binding energies of three different phosphorous-based ligands, PR3 (R = Bu, Ph, and OPh) by density functional theory and restricted Hartree-Fock methods. The PR3 ligand-binding energies follow the trend of PBu3 > PPh3 > P(OPh)3, in agreement with their sigma-bonding ability. These results are confirmed by ligand exchange experiments monitored with 31P NMR spectroscopy, in which a weaker binding PR3 ligand is replaced with a stronger one. Furthermore, we demonstrate that the heterobimetallic complexes are active catalysts in the Negishi coupling reaction, where stronger binding PR3 ligands inhibit access to an active site at the metal center. Similar strategies could be applied to other complexes to better understand their ligand-binding energetics and predict their reactivity as both precursors and catalysts.
Collapse
Affiliation(s)
- Carena L Daniels
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Eunbyeol Gi
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States.,US DOE Ames Laboratory, Ames, Iowa 50011, United States
| | - Benjamin A Atterberry
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States.,US DOE Ames Laboratory, Ames, Iowa 50011, United States
| | | | - Aaron J Rossini
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States.,US DOE Ames Laboratory, Ames, Iowa 50011, United States
| | - Javier Vela
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States.,US DOE Ames Laboratory, Ames, Iowa 50011, United States
| |
Collapse
|
7
|
Karunathilaka D, Rajapakse RMG, Hardin AE, Sexton TM, Sparks NE, Mosely JJ, Rheingold AL, Hammer NI, Tschumper GS, Watkins DL. Correlation of solid-state order to optoelectronic behavior in heterocyclic oligomers. CrystEngComm 2022. [DOI: 10.1039/d2ce00560c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Here we address a longstanding challenge in the field of optoelectronic materials by evaluating the molecular and solid-state arrangements of heterocyclic oligomers and correlating their crystal structures to their optical properties.
Collapse
Affiliation(s)
- Dilan Karunathilaka
- Department of Chemistry and Biochemistry, University of Mississippi, University, MS 38677-1848, USA
| | - R. M. G. Rajapakse
- Department of Chemistry and Biochemistry, University of Mississippi, University, MS 38677-1848, USA
| | - April E. Hardin
- Department of Chemistry and Biochemistry, University of Mississippi, University, MS 38677-1848, USA
| | - Thomas More Sexton
- Department of Chemistry and Biochemistry, University of Mississippi, University, MS 38677-1848, USA
| | - Nicholas E. Sparks
- Department of Chemistry and Biochemistry, University of Mississippi, University, MS 38677-1848, USA
| | - Jacquelyn J. Mosely
- Department of Chemistry and Biochemistry, University of Mississippi, University, MS 38677-1848, USA
| | - Arnold L. Rheingold
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093-0358, USA
| | - Nathan I. Hammer
- Department of Chemistry and Biochemistry, University of Mississippi, University, MS 38677-1848, USA
| | - Gregory S. Tschumper
- Department of Chemistry and Biochemistry, University of Mississippi, University, MS 38677-1848, USA
| | - Davita L. Watkins
- Department of Chemistry and Biochemistry, University of Mississippi, University, MS 38677-1848, USA
| |
Collapse
|
8
|
Sambade D, Collins C, Parkin G. Structure and Bonding of 1,2,4-Triazole Thiones Derived from Nitron. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
9
|
