1
|
Dantus M. Ultrafast studies of elusive chemical reactions in the gas phase. Science 2024; 385:eadk1833. [PMID: 39116221 DOI: 10.1126/science.adk1833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 06/11/2024] [Indexed: 08/10/2024]
Abstract
The chemical composition of the interstellar medium and planetary atmospheres is constantly in flux as atoms and molecules collide and interact with high-energy particles such as electrons, protons, and photons. These transformative processes ultimately lead to the coalescence of molecules and eventually the birth of stars. Our understanding of these chemical ecosystems relies on models that synthesize data from gas-phase experiments, providing insights into reaction cross sections. This Review examines efforts to delve into the fundamental bond-forming and bond-breaking dynamics that occur during bimolecular and electron-initiated reactions. These experiments involve clever approaches to establish a time reference and the collision geometry necessary for tracking atomic motion with femtosecond time resolution. Findings from these efforts enhance present models and improve predictions for molecule-molecule and electron-molecule collisions.
Collapse
Affiliation(s)
- Marcos Dantus
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
- Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824, USA
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
2
|
Ponzi A, Sapunar M, Došlić N, Decleva P. Discrimination of Excited States of Acetylacetone through Theoretical Molecular-Frame Photoelectron Angular Distributions. Molecules 2022; 27:1811. [PMID: 35335181 PMCID: PMC8951278 DOI: 10.3390/molecules27061811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 11/16/2022] Open
Abstract
Photoelectron angular distribution (PAD) in the laboratory frame for randomly oriented molecules is typically described by a single anisotropy parameter, the so-called asymmetry parameter. However, especially from a theoretical perspective, it is more natural to consider molecular photoionization by using a molecular frame. The molecular frame PADs (MFPADs) may be used to extract information about the electronic structure of the system studied. In the last decade, significant experimental efforts have been directed to MFPAD measurements. MFPADs are highly characterizing signatures of the final ionic states. In particular, they are very sensitive to the nature of the final state, which is embodied in the corresponding Dyson orbital. In our previous work on acetylacetone, a prototype system for studying intra-molecular hydrogen bond interactions, we followed the dynamics of the excited states involved in the photoexcitation-deexcitation process of this molecule. It remains to be explored the possibility of discriminating between different excited states through the MFPAD profiles. The calculation of MFPADs to differentiate excited states can pave the way to the possibility of a clear discrimination for all the cases where the recognition of excited states is otherwise intricate.
Collapse
Affiliation(s)
- Aurora Ponzi
- Department of Physical Chemistry, Ruđer Bošković Institute, 10000 Zagreb, Croatia; (M.S.); (N.D.)
| | - Marin Sapunar
- Department of Physical Chemistry, Ruđer Bošković Institute, 10000 Zagreb, Croatia; (M.S.); (N.D.)
| | - Nadja Došlić
- Department of Physical Chemistry, Ruđer Bošković Institute, 10000 Zagreb, Croatia; (M.S.); (N.D.)
| | - Piero Decleva
- Istituto Officina dei Materiali IOM-CNR and Dipartimento di Scienze Chimiche e Farmaceutiche, Università degli Studi di Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy
| |
Collapse
|
3
|
Teramoto T, Minemoto S, Majima T, Mizuno T, Mun JH, Yagishita A, Decleva P, Tsuru S. Basic studies toward ultrafast soft x-ray photoelectron diffraction; its application to probing local structure in iodobenzene molecules. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2022; 9:024303. [PMID: 35496382 PMCID: PMC9050171 DOI: 10.1063/4.0000141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 04/07/2022] [Indexed: 06/14/2023]
Abstract
Ultrafast x-ray photoelectron diffraction (UXPD) for free molecules has a promising potential to probe the local structures of the molecules in an element-specific fashion. Our UXPD scheme consists of three steps: (1) near-infrared laser (NIR) with ns pulse duration aligns sample molecules, (2) ultra-violet laser with fs pulse duration pumps the aligned molecules, and (3) soft x-ray free-electron laser (SXFEL) with fs pulse duration probes the molecules by measuring x-ray photoelectron diffraction (XPD) profiles. Employing steps of (1) and (3), we have measured I 3d XPD profiles from ground state iodobenzene aligned by the NIR laser with the SXFEL. Then, we have intensively calculated I 3d XPD profiles with density functional theory, taking degrees of alignments of the molecules into account, to extract a distance between C and I atoms in iodobenzene from the experimental I 3d XPD profiles. Although we have failed to determine the distance from the comparison between the experimental and theoretical results, we have succeeded in concluding that the degeneracies of the initial state eliminate the sensitivity on molecular structure in the I 3d XPD profiles. Thus, the observation of fine structures in the XPD profiles could be expected, if a nondegenerate molecular orbital is selected for a probe of UXPD. Finally, we have summarized our criteria to perform UXPD successfully: (1) to use SXFEL, (2) to prepare sample molecules with the degree of alignment higher than 0.8, and (3) to select a photoemission process from a nondegenerate inner-shell orbital of sample molecules.
Collapse
Affiliation(s)
- T. Teramoto
- Institute for Radiation Sciences, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - S. Minemoto
- Department of Physics, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - T. Majima
- Department of Nuclear Engineering, Kyoto University, Kyoto 615-8540, Japan
| | - T. Mizuno
- Institute for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581, Japan
| | - J. H. Mun
- Center for Attosecond Science and Technology, Max Planck POSTECH/KOREA Research Initiative, 77 Cheongam-Ro, Nam-gu, Pohang, Gyeongbuk 37673, South Korea
| | - A. Yagishita
- Institute of Materials Structure Science, KEK, 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
| | - P. Decleva
- CNR IOM and DSCF, Università degli Studi di Trieste, Via L. Giorgieri 1, I-34127 Trieste, Italy
| | - S. Tsuru
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, D-44780 Bochum, Germany
| |
Collapse
|
4
|
Dowek D, Decleva P. Trends in angle-resolved molecular photoelectron spectroscopy. Phys Chem Chem Phys 2022; 24:24614-24654. [DOI: 10.1039/d2cp02725a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In this perspective article, main trends of angle-resolved molecular photoelectron spectroscopy in the laboratory up to the molecular frame, in different regimes of light-matter interactions, are highlighted with emphasis on foundations and most recent applications.
