1
|
Suman S, Sharma DK, Szabo O, Rakesh B, Marton M, Vojs M, Sankaran KJ, Kromka A. Nanostructured Boron-Doped Ultra-Nanocrystalline Diamond Micro-Pyramids: Efficient Electrochemical Supercapacitors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2407514. [PMID: 39676424 PMCID: PMC11753494 DOI: 10.1002/smll.202407514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/12/2024] [Indexed: 12/17/2024]
Abstract
The miniaturization of electrochemical supercapacitors (EC-SCs) requires electrode materials that are both durable and efficient. Boron-doped diamond (BDD) films are an ideal choice for EC-SC due to their durability and exceptional electrochemical performance. In this study, nanostructured boron-doped ultra-nanocrystalline diamonds (NBUNCD) are fabricated on Si micro-pyramids (SiP) using a simple reactive ion etching (RIE) process. During the etching process, the high aspect ratio and the induction of sp2 graphite in these nanorod electrodes achieved a maximum specific capacitance of 53.7 mF cm-2 at a current density of 2.54 mA cm-2, with a 95.5% retention after 5000 cycles. Additionally, the energy density reached 54.06 µW h cm-2 at a power density of 0.25 µW cm-2. A symmetric pouch cell using NBUNCD/SiP exhibited a specific capacitance of 0.23 mF cm-2 at 20 µA cm-2, an energy density of 31.98 µW h cm-2, and a power density of 0.91 µW cm-2. These superior EC properties highlight NBUNCD/SiP's potential for advancing miniaturized supercapacitors with high capacitance retention, cycle stability, and energy density.
Collapse
Affiliation(s)
- Shradha Suman
- CSIR‐Institute of Minerals and Materials TechnologyBhubaneswar751013India
- Academy of Scientific and Innovative Research (AcSIR)Ghaziabad201002India
| | | | - Ondrej Szabo
- Institute of Physics of the Czech Academy of SciencesPrague16200Czech Republic
| | - Benadict Rakesh
- CSIR‐Institute of Minerals and Materials TechnologyBhubaneswar751013India
- Academy of Scientific and Innovative Research (AcSIR)Ghaziabad201002India
| | - Marian Marton
- Institute of Electronics and PhotonicsSlovak University of TechnologyBratislava81219Slovakia
| | - Marian Vojs
- Institute of Electronics and PhotonicsSlovak University of TechnologyBratislava81219Slovakia
| | - Kamatchi Jothiramalingam Sankaran
- CSIR‐Institute of Minerals and Materials TechnologyBhubaneswar751013India
- Academy of Scientific and Innovative Research (AcSIR)Ghaziabad201002India
| | - Alexander Kromka
- Institute of Physics of the Czech Academy of SciencesPrague16200Czech Republic
| |
Collapse
|
2
|
Mastellone M, Bolli E, Valentini V, Orlando S, Lettino A, Polini R, Buijnsters JG, Bellucci A, Trucchi DM. Surface Nanotexturing of Boron-Doped Diamond Films by Ultrashort Laser Pulses. MICROMACHINES 2023; 14:389. [PMID: 36838089 PMCID: PMC9959392 DOI: 10.3390/mi14020389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/25/2023] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Polycrystalline boron-doped diamond (BDD) films were surface nanotextured by femtosecond pulsed laser irradiation (100 fs duration, 800 nm wavelength, 1.44 J cm-2 single pulse fluence) to analyse the evolution of induced alterations on the surface morphology and structural properties. The aim was to identify the occurrence of laser-induced periodic surface structures (LIPSS) as a function of the number of pulses released on the unit area. Micro-Raman spectroscopy pointed out an increase in the graphite surface content of the films following the laser irradiation due to the formation of ordered carbon sites with respect to the pristine sample. SEM and AFM surface morphology studies allowed the determination of two different types of surface patterning: narrow but highly irregular ripples without a definite spatial periodicity or long-range order for irradiations with relatively low accumulated fluences (<14.4 J cm-2) and coarse but highly regular LIPSS with a spatial periodicity of approximately 630 nm ± 30 nm for higher fluences up to 230.4 J cm-2.