Sadaf H, Zierkiewicz W, Michalczyk M, Ahmad S, Imtiaz-ud-Din, Tahir MN, Isab AA, Al-Arfaj AR, Nadeem S. Crystal Structure of [Pd(Imt)4]Cl2 and DFT Studies of [Pd(Imt)4]Cl2 and [Pd(Imt)2(CN)2] (Imt = Imidazolidine-2-Thione). RUSS J COORD CHEM+ 2021. [DOI: 10.1134/s107032842101005x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Mohajer F, Heravi MM, Zadsirjan V, Poormohammad N. Copper-free Sonogashira cross-coupling reactions: an overview. RSC Adv 2021; 11:6885-6925. [PMID: 35423221 PMCID: PMC8695108 DOI: 10.1039/d0ra10575a] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/03/2021] [Indexed: 11/25/2022] Open
Abstract
The Sonogashira reaction is a cross-coupling reaction of a vinyl or aryl halide with a terminal alkyne to form a C-C bond. In its original form, the Sonogashira reaction is performed with a palladium species as a catalyst while co-catalyzed by a copper species and a phosphine or amine. The reaction is conducted under mild conditions, i.e., room temperature, aqueous solutions, and the presence of mild bases. Undeniably, the Sonogashira reaction is among the most competent and efficient reactions widely used in organic synthesis. This named reaction has proved useful in many organic synthesis areas, including the synthesis of pharmaceuticals, heterocycles, natural products, organic compounds, complex molecules having biological activities, nanomaterials, and many more materials that we use in our daily lives. The presence of transition metals as a catalyst was indeed essential in the Sonogashira reaction. However, recently, the reaction has been successfully conducted without copper as a co-catalyst and phosphines or amines as bases. In this critical review, we have focused on developments in the Sonogashira reaction successfully performed in the absence of copper complexes, phosphines or amines, which could be of particular advantage in implementing green chemistry principles and making the reactions more achievable from an economic viewpoint.
Collapse
Affiliation(s)
- Fatemeh Mohajer
- Department of Physics and Chemistry, School of Science, Alzahra University PO Box 1993891176, Vanak Tehran Iran +98 21 88041344 +98 21 88044051
| | - Majid M Heravi
- Department of Physics and Chemistry, School of Science, Alzahra University PO Box 1993891176, Vanak Tehran Iran +98 21 88041344 +98 21 88044051
| | - Vahideh Zadsirjan
- Department of Physics and Chemistry, School of Science, Alzahra University PO Box 1993891176, Vanak Tehran Iran +98 21 88041344 +98 21 88044051
| | - Nargess Poormohammad
- Department of Physics and Chemistry, School of Science, Alzahra University PO Box 1993891176, Vanak Tehran Iran +98 21 88041344 +98 21 88044051
| |
Collapse
|
11
|
Half-sandwich rhodium complexes with phenylene-based SCS ligands: Synthesis, characterization and catalytic activities for transfer hydrogenation of ketones. Polyhedron 2021. [DOI: 10.1016/j.poly.2020.114978] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
12
|
Jain VK. Cyclometalated group-16 compounds of palladium and platinum: Challenges and opportunities. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213546] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
13
|
Recent progress on group 10 metal complexes of pincer ligands: From synthesis to activities and catalysis. ADVANCES IN ORGANOMETALLIC CHEMISTRY 2021. [DOI: 10.1016/bs.adomc.2021.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
14
|
Oswal P, Arora A, Gairola S, Datta A, Kumar A. Organosulfur, organoselenium, and organotellurium ligands in the development of palladium, nickel, and copper-based catalytic systems for Heck coupling. NEW J CHEM 2021. [DOI: 10.1039/d1nj02971a] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Organosulfur, organoselenium, and organotellurium ligands in designing Pd, Ni, and Cu-based homogeneous, heterogeneous, and nanocatalytic systems for Heck coupling.