Collapse
Affiliation(s)
- Danielle Dowek
- Université Paris-Saclay, CNRS, Institut des Sciences Moléculaires d’Orsay, 91405 Orsay, France
| | - Piero Decleva
- CNR IOM and Dipartimento DSCF, Università di Trieste, Trieste, Italy
| |
Collapse
|
5
|
Walter P, Kamalov A, Gatton A, Driver T, Bhogadi D, Castagna JC, Cheng X, Shi H, Obaid R, Cryan J, Helml W, Ilchen M, Coffee RN. Multi-resolution electron spectrometer array for future free-electron laser experiments. JOURNAL OF SYNCHROTRON RADIATION 2021; 28:1364-1376. [PMID: 34475285 DOI: 10.1107/s1600577521007700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 07/28/2021] [Indexed: 06/13/2023]
Abstract
The design of an angular array of electron time-of-flight (eToF) spectrometers is reported, intended for non-invasive spectral, temporal, and polarization characterization of single shots of high-repetition rate, quasi-continuous, short-wavelength free-electron lasers (FELs) such as the LCLS II at SLAC. This array also enables angle-resolved, high-resolution eToF spectroscopy to address a variety of scientific questions on ultrafast and nonlinear light-matter interactions at FELs. The presented device is specifically designed for the time-resolved atomic, molecular and optical science endstation (TMO) at LCLS II. In its final version, the spectrometer comprises up to 20 eToF spectrometers aligned to collect electrons from the interaction point, which is defined by the intersection of the incoming FEL radiation and a gaseous target. The full composition involves 16 spectrometers forming a circular equiangular array in the plane normal to the X-ray propagation and four spectrometers at 54.7° angle relative to the principle linear X-ray polarization axis with orientations in the forward and backward direction of the light propagation. The spectrometers are capable of independent and minimally chromatic electrostatic lensing and retardation, in order to enable simultaneous angle-resolved photo- and Auger-Meitner electron spectroscopy with high energy resolution. They are designed to ensure an energy resolution of 0.25 eV across an energy window of up to 75 eV, which can be individually centered via the adjustable retardation to cover the full range of electron kinetic energies relevant to soft X-ray methods, 0-2 keV. The full spectrometer array will enable non-invasive and online spectral-polarimetry measurements, polarization-sensitive attoclock spectroscopy for characterizing the full time-energy structure of SASE or seeded LCLS II pulses, and support emerging trends in molecular-frame spectroscopy measurements.
Collapse
Affiliation(s)
- Peter Walter
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Andrei Kamalov
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Averell Gatton
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Taran Driver
- The Stanford PULSE Institute, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Dileep Bhogadi
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Jean Charles Castagna
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Xianchao Cheng
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Hongliang Shi
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Razib Obaid
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - James Cryan
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Wolfram Helml
- Technische Universität Dortmund, Maria-Goeppert-Mayer-Strasse 2, 44227 Dortmund, Germany
| | - Markus Ilchen
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Ryan N Coffee
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| |
Collapse
|
6
|
Karamatskos ET, Yarlagadda S, Patchkovskii S, Vrakking MJJ, Welsch R, Küpper J, Rouzée A. Time-resolving the UV-initiated photodissociation dynamics of OCS. Faraday Discuss 2021; 228:413-431. [PMID: 33570531 DOI: 10.1039/d0fd00119h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We present a time-resolved study of the photodissociation dynamics of OCS after UV-photoexcitation at λ = 237 nm. OCS molecules (X1Σ+) were primarily excited to the 11A'' and the 21A' Renner-Teller components of the 1Σ- and 1Δ states. Dissociation into CO and S fragments was observed through time-delayed strong-field ionisation and imaging of the kinetic energy of the resulting CO+ and S+ fragments by intense 790 nm laser pulses. Surprisingly, fast oscillations with a period of ∼100 fs were observed in the S+ channel of the UV dissociation. Based on wavepacket-dynamics simulations coupled with a simple electrostatic-interaction model, these oscillations do not correspond to the known highly-excited rotational motion of the leaving CO(X1Σ+, J ≫ 0) fragments, which has a timescale of ∼140 fs. Instead, we suggest to assign the observed oscillations to the excitation of vibrational wavepackets in the 23A'' or 21A'' states of the molecule that predissociate to form S(3PJ) photoproducts.
Collapse
Affiliation(s)
- Evangelos T Karamatskos
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany. and Department of Physics, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | | | | | | | - Ralph Welsch
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany. and Center for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Jochen Küpper
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany. and Department of Physics, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany and Center for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Arnaud Rouzée
- Max Born Institute, Max-Born-Straße 2a, 12489 Berlin, Germany.
| |
Collapse
|
7
|
Schouder C, Chatterley AS, Calvo F, Christiansen L, Stapelfeldt H. Structure determination of the tetracene dimer in helium nanodroplets using femtosecond strong-field ionization. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2019; 6:044301. [PMID: 31463336 PMCID: PMC6711753 DOI: 10.1063/1.5118005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 08/09/2019] [Indexed: 05/29/2023]
Abstract
Dimers of tetracene molecules are formed inside helium nanodroplets and identified through covariance analysis of the emission directions of kinetic tetracene cations stemming from femtosecond laser-induced Coulomb explosion. Next, the dimers are aligned in either one or three dimensions under field-free conditions by a nonresonant, moderately intense laser pulse. The experimental angular covariance maps of the tetracene ions are compared to calculated covariance maps for seven different dimer conformations and found to be consistent with four of these. Additional measurements of the alignment-dependent strong-field ionization yield of the dimer narrow the possible conformations down to either a slipped-parallel or parallel-slightly rotated structure. According to our quantum chemistry calculations, these are the two most stable gas-phase conformations of the dimer and one of them is favorable for singlet fission.