Collapse
Affiliation(s)
- Matteo Mastellone
- CNR-ISM, DiaTHEMA Lab, U.O.S. Montelibretti, Via Salaria km 29.300, 00015 Monterotondo, Italy
| | - Eleonora Bolli
- CNR-ISM, DiaTHEMA Lab, U.O.S. Montelibretti, Via Salaria km 29.300, 00015 Monterotondo, Italy
| | - Veronica Valentini
- CNR-ISM, DiaTHEMA Lab, U.O.S. Montelibretti, Via Salaria km 29.300, 00015 Monterotondo, Italy
| | - Stefano Orlando
- CNR-ISM, FemtoLAB, U.O.S. Tito Scalo, Zona Industriale, 85050 Tito, Italy
| | - Antonio Lettino
- Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma ‘Tor Vergata’, 00133 Rome, Italy
| | | | - Josephus Gerardus Buijnsters
- Department of Precision and Microsystems Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands
| | - Alessandro Bellucci
- CNR-ISM, DiaTHEMA Lab, U.O.S. Montelibretti, Via Salaria km 29.300, 00015 Monterotondo, Italy
| | - Daniele Maria Trucchi
- CNR-ISM, DiaTHEMA Lab, U.O.S. Montelibretti, Via Salaria km 29.300, 00015 Monterotondo, Italy
| |
Collapse
|
3
|
Tomagra G, Peroni G, Aprà P, Bonino V, Campostrini M, Carabelli V, Ruvolo CC, Lo Giudice A, Guidorzi L, Mino L, Olivero P, Pacher L, Picariello F, Re A, Rigato V, Truccato M, Varzi V, Vittone E, Picollo F. Diamond-based sensors for in vitro cellular radiobiology: Simultaneous detection of cell exocytic activity and ionizing radiation. Biosens Bioelectron 2022; 220:114876. [DOI: 10.1016/j.bios.2022.114876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/20/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
|
4
|
Robbins EM, Castagnola E, Cui XT. Accurate and stable chronic in vivo voltammetry enabled by a replaceable subcutaneous reference electrode. iScience 2022; 25:104845. [PMID: 35996579 PMCID: PMC9391596 DOI: 10.1016/j.isci.2022.104845] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 06/16/2022] [Accepted: 07/22/2022] [Indexed: 01/12/2023] Open
Abstract
In vivo sensing of neurotransmitters has provided valuable insight into both healthy and diseased brain. However, chronically implanted Ag/AgCl reference electrodes suffer from degradationgradation, resulting in errors in the potential at the working electrode. Here, we report a simple, effective way to protect in vivo sensing measurements from reference polarization with a replaceable subcutaneously implanted reference. We compared a brain-implanted reference and a subcutaneous reference and observed no difference in impedance or dopamine redox peak separation in an acute preparation. Chronically, peak background potential and dopamine oxidation potential shifts were eliminated for three weeks. Scanning electron microscopy shows changes in surface morphology and composition of chronically implanted Ag/AgCl electrodes, and postmortem histology reveals extensive cell death and gliosis in the surrounding tissue. As accurate reference potentials are critical to in vivo electrochemistry applications, this simple technique can improve a wide and diverse assortment of in vivo preparations.