Collapse
Affiliation(s)
- Preeti Oswal
- Department of Chemistry, School of Physical Sciences, Doon University, Dehradun 248012, India
| | - Aayushi Arora
- Department of Chemistry, School of Physical Sciences, Doon University, Dehradun 248012, India
| | - Sakshi Gairola
- Department of Chemistry, School of Physical Sciences, Doon University, Dehradun 248012, India
| | - Anupama Datta
- Institute of Nuclear Medicine and Allied Sciences (INMAS), DRDO, Delhi 110054, India
| | - Arun Kumar
- Department of Chemistry, School of Physical Sciences, Doon University, Dehradun 248012, India
| |
Collapse
|
15
|
Yan X, Zhang B, Zhang X, Wang H, Duan Y, Guo S. Symmetrical and Non‐symmetrical Pd (II) Pincer Complexes Bearing Mesoionic N‐heterocyclic Thiones: Synthesis, Characterizations and Catalytic Properties. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5885] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Xuechao Yan
- Department of Chemistry Capital Normal University Beijing 100048 China
| | - Bo Zhang
- Department of Chemistry Capital Normal University Beijing 100048 China
| | - Xin Zhang
- Department of Chemistry Capital Normal University Beijing 100048 China
| | - Haiying Wang
- Department of Chemistry Capital Normal University Beijing 100048 China
| | - Yu‐Ai Duan
- Department of Chemistry Capital Normal University Beijing 100048 China
| | - Shuai Guo
- Department of Chemistry Capital Normal University Beijing 100048 China
| |
Collapse
|
16
|
Tong KKH, Hanif M, Lovett JH, Hummitzsch K, Harris HH, Söhnel T, Jamieson SMF, Hartinger CG. Thiourea-Derived Chelating Ligands and Their Organometallic Compounds: Investigations into Their Anticancer Activity. Molecules 2020; 25:molecules25163661. [PMID: 32796732 PMCID: PMC7464268 DOI: 10.3390/molecules25163661] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 11/16/2022] Open
Abstract
Thiones have been investigated as ligands in metal complexes with catalytic and biological activity. We report the synthesis, characterization, and biological evaluation of a series of MII/III complexes of the general formulae [MII(cym)(L)Cl]X (cym = η6-p-cymene) or [MIII(Cp*)(L)Cl]X (Cp* = η5-pentamethylcyclopentadienyl), where X = Cl- or PF6-, and L represents heterocyclic derivatives of thiourea. The thiones feature a benzyl-triazolyl pendant and they act as bidentate ligands via N,S-coordination to the metal centers. Several derivatives have been investigated by single-crystal X-ray diffraction analysis. NMR investigations showed a counterion-dependent shift of several protons due to the interaction with the counterions. These NMR investigations were complemented with X-ray diffraction analysis data and the effects of different counterions on the secondary coordination sphere were also investigated by DFT calculations. In biological studies, the Ir benzimidazole derivative was found to accumulate in the cytoplasm and it was the most cytotoxic derivative investigated.
Collapse
Affiliation(s)
- Kelvin K. H. Tong
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; (K.K.H.T.); (M.H.); (T.S.)
| | - Muhammad Hanif
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; (K.K.H.T.); (M.H.); (T.S.)
| | - James H. Lovett
- Department of Chemistry, The University of Adelaide, Adelaide, SA 5005, Australia; (J.H.L.); (H.H.H.)
| | - Katja Hummitzsch
- Discipline of Obstetrics and Gynecology, The University of Adelaide, Robinson Research Institute, Adelaide, SA 5005, Australia;
| | - Hugh H. Harris
- Department of Chemistry, The University of Adelaide, Adelaide, SA 5005, Australia; (J.H.L.); (H.H.H.)
| | - Tilo Söhnel
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; (K.K.H.T.); (M.H.); (T.S.)
| | - Stephen M. F. Jamieson
- Auckland Cancer Society Research Centre, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand;
| | - Christian G. Hartinger
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; (K.K.H.T.); (M.H.); (T.S.)