Collapse
Affiliation(s)
- Constant Schouder
- Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, 8000 Aarhus C, Denmark
| | - Adam S Chatterley
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
| | - Florent Calvo
- Université Grenoble Alpes CNRS, LIPHY, F-38000 Grenoble, France
| | - Lars Christiansen
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
| | - Henrik Stapelfeldt
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
| |
Collapse
|
8
|
Long-lasting field-free alignment of large molecules inside helium nanodroplets. Nat Commun 2019; 10:133. [PMID: 30635554 PMCID: PMC6329814 DOI: 10.1038/s41467-018-07995-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 12/05/2018] [Indexed: 11/09/2022] Open
Abstract
Molecules with their axes sharply confined in space, available through laser-induced alignment methods, are essential for many current experiments, including ultrafast molecular imaging. For these applications the aligning laser field should ideally be turned-off, to avoid undesired perturbations, and the strong alignment should last long enough that reactions and dynamics can be mapped out. Presently, this is only possible for small, linear molecules and for times less than 1 picosecond. Here, we demonstrate strong, field-free alignment of large molecules inside helium nanodroplets, lasting >10 picoseconds. One-dimensional or three-dimensional alignment is created by a slowly switched-on laser pulse, made field-free through rapid pulse truncation, and retained thanks to the impeding effect of the helium environment on molecular rotation. The opportunities field-free aligned molecules open are illustrated by measuring the alignment-dependent strong-field ionization yield of dibromothiophene oligomers. Our technique will enable molecular frame experiments, including ultrafast excited state dynamics, on a variety of large molecules and complexes.
Collapse
|
9
|
Erk B, Müller JP, Bomme C, Boll R, Brenner G, Chapman HN, Correa J, Düsterer S, Dziarzhytski S, Eisebitt S, Graafsma H, Grunewald S, Gumprecht L, Hartmann R, Hauser G, Keitel B, von Korff Schmising C, Kuhlmann M, Manschwetus B, Mercadier L, Müller E, Passow C, Plönjes E, Ramm D, Rompotis D, Rudenko A, Rupp D, Sauppe M, Siewert F, Schlosser D, Strüder L, Swiderski A, Techert S, Tiedtke K, Tilp T, Treusch R, Schlichting I, Ullrich J, Moshammer R, Möller T, Rolles D. CAMP@FLASH: an end-station for imaging, electron- and ion-spectroscopy, and pump-probe experiments at the FLASH free-electron laser. JOURNAL OF SYNCHROTRON RADIATION 2018; 25:1529-1540. [PMID: 30179194 PMCID: PMC6140390 DOI: 10.1107/s1600577518008585] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 06/11/2018] [Indexed: 06/08/2023]
Abstract
The non-monochromatic beamline BL1 at the FLASH free-electron laser facility at DESY was upgraded with new transport and focusing optics, and a new permanent end-station, CAMP, was installed. This multi-purpose instrument is optimized for electron- and ion-spectroscopy, imaging and pump-probe experiments at free-electron lasers. It can be equipped with various electron- and ion-spectrometers, along with large-area single-photon-counting pnCCD X-ray detectors, thus enabling a wide range of experiments from atomic, molecular, and cluster physics to material and energy science, chemistry and biology. Here, an overview of the layout, the beam transport and focusing capabilities, and the experimental possibilities of this new end-station are presented, as well as results from its commissioning.
Collapse
Affiliation(s)
- Benjamin Erk
- Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany
| | | | - Cédric Bomme
- Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany
| | - Rebecca Boll
- Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany
| | - Günter Brenner
- Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany
| | - Henry N. Chapman
- Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany
- Center for Free-Electron Laser Science (CFEL), DESY, Hamburg, Germany
- Department of Physics, University of Hamburg, Hamburg, Germany
| | - Jonathan Correa
- Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany
- Center for Free-Electron Laser Science (CFEL), DESY, Hamburg, Germany
| | | | | | - Stefan Eisebitt
- Technische Universität Berlin, Berlin, Germany
- Max Born Institute, Berlin, Germany
| | - Heinz Graafsma
- Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany
- Center for Free-Electron Laser Science (CFEL), DESY, Hamburg, Germany
| | | | - Lars Gumprecht
- Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany
- Center for Free-Electron Laser Science (CFEL), DESY, Hamburg, Germany
| | | | - Günter Hauser
- Max-Planck-Institut für Extraterrestrische Physik, Garching, Germany
| | - Barbara Keitel
- Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany
| | | | | | | | - Laurent Mercadier
- Center for Free-Electron Laser Science (CFEL), DESY, Hamburg, Germany
- Max Planck Institute for Structure and Dynamics of Matter, Hamburg, Germany
| | - Erland Müller
- Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany
| | | | - Elke Plönjes
- Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany
| | - Daniel Ramm
- Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany
| | | | - Artem Rudenko
- J. R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, KS, USA
| | - Daniela Rupp
- Technische Universität Berlin, Berlin, Germany
- Max Born Institute, Berlin, Germany
| | | | - Frank Siewert
- Helmholtz Zentrum Berlin für Materialien und Energie, Berlin, Germany
| | | | - Lothar Strüder
- PNSensor GmbH, Munich, Germany
- Universität Siegen, Siegen, Germany
| | | | - Simone Techert
- Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany
- Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
- Institute for X-ray Physics, Göttingen University, Göttingen, Germany
| | - Kai Tiedtke
- Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany
| | - Thomas Tilp
- Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany
- Center for Free-Electron Laser Science (CFEL), DESY, Hamburg, Germany
| | - Rolf Treusch
- Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany
| | - Ilme Schlichting
- Max-Planck-Institut für Medizinische Forschung, Heidelberg, Germany
| | - Joachim Ullrich
- Physikalisch-Technische Bundesanstalt, Braunschweig, Germany
- Max-Planck-Institut für Kernphysik, Heidelberg, Germany
| | | | | | - Daniel Rolles
- Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany
- J. R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, KS, USA
| |
Collapse
|
10
|
Tsuru S, Fujikawa T, Stener M, Decleva P, Yagishita A. Theoretical study of ultrafast x-ray photoelectron diffraction from molecules undergoing photodissociation. J Chem Phys 2018; 148:124101. [DOI: 10.1063/1.5019878] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
- Shota Tsuru
- Graduate School of Science, Chiba University, Yayoi-cho 1-33, Inage, Chiba 263-8522, Japan
| | - Takashi Fujikawa
- Graduate School of Science, Chiba University, Yayoi-cho 1-33, Inage, Chiba 263-8522, Japan
| | - Mauro Stener
- Dipartimento di Scienze Chimiche, Università di Trieste, Via L. Giorgieri 1, I-34127 Trieste, Italy
| | - Piero Decleva
- Dipartimento di Scienze Chimiche, Università di Trieste, Via L. Giorgieri 1, I-34127 Trieste, Italy
| | - Akira Yagishita
- Photon Factory, Institute of Materials Structure Science, KEK, Oho1-1, Tsukuba, Ibaraki 305-0801, Japan
| |
Collapse
|
11
|
Ayuso D, Palacios A, Decleva P, Martín F. Ultrafast charge dynamics in glycine induced by attosecond pulses. Phys Chem Chem Phys 2018. [PMID: 28631783 DOI: 10.1039/c7cp01856h] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The combination of attosecond pump-probe techniques with mass spectrometry methods has recently led to the first experimental demonstration of ultrafast charge dynamics in a biomolecule, the amino acid phenylalanine [Calegari et al., Science, 2014, 346, 336]. Using an extension of the static-exchange density functional theory (DFT) method, the observed dynamics was explained as resulting from the coherent superposition of ionic states produced by the broadband attosecond pulse. Here, we have used the static-exchange DFT method to investigate charge migration induced by attosecond pulses in the glycine molecule. We show that the observed dynamics follows patterns similar to those previously found in phenylalanine, namely that charge fluctuations occur all over the molecule and that they can be explained in terms of a few typical frequencies of the system. We have checked the validity of our approach by explicitly comparing with the photoelectron spectra obtained in synchrotron radiation experiments and with the charge dynamics that follows the removal of an electron from a given molecular orbital, for which fully correlated ab initio results are available in the literature. From this comparison, we conclude that our method provides an accurate description of both the coherent superposition of cationic states generated by the attosecond pulse and its subsequent time evolution. Hence, we expect that the static-exchange DFT method should perform equally well for other medium-size and large molecules, for which the use of fully correlated ab initio methods is not possible.