Collapse
Affiliation(s)
- Elaine Marie Robbins
- Department of Bioengineering, University of Pittsburgh, 5057 Biomedical Science Tower 3, 3501 Fifth Avenue, Pittsburgh, PA 15260, USA
| | - Elisa Castagnola
- Department of Bioengineering, University of Pittsburgh, 5057 Biomedical Science Tower 3, 3501 Fifth Avenue, Pittsburgh, PA 15260, USA
| | - Xinyan Tracy Cui
- Department of Bioengineering, University of Pittsburgh, 5057 Biomedical Science Tower 3, 3501 Fifth Avenue, Pittsburgh, PA 15260, USA
- Center for Neural Basis of Cognition, Pittsburgh, PA, USA
- McGowan Institute for Regenerative Medicine, Pittsburgh, PA, USA
- Corresponding author
| |
Collapse
|
5
|
Ultrasensitive Diamond Microelectrode Application in the Detection of Ca2+ Transport by AnnexinA5-Containing Nanostructured Liposomes. BIOSENSORS 2022; 12:bios12070525. [PMID: 35884328 PMCID: PMC9313143 DOI: 10.3390/bios12070525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/08/2022] [Accepted: 07/11/2022] [Indexed: 11/25/2022]
Abstract
This report describes the innovative application of high sensitivity Boron-doped nanocrystalline diamond microelectrodes for tracking small changes in Ca2+ concentration due to binding to Annexin-A5 inserted into the lipid bilayer of liposomes (proteoliposomes), which could not be assessed using common Ca2+ selective electrodes. Dispensing proteoliposomes to an electrolyte containing 1 mM Ca2+ resulted in a potential jump that decreased with time, reaching the baseline level after ~300 s, suggesting that Ca2+ ions were incorporated into the vesicle compartment and were no longer detected by the microelectrode. This behavior was not observed when liposomes (vesicles without AnxA5) were dispensed in the presence of Ca2+. The ion transport appears Ca2+-selective, since dispensing proteoliposomes in the presence of Mg2+ did not result in potential drop. The experimental conditions were adjusted to ensure an excess of Ca2+, thus confirming that the potential reduction was not only due to the binding of Ca2+ to AnxA5 but to the transfer of ions to the lumen of the proteoliposomes. Ca2+ uptake stopped immediately after the addition of EDTA. Therefore, our data provide evidence of selective Ca2+ transport into the proteoliposomes and support the possible function of AnxA5 as a hydrophilic pore once incorporated into lipid membrane, mediating the mineralization initiation process occurring in matrix vesicles.
Collapse
|
6
|
Metal-rich metallaboranes: Clusters containing triply and tetra bridging borylene and boride units. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213796] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
7
|
Kuhn B, Picollo F, Carabelli V, Rispoli G. Advanced real-time recordings of neuronal activity with tailored patch pipettes, diamond multi-electrode arrays and electrochromic voltage-sensitive dyes. Pflugers Arch 2020; 473:15-36. [PMID: 33047171 PMCID: PMC7782438 DOI: 10.1007/s00424-020-02472-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 09/29/2020] [Accepted: 10/02/2020] [Indexed: 12/03/2022]
Abstract
To understand the working principles of the nervous system is key to figure out its electrical activity and how this activity spreads along the neuronal network. It is therefore crucial to develop advanced techniques aimed to record in real time the electrical activity, from compartments of single neurons to populations of neurons, to understand how higher functions emerge from coordinated activity. To record from single neurons, a technique will be presented to fabricate patch pipettes able to seal on any membrane with a single glass type and whose shanks can be widened as desired. This dramatically reduces access resistance during whole-cell recording allowing fast intracellular and, if required, extracellular perfusion. To simultaneously record from many neurons, biocompatible probes will be described employing multi-electrodes made with novel technologies, based on diamond substrates. These probes also allow to synchronously record exocytosis and neuronal excitability and to stimulate neurons. Finally, to achieve even higher spatial resolution, it will be shown how voltage imaging, employing fast voltage-sensitive dyes and two-photon microscopy, is able to sample voltage oscillations in the brain spatially resolved and voltage changes in dendrites of single neurons at millisecond and micrometre resolution in awake animals.
Collapse
Affiliation(s)
- Bernd Kuhn
- Optical Neuroimaging Unit, OIST Graduate University, 1919-1 Tancha, Onna-son, Okinawa, Japan
| | - Federico Picollo
- Department of Physics, NIS Interdepartmental Centre, University of Torino and Italian Institute of Nuclear Physics, via Giuria 1, 10125, Torino, Italy
| | - Valentina Carabelli
- Department of Drug and Science Technology, NIS Interdepartmental Centre, University of Torino, Corso Raffaello 30, 10125, Torino, Italy
| | - Giorgio Rispoli
- Department of Biomedical and Specialist Surgical Sciences, University of Ferrara, Via Luigi Borsari 46, 44121, Ferrara, Italy.