- Correspondence: ; Tel.: +64-9-373-7599-83220
| |
Collapse
|
17
|
Jia WG, Gao LL, Wang ZB, Wang JJ, Sheng EH, Han YF. NHC-Palladium(II) Mononuclear and Binuclear Complexes Containing Phenylene-Bridged Bis(thione) Ligands: Synthesis, Characterization, and Catalytic Activities. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00091] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Wei-Guo Jia
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecular-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, People’s Republic of China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Science, Fuzhou 350002, People’s Republic of China
| | - Li-Li Gao
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecular-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, People’s Republic of China
| | - Zhi-Bao Wang
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecular-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, People’s Republic of China
| | - Jing-Jing Wang
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecular-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, People’s Republic of China
| | - En-Hong Sheng
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecular-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, People’s Republic of China
| | - Ying-Feng Han
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Science, Fuzhou 350002, People’s Republic of China
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710127, People’s Republic of China
| |
Collapse
|
18
|
Dubey P, Singh AK. Sonogashira Coupling (Cu/Amine‐Free) of ArBr/Cl in Aerobic Condition and N
‐
Benzylation of Aniline with Benzyl Alcohol Catalyzed by Complexes of Pd(II) with Sulfated/Selenated NHCs. ChemistrySelect 2020. [DOI: 10.1002/slct.201904819] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Pooja Dubey
- Department of Chemistry, Indian Institute of Technology, Delhi New Delhi 110016 India
| | - Ajai K. Singh
- Department of Chemistry, Indian Institute of Technology, Delhi New Delhi 110016 India
| |
Collapse
|
19
|
Radhakrishna L, Kunchur HS, Namdeo PK, Butcher RJ, Balakrishna MS. New 1,2,3-triazole based bis- and trisphosphine ligands: synthesis, transition metal chemistry and catalytic studies. Dalton Trans 2020; 49:3434-3449. [DOI: 10.1039/c9dt04302k] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This paper describes a novel synthetic methodology for the preparation of 1,2,3-triazole based phosphines and their transition metal chemistry and preliminary catalytic studies.
Collapse
Affiliation(s)
| | - Harish S. Kunchur
- Phosphorus Laboratory
- Department of Chemistry
- Indian Institute of Technology Bombay
- Powai
- India
| | - Pavan K. Namdeo
- Phosphorus Laboratory
- Department of Chemistry
- Indian Institute of Technology Bombay
- Powai
- India
| | | | | |
Collapse
|
20
|
González-Sebastián L, Morales-Morales D. Cross-coupling reactions catalysed by palladium pincer complexes. A review of recent advances. J Organomet Chem 2019. [DOI: 10.1016/j.jorganchem.2019.04.021] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
21
|
Samiee S, Shiralinia A, Hoveizi E, Gable RW. Mono‐ and dinuclear oxime palladacycles bearing diphosphine ligands: An unusual coordination mode for dppe. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.5098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Sepideh Samiee
- Department of Chemistry, Faculty of ScienceShahid Chamran University of Ahvaz Ahvaz Iran
| | - Ahmadreza Shiralinia
- Department of Chemistry, Faculty of ScienceShahid Chamran University of Ahvaz Ahvaz Iran
| | - Elham Hoveizi
- Department of Biology, Faculty of ScienceShahid Chamran University of Ahvaz Ahvaz Iran
| | - Robert W. Gable
- School of ChemistryUniversity of Melbourne Victoria 3010 Australia
| |
Collapse
|
22
|
Soliman SM, El-Faham A. Synthesis, X-ray structure, and DFT studies of five- and eight-coordinated Cd(II) complexes with s-triazine N-pincer chelate. J COORD CHEM 2019. [DOI: 10.1080/00958972.2019.1608360] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Saied M. Soliman
- Department of Chemistry, Faculty of Science, Alexandria University, Ibrahimia, Alexandria, Egypt
- Department of Chemistry, Rabigh College of Science and Art, King Abdulaziz University, Rabigh, Saudi Arabia
| | - Ayman El-Faham
- Department of Chemistry, Faculty of Science, Alexandria University, Ibrahimia, Alexandria, Egypt
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
23
|