Collapse
Affiliation(s)
- David Ayuso
- Departamento de Química, Módulo 13, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | | | | | | |
Collapse
|
12
|
Squibb RJ, Sapunar M, Ponzi A, Richter R, Kivimäki A, Plekan O, Finetti P, Sisourat N, Zhaunerchyk V, Marchenko T, Journel L, Guillemin R, Cucini R, Coreno M, Grazioli C, Di Fraia M, Callegari C, Prince KC, Decleva P, Simon M, Eland JHD, Došlić N, Feifel R, Piancastelli MN. Acetylacetone photodynamics at a seeded free-electron laser. Nat Commun 2018; 9:63. [PMID: 29302026 PMCID: PMC5754354 DOI: 10.1038/s41467-017-02478-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 12/04/2017] [Indexed: 11/30/2022] Open
Abstract
The first steps in photochemical processes, such as photosynthesis or animal vision, involve changes in electronic and geometric structure on extremely short time scales. Time-resolved photoelectron spectroscopy is a natural way to measure such changes, but has been hindered hitherto by limitations of available pulsed light sources in the vacuum-ultraviolet and soft X-ray spectral region, which have insufficient resolution in time and energy simultaneously. The unique combination of intensity, energy resolution, and femtosecond pulse duration of the FERMI-seeded free-electron laser can now provide exceptionally detailed information on photoexcitation–deexcitation and fragmentation in pump-probe experiments on the 50-femtosecond time scale. For the prototypical system acetylacetone we report here electron spectra measured as a function of time delay with enough spectral and time resolution to follow several photoexcited species through well-characterized individual steps, interpreted using state-of-the-art static and dynamics calculations. These results open the way for investigations of photochemical processes in unprecedented detail. The first steps in photochemical processes involve changes in electronic and geometric structure on extremely short timescales. Here, the authors report femtosecond dynamics in prototypical acetylacetone, by pump-probe photoexcitation-photoemission experiments and static and dynamics calculations.
Collapse
Affiliation(s)
- R J Squibb
- Department of Physics, University of Gothenburg, Origovägen 6B, SE-412 96, Gothenburg, Sweden
| | - M Sapunar
- Institut Ruđer Bošković, Bijenička cesta 54, 10000, Zagreb, Croatia
| | - A Ponzi
- Institut Ruđer Bošković, Bijenička cesta 54, 10000, Zagreb, Croatia
| | - R Richter
- Elettra-Sincrotrone Trieste, Strada Statale 14-km 163.5, 34149, Basovizza, Trieste, Italy
| | - A Kivimäki
- Consiglio Nazionale delle Ricerche-Istituto Officina dei Materiali, 34149, Trieste, Italy
| | - O Plekan
- Elettra-Sincrotrone Trieste, Strada Statale 14-km 163.5, 34149, Basovizza, Trieste, Italy
| | - P Finetti
- Elettra-Sincrotrone Trieste, Strada Statale 14-km 163.5, 34149, Basovizza, Trieste, Italy
| | - N Sisourat
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR 7614, Laboratoire de Chimie Physique-Matière et Rayonnement, 75005, Paris Cedex 05, France
| | - V Zhaunerchyk
- Department of Physics, University of Gothenburg, Origovägen 6B, SE-412 96, Gothenburg, Sweden
| | - T Marchenko
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR 7614, Laboratoire de Chimie Physique-Matière et Rayonnement, 75005, Paris Cedex 05, France
| | - L Journel
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR 7614, Laboratoire de Chimie Physique-Matière et Rayonnement, 75005, Paris Cedex 05, France
| | - R Guillemin
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR 7614, Laboratoire de Chimie Physique-Matière et Rayonnement, 75005, Paris Cedex 05, France
| | - R Cucini
- Elettra-Sincrotrone Trieste, Strada Statale 14-km 163.5, 34149, Basovizza, Trieste, Italy
| | - M Coreno
- Elettra-Sincrotrone Trieste, Strada Statale 14-km 163.5, 34149, Basovizza, Trieste, Italy.,Consiglio Nazionale delle Ricerche - Istituto di Struttura della Materia, LD2 unit, 34149, Trieste, Italy
| | - C Grazioli
- Elettra-Sincrotrone Trieste, Strada Statale 14-km 163.5, 34149, Basovizza, Trieste, Italy.,Consiglio Nazionale delle Ricerche - Istituto di Struttura della Materia, LD2 unit, 34149, Trieste, Italy
| | - M Di Fraia
- Elettra-Sincrotrone Trieste, Strada Statale 14-km 163.5, 34149, Basovizza, Trieste, Italy.,Consiglio Nazionale delle Ricerche - Istituto di Struttura della Materia, LD2 unit, 34149, Trieste, Italy
| | - C Callegari
- Elettra-Sincrotrone Trieste, Strada Statale 14-km 163.5, 34149, Basovizza, Trieste, Italy.,Consiglio Nazionale delle Ricerche - Istituto di Struttura della Materia, LD2 unit, 34149, Trieste, Italy
| | - K C Prince
- Elettra-Sincrotrone Trieste, Strada Statale 14-km 163.5, 34149, Basovizza, Trieste, Italy.,Molecular Model Discovery Laboratory, Department of Chemistry and Biotechnology, Swinburne University of Technology, Melbourne, VIC, 3122, Australia
| | - P Decleva
- Consiglio Nazionale delle Ricerche-Istituto Officina dei Materiali, 34149, Trieste, Italy.,Dipartimento di Scienze Chimiche e Farmaceutiche, Universitá di Trieste, 34127, Trieste, Italy
| | - M Simon
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR 7614, Laboratoire de Chimie Physique-Matière et Rayonnement, 75005, Paris Cedex 05, France
| | - J H D Eland
- Department of Physics, University of Gothenburg, Origovägen 6B, SE-412 96, Gothenburg, Sweden.,Department of Chemistry, Physical and Theoretical Chemistry Laboratory, Oxford University, South Parks Road, Oxford, OX1 3QZ, UK
| | - N Došlić
- Institut Ruđer Bošković, Bijenička cesta 54, 10000, Zagreb, Croatia
| | - R Feifel
- Department of Physics, University of Gothenburg, Origovägen 6B, SE-412 96, Gothenburg, Sweden
| | - M N Piancastelli
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR 7614, Laboratoire de Chimie Physique-Matière et Rayonnement, 75005, Paris Cedex 05, France. .,Department of Physics and Astronomy, Uppsala University, SE-751 20, Uppsala, Sweden.