| |
Collapse
|
8
|
Rodrigues D, Barbosa AI, Rebelo R, Kwon IK, Reis RL, Correlo VM. Skin-Integrated Wearable Systems and Implantable Biosensors: A Comprehensive Review. BIOSENSORS-BASEL 2020; 10:bios10070079. [PMID: 32708103 PMCID: PMC7400150 DOI: 10.3390/bios10070079] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/07/2020] [Accepted: 07/16/2020] [Indexed: 12/21/2022]
Abstract
Biosensors devices have attracted the attention of many researchers across the world. They have the capability to solve a large number of analytical problems and challenges. They are future ubiquitous devices for disease diagnosis, monitoring, treatment and health management. This review presents an overview of the biosensors field, highlighting the current research and development of bio-integrated and implanted biosensors. These devices are micro- and nano-fabricated, according to numerous techniques that are adapted in order to offer a suitable mechanical match of the biosensor to the surrounding tissue, and therefore decrease the body’s biological response. For this, most of the skin-integrated and implanted biosensors use a polymer layer as a versatile and flexible structural support, combined with a functional/active material, to generate, transmit and process the obtained signal. A few challenging issues of implantable biosensor devices, as well as strategies to overcome them, are also discussed in this review, including biological response, power supply, and data communication.
Collapse
Affiliation(s)
- Daniela Rodrigues
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; (D.R.); (A.I.B.); (R.R.); (I.K.K.); (R.L.R.)
| | - Ana I. Barbosa
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; (D.R.); (A.I.B.); (R.R.); (I.K.K.); (R.L.R.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Rita Rebelo
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; (D.R.); (A.I.B.); (R.R.); (I.K.K.); (R.L.R.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Il Keun Kwon
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; (D.R.); (A.I.B.); (R.R.); (I.K.K.); (R.L.R.)
| | - Rui L. Reis
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; (D.R.); (A.I.B.); (R.R.); (I.K.K.); (R.L.R.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
- Department of Dental Materials, School of Dentistry, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea
| | - Vitor M. Correlo
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; (D.R.); (A.I.B.); (R.R.); (I.K.K.); (R.L.R.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
- Correspondence:
| |
Collapse
|
9
|
Varga M, Potocký Š, Domonkos M, Ižák T, Babčenko O, Kromka A. Great Variety of Man-Made Porous Diamond Structures: Pulsed Microwave Cold Plasma System with a Linear Antenna Arrangement. ACS OMEGA 2019; 4:8441-8450. [PMID: 31459933 PMCID: PMC6648511 DOI: 10.1021/acsomega.9b00323] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 04/19/2019] [Indexed: 06/10/2023]
Abstract
Synthetic diamond films are routinely grown using chemical vapor deposition (CVD) techniques. Due to their extraordinary combination of intrinsic properties, they are used as the functional layers in various bio-optoelectronic devices. It is a challenge to grow the dimensional layers or porous structures that are required. This study reviews the fabrication of various porous diamond-based structures using linear antenna microwave plasma (LAMWP) chemical vapor deposition (CVD), a low-cost technology for growing diamond films over a large area (>1 m2) at low pressure (<100 Pa) and at low temperature (even at 350 °C). From a technological point of view, two different approaches, i.e., templated diamond growth using three different prestructured (macro-, micro-, and nanosized) porous substrates and direct bottom-up growth of ultra-nanoporous diamond (block-stone and dendritelike) films, are successfully employed to form diamond-based structures with controlled porosity and an enhanced surface area. As a bottom-up strategy, the LAMWP CVD system allows diamond growth at as high as 80% CO2 in the CH4/CO2/H2 gas mixture. In summary, the low-pressure and cold plasma conditions in the LAMWP system facilitate the growth on three-dimensionally prestructured substrates of various materials that naturally form porous self-standing diamond structures.