Jia WG, Gao LL, Wang ZB, Sun LY, Han YF. Synthesis, Characterization, and Catalytic Activities of Palladium Complexes with Phenylene-Bridged Bis(thione) Ligands. Organometallics 2019. [DOI: 10.1021/acs.organomet.9b00051] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Wei-Guo Jia
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecular-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
| | - Li-Li Gao
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecular-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
| | - Zhi-Bao Wang
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecular-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
| | - Li-Ying Sun
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710127, P. R. China
| | - Ying-Feng Han
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710127, P. R. China
| |
Collapse
|
24
|
Doddi A, Peters M, Tamm M. N-Heterocyclic Carbene Adducts of Main Group Elements and Their Use as Ligands in Transition Metal Chemistry. Chem Rev 2019; 119:6994-7112. [PMID: 30983327 DOI: 10.1021/acs.chemrev.8b00791] [Citation(s) in RCA: 309] [Impact Index Per Article: 61.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
N-Heterocyclic carbenes (NHC) are nowadays ubiquitous and indispensable in many research fields, and it is not possible to imagine modern transition metal and main group element chemistry without the plethora of available NHCs with tailor-made electronic and steric properties. While their suitability to act as strong ligands toward transition metals has led to numerous applications of NHC complexes in homogeneous catalysis, their strong σ-donating and adaptable π-accepting abilities have also contributed to an impressive vitalization of main group chemistry with the isolation and characterization of NHC adducts of almost any element. Formally, NHC coordination to Lewis acids affords a transfer of nucleophilicity from the carbene carbon atom to the attached exocyclic moiety, and low-valent and low-coordinate adducts of the p-block elements with available lone pairs and/or polarized carbon-element π-bonds are able to act themselves as Lewis basic donor ligands toward transition metals. Accordingly, the availability of a large number of novel NHC adducts has not only produced new varieties of already existing ligand classes but has also allowed establishment of numerous complexes with unusual and often unprecedented element-metal bonds. This review aims at summarizing this development comprehensively and covers the usage of N-heterocyclic carbene adducts of the p-block elements as ligands in transition metal chemistry.
Collapse
Affiliation(s)
- Adinarayana Doddi
- Technische Universität Braunschweig, Institut für Anorganische und Analytische Chemie, Hagenring 30, 38106 Braunschweig, Germany
| | - Marius Peters
- Technische Universität Braunschweig, Institut für Anorganische und Analytische Chemie, Hagenring 30, 38106 Braunschweig, Germany
| | - Matthias Tamm
- Technische Universität Braunschweig, Institut für Anorganische und Analytische Chemie, Hagenring 30, 38106 Braunschweig, Germany
| |
Collapse
|
25
|
Nesterov V, Reiter D, Bag P, Frisch P, Holzner R, Porzelt A, Inoue S. NHCs in Main Group Chemistry. Chem Rev 2018; 118:9678-9842. [PMID: 29969239 DOI: 10.1021/acs.chemrev.8b00079] [Citation(s) in RCA: 527] [Impact Index Per Article: 87.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Since the discovery of the first stable N-heterocyclic carbene (NHC) in the beginning of the 1990s, these divalent carbon species have become a common and available class of compounds, which have found numerous applications in academic and industrial research. Their important role as two-electron donor ligands, especially in transition metal chemistry and catalysis, is difficult to overestimate. In the past decade, there has been tremendous research attention given to the chemistry of low-coordinate main group element compounds. Significant progress has been achieved in stabilization and isolation of such species as Lewis acid/base adducts with highly tunable NHC ligands. This has allowed investigation of numerous novel types of compounds with unique electronic structures and opened new opportunities in the rational design of novel organic catalysts and materials. This Review gives a general overview of this research, basic synthetic approaches, key features of NHC-main group element adducts, and might be useful for the broad research community.