| |
Collapse
|
13
|
Kierspel T, Bomme C, Di Fraia M, Wiese J, Anielski D, Bari S, Boll R, Erk B, Kienitz JS, Müller NLM, Rolles D, Viefhaus J, Trippel S, Küpper J. Photophysics of indole upon X-ray absorption. Phys Chem Chem Phys 2018; 20:20205-20216. [DOI: 10.1039/c8cp00936h] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A photofragmentation study of gas-phase indole (C8H7N) upon single-photon ionization at a photon energy of 420 eV is presented.
Collapse
|
14
|
Amini K, Boll R, Lauer A, Burt M, Lee JWL, Christensen L, Brauβe F, Mullins T, Savelyev E, Ablikim U, Berrah N, Bomme C, Düsterer S, Erk B, Höppner H, Johnsson P, Kierspel T, Krecinic F, Küpper J, Müller M, Müller E, Redlin H, Rouzée A, Schirmel N, Thøgersen J, Techert S, Toleikis S, Treusch R, Trippel S, Ulmer A, Wiese J, Vallance C, Rudenko A, Stapelfeldt H, Brouard M, Rolles D. Alignment, orientation, and Coulomb explosion of difluoroiodobenzene studied with the pixel imaging mass spectrometry (PImMS) camera. J Chem Phys 2017; 147:013933. [DOI: 10.1063/1.4982220] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Kasra Amini
- The Chemistry Research Laboratory, Department of Chemistry,
University of Oxford, Oxford OX1 3TA, United Kingdom
| | - Rebecca Boll
- Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
| | - Alexandra Lauer
- The Chemistry Research Laboratory, Department of Chemistry,
University of Oxford, Oxford OX1 3TA, United Kingdom
| | - Michael Burt
- The Chemistry Research Laboratory, Department of Chemistry,
University of Oxford, Oxford OX1 3TA, United Kingdom
| | - Jason W. L. Lee
- The Chemistry Research Laboratory, Department of Chemistry,
University of Oxford, Oxford OX1 3TA, United Kingdom
| | | | - Felix Brauβe
- Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie, 12489 Berlin, Germany
| | - Terence Mullins
- Center for Free-Electron Laser Science (CFEL),
Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg,
Germany
| | - Evgeny Savelyev
- Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
| | - Utuq Ablikim
- J. R. Macdonald Laboratory, Department of Physics,
Kansas State University, Manhattan, Kansas 66506,
USA
| | - Nora Berrah
- Department of Physics, University of Connecticut, Storrs, Connecticut 06269, USA
| | - Cédric Bomme
- Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
| | - Stefan Düsterer
- Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
| | - Benjamin Erk
- Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
| | - Hauke Höppner
- Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
- Institut für Physik, Carl von Ossietzky Universität, 26111 Oldenburg, Germany
| | - Per Johnsson
- Department of Physics, Lund University, 22100 Lund, Sweden
| | - Thomas Kierspel
- Center for Free-Electron Laser Science (CFEL),
Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg,
Germany
- Center for Ultrafast Imaging, Universität Hamburg, 22761 Hamburg, Germany
| | - Faruk Krecinic
- Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie, 12489 Berlin, Germany
| | - Jochen Küpper
- Center for Free-Electron Laser Science (CFEL),
Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg,
Germany
- Center for Ultrafast Imaging, Universität Hamburg, 22761 Hamburg, Germany
- Department of Physics, Universität Hamburg, 22761 Hamburg, Germany
| | - Maria Müller
- Institut für Optik und Atomare Physik,
Technische Universität Berlin, 10623 Berlin,
Germany
| | - Erland Müller
- Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
| | - Harald Redlin
- Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
| | - Arnaud Rouzée
- Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie, 12489 Berlin, Germany
| | - Nora Schirmel
- Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
| | - Jan Thøgersen
- Department of Chemistry, Aarhus University, 8000 Aarhus C, Denmark
| | - Simone Techert
- Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
- Max Planck Institute for Biophysical Chemistry, 33077 Göttingen, Germany
- Institute for X-ray Physics, Göttingen University, 33077 Göttingen, Germany
| | - Sven Toleikis
- Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
| | - Rolf Treusch
- Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
| | - Sebastian Trippel
- Center for Free-Electron Laser Science (CFEL),
Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg,
Germany
- Center for Ultrafast Imaging, Universität Hamburg, 22761 Hamburg, Germany
| | - Anatoli Ulmer
- Institut für Optik und Atomare Physik,
Technische Universität Berlin, 10623 Berlin,
Germany
| | - Joss Wiese
- Center for Free-Electron Laser Science (CFEL),
Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg,
Germany
| | - Claire Vallance
- The Chemistry Research Laboratory, Department of Chemistry,
University of Oxford, Oxford OX1 3TA, United Kingdom
| | - Artem Rudenko
- J. R. Macdonald Laboratory, Department of Physics,
Kansas State University, Manhattan, Kansas 66506,
USA
| | | | - Mark Brouard
- The Chemistry Research Laboratory, Department of Chemistry,
University of Oxford, Oxford OX1 3TA, United Kingdom
| | - Daniel Rolles
- Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
- J. R. Macdonald Laboratory, Department of Physics,
Kansas State University, Manhattan, Kansas 66506,
USA
| |
Collapse
|
15
|
Di Fraia M, Finetti P, Richter R, Prince KC, Wiese J, Devetta M, Negro M, Vozzi C, Ciriolo AG, Pusala A, Demidovich A, Danailov MB, Karamatskos ET, Trippel S, Küpper J, Callegari C. Impulsive laser-induced alignment of OCS molecules at FERMI. Phys Chem Chem Phys 2017; 19:19733-19739. [DOI: 10.1039/c7cp01812f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
OCS full rotational revival dynamics induced by impulsive NIR alignment monitored by Coulomb explosion correlated fragments after S 2p excitation.
Collapse
Affiliation(s)
| | | | | | - Kevin C. Prince
- Elettra-Sincrotrone Trieste S.C.p.A
- Basovizza
- Italy
- Molecular Model Discovery Laboratory
- Department of Chemistry and Biotechnology
| | - Joss Wiese
- Center for Free-Electron Laser Science
- Deutsches + Elektronen-Synchrotron DESY
- Hamburg
- Germany
| | | | - Matteo Negro
- Istituto di Fotonica e Nanotecnologie-CNR
- Milan
- Italy
| | | | | | - Aditya Pusala
- Politecnico di Milano
- Dipartimento di Fisica
- Milan
- Italy
| | | | | | - Evangelos T. Karamatskos
- Center for Free-Electron Laser Science
- Deutsches + Elektronen-Synchrotron DESY
- Hamburg
- Germany
- Department of Physics
| | - Sebastian Trippel
- Center for Free-Electron Laser Science
- Deutsches + Elektronen-Synchrotron DESY
- Hamburg
- Germany
- The Hamburg Center for Ultrafast Imaging
| | - Jochen Küpper
- Center for Free-Electron Laser Science
- Deutsches + Elektronen-Synchrotron DESY
- Hamburg
- Germany
- Department of Physics
| | | |
Collapse
|
16
|
Veyrinas K, Gruson V, Weber SJ, Barreau L, Ruchon T, Hergott JF, Houver JC, Lucchese RR, Salières P, Dowek D. Molecular frame photoemission by a comb of elliptical high-order harmonics: a sensitive probe of both photodynamics and harmonic complete polarization state. Faraday Discuss 2016; 194:161-183. [PMID: 27853775 DOI: 10.1039/c6fd00137h] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Due to the intimate anisotropic interaction between an XUV light field and a molecule resulting in photoionization (PI), molecular frame photoelectron angular distributions (MFPADs) are most sensitive probes of both electronic/nuclear dynamics and the polarization state of the ionizing light field. Consequently, they encode the complex dipole matrix elements describing the dynamics of the PI transition, as well as the three normalized Stokes parameters s1, s2, s3 characterizing the complete polarization state of the light, operating as molecular polarimetry. The remarkable development of advanced light sources delivering attosecond XUV pulses opens the perspective to visualize the primary steps of photochemical dynamics in time-resolved studies, at the natural attosecond to few femtosecond time-scales of electron dynamics and fast nuclear motion. It is thus timely to investigate the feasibility of measurement of MFPADs when PI is induced e.g., by an attosecond pulse train (APT) corresponding to a comb of discrete high-order harmonics. In the work presented here, we report MFPAD studies based on coincident electron-ion 3D momentum imaging in the context of ultrafast molecular dynamics investigated at the PLFA facility (CEA-SLIC), with two perspectives: (i) using APTs generated in atoms/molecules as a source for MFPAD-resolved PI studies, and (ii) taking advantage of molecular polarimetry to perform a complete polarization analysis of the harmonic emission of molecules, a major challenge of high harmonic spectroscopy. Recent results illustrating both aspects are reported for APTs generated in unaligned SF6 molecules by an elliptically polarized infrared driving field. The observed fingerprints of the elliptically polarized harmonics include the first direct determination of the complete s1, s2, s3 Stokes vector, equivalent to (ψ, ε, P), the orientation and the signed ellipticity of the polarization ellipse, and the degree of polarization P. They are compared to so far incomplete results of XUV optical polarimetry. We finally discuss the comparison between the outcomes of photoionization and high harmonic spectroscopy for the description of molecular photodynamics.
Collapse
Affiliation(s)
- K Veyrinas
- Institut des Sciences Moléculaires d'Orsay (ISMO), CNRS, Univ. Paris-Sud, Université Paris-Saclay, F-91405 Orsay, France.
| | - V Gruson
- LIDYL, CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191 Gif-Sur-Yvette, France
| | - S J Weber
- LIDYL, CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191 Gif-Sur-Yvette, France
| | - L Barreau
- LIDYL, CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191 Gif-Sur-Yvette, France
| | - T Ruchon
- LIDYL, CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191 Gif-Sur-Yvette, France
| | - J-F Hergott
- LIDYL, CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191 Gif-Sur-Yvette, France
| | - J-C Houver
- Institut des Sciences Moléculaires d'Orsay (ISMO), CNRS, Univ. Paris-Sud, Université Paris-Saclay, F-91405 Orsay, France.
| | - R R Lucchese
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, USA
| | - P Salières
- LIDYL, CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191 Gif-Sur-Yvette, France
| | - D Dowek
- Institut des Sciences Moléculaires d'Orsay (ISMO), CNRS, Univ. Paris-Sud, Université Paris-Saclay, F-91405 Orsay, France.