Collapse
Affiliation(s)
- Vitaly Nesterov
- Department of Chemistry, WACKER-Institute of Silicon Chemistry and Catalysis Research Center , Technische Universität München , Lichtenbergstrasse 4 , Garching bei München 85748 , Germany
| | - Dominik Reiter
- Department of Chemistry, WACKER-Institute of Silicon Chemistry and Catalysis Research Center , Technische Universität München , Lichtenbergstrasse 4 , Garching bei München 85748 , Germany
| | - Prasenjit Bag
- Department of Chemistry, WACKER-Institute of Silicon Chemistry and Catalysis Research Center , Technische Universität München , Lichtenbergstrasse 4 , Garching bei München 85748 , Germany
| | - Philipp Frisch
- Department of Chemistry, WACKER-Institute of Silicon Chemistry and Catalysis Research Center , Technische Universität München , Lichtenbergstrasse 4 , Garching bei München 85748 , Germany
| | - Richard Holzner
- Department of Chemistry, WACKER-Institute of Silicon Chemistry and Catalysis Research Center , Technische Universität München , Lichtenbergstrasse 4 , Garching bei München 85748 , Germany
| | - Amelie Porzelt
- Department of Chemistry, WACKER-Institute of Silicon Chemistry and Catalysis Research Center , Technische Universität München , Lichtenbergstrasse 4 , Garching bei München 85748 , Germany
| | - Shigeyoshi Inoue
- Department of Chemistry, WACKER-Institute of Silicon Chemistry and Catalysis Research Center , Technische Universität München , Lichtenbergstrasse 4 , Garching bei München 85748 , Germany
| |
Collapse
|
26
|
Soliman SM, El-Faham A. Synthesis, characterization, and structural studies of two heteroleptic Mn(II) complexes with tridentate N,N,N-pincer type ligand. J COORD CHEM 2018. [DOI: 10.1080/00958972.2018.1475660] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
- Saied M. Soliman
- Department of Chemistry, Rabigh College of Science and Art, King Abdulaziz University, Jeddah, Saudi Arabia
- Faculty of Science, Department of Chemistry, Alexandria University, Alexandria, Egypt
| | - Ayman El-Faham
- Faculty of Science, Department of Chemistry, Alexandria University, Alexandria, Egypt
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
27
|
Wang H, Zhang B, Yan X, Guo S. Palladium pincer-type complexes and zwitterionic sulfur adducts of pyridine-bridged bis(1,2,3-triazolin-5-ylidenes): syntheses, characterizations and catalytic applications. Dalton Trans 2018; 47:528-537. [DOI: 10.1039/c7dt03687f] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Different reactivities of pincer-type pyridine-bridged bis(mesoionic carbenes) towards palladium(ii) and elemental sulfur have been revealed.
Collapse
Affiliation(s)
- Haiying Wang
- Department of Chemistry
- Capital Normal University
- Beijing
- People's Republic of China
| | - Bo Zhang
- Department of Chemistry
- Capital Normal University
- Beijing
- People's Republic of China
| | - Xuechao Yan
- Department of Chemistry
- Capital Normal University
- Beijing
- People's Republic of China
| | - Shuai Guo
- Department of Chemistry
- Capital Normal University
- Beijing
- People's Republic of China
| |
Collapse
|
28
|
Patchett R, Knighton RC, Mattock JD, Vargas A, Chaplin AB. Potassium Binding Adjacent to Cationic Transition-Metal Fragments: Unusual Heterobimetallic Adducts of a Calix[4]arene-Based Thione Ligand. Inorg Chem 2017; 56:14345-14350. [DOI: 10.1021/acs.inorgchem.7b02441] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ruth Patchett
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, U.K
| | - Richard C. Knighton
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, U.K
| | - James D. Mattock
- Department
of Chemistry, School of Life Sciences, University of Sussex, Brighton BN1 9QJ, U.K
| | - Alfredo Vargas
- Department
of Chemistry, School of Life Sciences, University of Sussex, Brighton BN1 9QJ, U.K
| | - Adrian B. Chaplin
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, U.K
| |
Collapse
|
29
|
Zhang LM, Li HY, Li HX, Young DJ, Wang Y, Lang JP. Palladium(II) Chloride Complexes of N,N′-Disubstituted Imidazole-2-thiones: Syntheses, Structures, and Catalytic Performances in Suzuki–Miyaura and Sonogashira Coupling Reactions. Inorg Chem 2017; 56:11230-11243. [DOI: 10.1021/acs.inorgchem.7b01616] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Li-Ming Zhang