| |
Collapse
|
17
|
Minemoto S, Teramoto T, Akagi H, Fujikawa T, Majima T, Nakajima K, Niki K, Owada S, Sakai H, Togashi T, Tono K, Tsuru S, Wada K, Yabashi M, Yoshida S, Yagishita A. Structure determination of molecules in an alignment laser field by femtosecond photoelectron diffraction using an X-ray free-electron laser. Sci Rep 2016; 6:38654. [PMID: 27934891 PMCID: PMC5146652 DOI: 10.1038/srep38654] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 11/10/2016] [Indexed: 11/30/2022] Open
Abstract
We have successfully determined the internuclear distance of I2 molecules in an alignment laser field by applying our molecular structure determination methodology to an I 2p X-ray photoelectron diffraction profile observed with femtosecond X-ray free electron laser pulses. Using this methodology, we have found that the internuclear distance of the sample I2 molecules in an alignment Nd:YAG laser field of 6 × 1011 W/cm2 is elongated by from 0.18 to 0.30 Å “in average” relatively to the equilibrium internuclear distance of 2.666 Å. Thus, the present experiment constitutes a critical step towards the goal of femtosecond imaging of chemical reactions and opens a new direction for the study of ultrafast chemical reaction in the gas phase.
Collapse
Affiliation(s)
- Shinichirou Minemoto
- Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takahiro Teramoto
- College of Science and Engineering, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga 525-8577, Japan
| | - Hiroshi Akagi
- Quantum Beam Science Research Directorate, National Institutes for Quantum and Radiological Science and Technology, 8-1-7 Umemidai, Kizugawa, Kyoto 619-0215, Japan
| | - Takashi Fujikawa
- Graduate School of Advanced Integration Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba, Chiba 263-8522, Japan
| | - Takuya Majima
- Graduate School of Engineering, Kyoto University, Gokasho, Uji, Kyoto 606-8501, Japan
| | - Kyo Nakajima
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Kaori Niki
- Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba, Chiba 263-8522, Japan
| | - Shigeki Owada
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Hirofumi Sakai
- Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Tadashi Togashi
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Kensuke Tono
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Shota Tsuru
- Graduate School of Advanced Integration Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba, Chiba 263-8522, Japan
| | - Ken Wada
- Institute of Materials Structure Science, KEK, 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
| | - Makina Yabashi
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Shintaro Yoshida
- Graduate School of Engineering, Kyoto University, Gokasho, Uji, Kyoto 606-8501, Japan
| | - Akira Yagishita
- Institute of Materials Structure Science, KEK, 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
| |
Collapse
|
18
|
Kienitz JS, Trippel S, Mullins T, Długołęcki K, González‐Férez R, Küpper J. Adiabatic Mixed‐Field Orientation of Ground‐State‐Selected Carbonyl Sulfide Molecules. Chemphyschem 2016; 17:3740-3746. [DOI: 10.1002/cphc.201600710] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Indexed: 11/07/2022]
Affiliation(s)
- Jens S. Kienitz
- Center for Free-Electron Laser Science (CFEL) Deutsches Elektronen-Synchrotron DESY Notkestrasse 85 22607 Hamburg Germany
- The Hamburg Center for Ultrafast Imaging University of Hamburg Luruper Chaussee 149 22761 Hamburg Germany
| | - Sebastian Trippel
- Center for Free-Electron Laser Science (CFEL) Deutsches Elektronen-Synchrotron DESY Notkestrasse 85 22607 Hamburg Germany
- The Hamburg Center for Ultrafast Imaging University of Hamburg Luruper Chaussee 149 22761 Hamburg Germany
| | - Terry Mullins
- Center for Free-Electron Laser Science (CFEL) Deutsches Elektronen-Synchrotron DESY Notkestrasse 85 22607 Hamburg Germany
| | - Karol Długołęcki
- Center for Free-Electron Laser Science (CFEL) Deutsches Elektronen-Synchrotron DESY Notkestrasse 85 22607 Hamburg Germany
| | - Rosario González‐Férez
- Instituto Carlos I de Física Teórica y Computacional and Departamento de Física Atómica, Molecular y Nuclear Universidad de Granada 18071 Granada Spain
| | - Jochen Küpper
- Center for Free-Electron Laser Science (CFEL) Deutsches Elektronen-Synchrotron DESY Notkestrasse 85 22607 Hamburg Germany
- The Hamburg Center for Ultrafast Imaging University of Hamburg Luruper Chaussee 149 22761 Hamburg Germany
- Department of Physics University of Hamburg Luruper Chaussee 149 22761 Hamburg Germany
| |
Collapse
|
19
|
Rothhardt J, Hädrich S, Shamir Y, Tschnernajew M, Klas R, Hoffmann A, Tadesse GK, Klenke A, Gottschall T, Eidam T, Limpert J, Tünnermann A, Boll R, Bomme C, Dachraoui H, Erk B, Di Fraia M, Horke DA, Kierspel T, Mullins T, Przystawik A, Savelyev E, Wiese J, Laarmann T, Küpper J, Rolles D. High-repetition-rate and high-photon-flux 70 eV high-harmonic source for coincidence ion imaging of gas-phase molecules. OPTICS EXPRESS 2016; 24:18133-47. [PMID: 27505779 DOI: 10.1364/oe.24.018133] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Unraveling and controlling chemical dynamics requires techniques to image structural changes of molecules with femtosecond temporal and picometer spatial resolution. Ultrashort-pulse x-ray free-electron lasers have significantly advanced the field by enabling advanced pump-probe schemes. There is an increasing interest in using table-top photon sources enabled by high-harmonic generation of ultrashort-pulse lasers for such studies. We present a novel high-harmonic source driven by a 100 kHz fiber laser system, which delivers 1011 photons/s in a single 1.3 eV bandwidth harmonic at 68.6 eV. The combination of record-high photon flux and high repetition rate paves the way for time-resolved studies of the dissociation dynamics of inner-shell ionized molecules in a coincidence detection scheme. First coincidence measurements on CH3I are shown and it is outlined how the anticipated advancement of fiber laser technology and improved sample delivery will, in the next step, allow pump-probe studies of ultrafast molecular dynamics with table-top XUV-photon sources. These table-top sources can provide significantly higher repetition rates than the currently operating free-electron lasers and they offer very high temporal resolution due to the intrinsically small timing jitter between pump and probe pulses.