- State and Local
Joint Engineering Laboratory for Novel Functional Polymeric Materials,
College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, People’s Republic of China
| | - Hai-Yan Li
- State and Local
Joint Engineering Laboratory for Novel Functional Polymeric Materials,
College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, People’s Republic of China
| | - Hong-Xi Li
- State and Local
Joint Engineering Laboratory for Novel Functional Polymeric Materials,
College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, People’s Republic of China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute
of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, People’s Republic of China
| | - David James Young
- Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore DC, Queensland 4558 Australia
| | - Yong Wang
- State and Local
Joint Engineering Laboratory for Novel Functional Polymeric Materials,
College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, People’s Republic of China
| | - Jian-Ping Lang
- State and Local
Joint Engineering Laboratory for Novel Functional Polymeric Materials,
College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, People’s Republic of China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute
of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, People’s Republic of China
| |
Collapse
|
30
|
Balinge KR, Bhagat PR. Palladium–N-heterocyclic carbene complexes for the Mizoroki–Heck reaction: An appraisal. CR CHIM 2017. [DOI: 10.1016/j.crci.2017.03.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
31
|
NNN-pincer-copper complex immobilized on magnetic nanoparticles as a powerful hybrid catalyst for aerobic oxidative coupling and cycloaddition reactions in water. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.molcata.2016.11.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
32
|
Kumar S, Saleem F, Mishra MK, Singh AK. Oxine based unsymmetrical (O−, N, S/Se) pincer ligands and their palladium(ii) complexes: synthesis, structural aspects and applications as a catalyst in amine and copper-free Sonogashira coupling. NEW J CHEM 2017. [DOI: 10.1039/c7nj00067g] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Newly synthesized and characterized (single crystal structure) complexes, [Pd(O−, N, S/Se)Cl], efficiently catalyse Sonogashira coupling of ArX at 0.5–1 mol%.
Collapse
Affiliation(s)
- Satyendra Kumar
- Department of Chemistry
- Indian Institute of Technology Delhi
- New Delhi–110016
- India
| | - Fariha Saleem
- Department of Chemistry
- Indian Institute of Technology Delhi
- New Delhi–110016
- India
| | | | - Ajai K. Singh
- Department of Chemistry
- Indian Institute of Technology Delhi
- New Delhi–110016
- India
| |
Collapse
|
33
|
Bhaskar R, Sharma AK, Yadav MK, Singh AK. Sonogashira (Cu and amine free) and Suzuki coupling in air catalyzed via nanoparticles formed in situ from Pd(ii) complexes of chalcogenated Schiff bases of 1-naphthaldehyde and their reduced forms. Dalton Trans 2017; 46:15235-15248. [DOI: 10.1039/c7dt02701j] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The activation of the coupling reactions with the Pd(ii)-complexes (0.05–0.01 mol% loading) is significant in 1–2 h under mild conditions.
Collapse
Affiliation(s)
- Renu Bhaskar
- Department of Chemistry
- Indian Institute of Technology Delhi
- New Delhi 110016
- India
| | - Alpesh K. Sharma
- Department of Chemistry
- Indian Institute of Technology Delhi
- New Delhi 110016
- India
| | - Manoj K. Yadav
- Department of Chemistry
- Indian Institute of Technology Delhi
- New Delhi 110016
- India
| | - Ajai K. Singh
- Department of Chemistry
- Indian Institute of Technology Delhi
- New Delhi 110016
- India
| |
Collapse
|
34
|
Balam-Villarreal J, Sandoval-Chávez C, Ortega-Jiménez F, Toscano R, Carreón-Castro M, López-Cortés J, Ortega-Alfaro M. Infrared irradiation or microwave assisted cross-coupling reactions using sulfur-containing ferrocenyl-palladacycles. J Organomet Chem 2016. [DOI: 10.1016/j.jorganchem.2016.05.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|