Collapse
|
20
|
Foucar L. CFEL-ASG Software Suite ( CASS): usage for free-electron laser experiments with biological focus. J Appl Crystallogr 2016; 49:1336-1346. [PMID: 27504079 PMCID: PMC4970498 DOI: 10.1107/s1600576716009201] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 06/07/2016] [Indexed: 11/29/2022] Open
Abstract
CASS [Foucar et al. (2012). Comput. Phys. Commun.183, 2207-2213] is a well established software suite for experiments performed at any sort of light source. It is based on a modular design and can easily be adapted for use at free-electron laser (FEL) experiments that have a biological focus. This article will list all the additional functionality and enhancements of CASS for use with FEL experiments that have been introduced since the first publication. The article will also highlight some advanced experiments with biological aspects that have been performed.
Collapse
Affiliation(s)
- Lutz Foucar
- Max Planck Institute for Medical Research, Jahnstrasse 29, Heidelberg, 69120, Germany
| |
Collapse
|
21
|
Nogrette F, Heurteau D, Chang R, Bouton Q, Westbrook CI, Sellem R, Clément D. Characterization of a detector chain using a FPGA-based time-to-digital converter to reconstruct the three-dimensional coordinates of single particles at high flux. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2015; 86:113105. [PMID: 26628119 DOI: 10.1063/1.4935474] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We report on the development of a novel FPGA-based time-to-digital converter and its implementation in a detection chain that records the coordinates of single particles along three dimensions. The detector is composed of micro-channel plates mounted on top of a cross delay line and connected to fast electronics. We demonstrate continuous recording of the timing signals from the cross delay line at rates up to 4.1 × 10(6) s(-1) and three-dimensional reconstruction of the coordinates up to 3.2 × 10(6) particles per second. From the imaging of a calibrated structure we measure the in-plane resolution of the detector to be 140(20) μm at a flux of 3 × 10(5) particles per second. In addition, we analyze a method to estimate the resolution without placing any structure under vacuum, a significant practical improvement. While we use UV photons here, the results of this work apply to the detection of other kinds of particles.
Collapse
Affiliation(s)
- F Nogrette
- Laboratoire Charles Fabry, Institut d'Optique Graduate School, CNRS, Univ. Paris-Saclay, 91127 Palaiseau cedex, France
| | - D Heurteau
- Fédération de Recherche LUMAT (DTPI), CNRS, Univ. Paris-Sud, Institut d'Optique Graduate School, Univ. Paris-Saclay, F-91405 Orsay, France
| | - R Chang
- Laboratoire Charles Fabry, Institut d'Optique Graduate School, CNRS, Univ. Paris-Saclay, 91127 Palaiseau cedex, France
| | - Q Bouton
- Laboratoire Charles Fabry, Institut d'Optique Graduate School, CNRS, Univ. Paris-Saclay, 91127 Palaiseau cedex, France
| | - C I Westbrook
- Laboratoire Charles Fabry, Institut d'Optique Graduate School, CNRS, Univ. Paris-Saclay, 91127 Palaiseau cedex, France
| | - R Sellem
- Fédération de Recherche LUMAT (DTPI), CNRS, Univ. Paris-Sud, Institut d'Optique Graduate School, Univ. Paris-Saclay, F-91405 Orsay, France
| | - D Clément
- Laboratoire Charles Fabry, Institut d'Optique Graduate School, CNRS, Univ. Paris-Saclay, 91127 Palaiseau cedex, France
| |
Collapse
|
22
|
Stern S, Holmegaard L, Filsinger F, Rouzée A, Rudenko A, Johnsson P, Martin AV, Barty A, Bostedt C, Bozek J, Coffee R, Epp S, Erk B, Foucar L, Hartmann R, Kimmel N, Kühnel KU, Maurer J, Messerschmidt M, Rudek B, Starodub D, Thøgersen J, Weidenspointner G, White TA, Stapelfeldt H, Rolles D, Chapman HN, Küpper J. Toward atomic resolution diffractive imaging of isolated molecules with X-ray free-electron lasers. Faraday Discuss 2015; 171:393-418. [PMID: 25415561 DOI: 10.1039/c4fd00028e] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We give a detailed account of the theoretical analysis and the experimental results of an X-ray-diffraction experiment on quantum-state selected and strongly laser-aligned gas-phase ensembles of the prototypical large asymmetric rotor molecule 2,5-diiodobenzonitrile, performed at the Linac Coherent Light Source [Phys. Rev. Lett.112, 083002 (2014)]. This experiment is the first step toward coherent diffractive imaging of structures and structural dynamics of isolated molecules at atomic resolution, i.e., picometers and femtoseconds, using X-ray free-electron lasers.
Collapse
Affiliation(s)
- S Stern
- Center for Free-Electron Laser Science (CFEL), Deutsches Elektronen-Synchrotron (DESY), Notkestrasse 85, 22607 Hamburg, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Affiliation(s)
- Majed Chergui
- Ecole Polytechnique Fédérale de Lausanne, Laboratoire de Spectroscopie Ultrarapide, ISIC, FSB, Station 6, CH-1015 Lausanne, Switzerland.
| |
Collapse
|
24
|
Chapman HN. Disruptive photon technologies for chemical dynamics. Faraday Discuss 2014; 171:525-43. [DOI: 10.1039/c4fd00156g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A perspective of new and emerging technologies for chemical dynamics is given, with an emphasis on the use of X-ray sources that generate sub-picosecond pulses. The two classes of experimental techniques used for time-resolved measurements of chemical processes and their effects are spectroscopy and imaging, where the latter includes microscopy, diffractive imaging, and crystallography. X-Ray free-electron lasers have brought new impetus to the field, allowing not only temporal and spatial resolution at atomic time and length scales, but also bringing a new way to overcome limitations due to perturbation of the sample by the X-ray probe by out-running radiation damage. Associated instrumentation and methods are being developed to take advantage of the new opportunities of these sources. Once these methods of observational science have been mastered it should be possible to use the new tools to directly control those chemical processes.
Collapse
Affiliation(s)
- Henry N. Chapman
- Center for Free-Electron Laser Science
- DESY
- 22607 Hamburg, Germany
| |
Collapse
|