Collapse
Affiliation(s)
- Marián Varga
- Institute
of Physics, Czech Academy of Sciences, Cukrovarnická 10, 162 00 Prague 6, Czech Republic
| | - Štepán Potocký
- Institute
of Physics, Czech Academy of Sciences, Cukrovarnická 10, 162 00 Prague 6, Czech Republic
| | - Mária Domonkos
- Institute
of Physics, Czech Academy of Sciences, Cukrovarnická 10, 162 00 Prague 6, Czech Republic
- Department
of Physics, Faculty of Civil Engineering, Czech Technical University in Prague, Thákurova 7, 166 29 Prague 6, Czech Republic
| | - Tibor Ižák
- Institute
of Physics, Czech Academy of Sciences, Cukrovarnická 10, 162 00 Prague 6, Czech Republic
| | - Oleg Babčenko
- Institute
of Physics, Czech Academy of Sciences, Cukrovarnická 10, 162 00 Prague 6, Czech Republic
- Department
of Physics, Faculty of Electrical Engineering, Czech Technical University in Prague, Technická 2, 166 27 Prague 6, Czech Republic
| | - Alexander Kromka
- Institute
of Physics, Czech Academy of Sciences, Cukrovarnická 10, 162 00 Prague 6, Czech Republic
- Department
of Physics, Faculty of Civil Engineering, Czech Technical University in Prague, Thákurova 7, 166 29 Prague 6, Czech Republic
| |
Collapse
|
10
|
Sartori AF, Orlando S, Bellucci A, Trucchi DM, Abrahami S, Boehme T, Hantschel T, Vandervorst W, Buijnsters JG. Laser-Induced Periodic Surface Structures (LIPSS) on Heavily Boron-Doped Diamond for Electrode Applications. ACS APPLIED MATERIALS & INTERFACES 2018; 10:43236-43251. [PMID: 30431259 PMCID: PMC6326536 DOI: 10.1021/acsami.8b15951] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Diamond is known as a promising electrode material in the fields of cell stimulation, energy storage (e.g., supercapacitors), (bio)sensing, catalysis, etc. However, engineering its surface and electrochemical properties often requires costly and complex procedures with addition of foreign material (e.g., carbon nanotube or polymer) scaffolds or cleanroom processing. In this work, we demonstrate a novel approach using laser-induced periodic surface structuring (LIPSS) as a scalable, versatile, and cost-effective technique to nanostructure the surface and tune the electrochemical properties of boron-doped diamond (BDD). We study the effect of LIPSS on heavily doped BDD and investigate its application as electrodes for cell stimulation and energy storage. We show that quasi-periodic ripple structures formed on diamond electrodes laser-textured with a laser accumulated fluence of 0.325 kJ/cm2 (800 nm wavelength) displayed a much higher double-layer capacitance of 660 μF/cm2 than the as-grown BDD (20 μF/cm2) and that an increased charge-storage capacity of 1.6 mC/cm2 (>6-fold increase after laser texturing) and a low impedance of 2.74 Ω cm2 turn out to be appreciable properties for cell stimulation. Additional morphological and structural characterization revealed that ripple formation on heavily boron-doped diamond (2.8 atom % [B]) occurs at much lower accumulated fluences than the 2 kJ/cm2 typically reported for lower doping levels and that the process involves stronger graphitization of the BDD surface. Finally, we show that the exposed interface between sp2 and sp3 carbon layers (i.e. the laser-ablated diamond surface) revealed faster kinetics than the untreated BDD in both ferrocyanide and RuHex mediators, which can be used for electrochemical (bio)sensing. Overall, our work demonstrates that LIPSS is a powerful single-step tool for the fabrication of surface-engineered diamond electrodes with tunable material, electrochemical, and charge-storage properties.
Collapse
Affiliation(s)
- André F. Sartori
- Department of Precision
and Microsystems Engineering, Research Group of Micro and Nano Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands
- E-mail: . Tel.: +31 (0)15 27 86089 (A.F.S.)
| | - Stefano Orlando
- Istituto di Struttura della Materia (ISM), Unit of Montelibretti, Consiglio Nazionale delle Ricerche (CNR), Research
Area of Rome 1, Via Salaria
km 29.300, 00015 Monterotondo Scalo, Roma, Italy
| | - Alessandro Bellucci
- Istituto di Struttura della Materia (ISM), Unit of Montelibretti, Consiglio Nazionale delle Ricerche (CNR), Research
Area of Rome 1, Via Salaria
km 29.300, 00015 Monterotondo Scalo, Roma, Italy
| | - Daniele M. Trucchi
- Istituto di Struttura della Materia (ISM), Unit of Montelibretti, Consiglio Nazionale delle Ricerche (CNR), Research
Area of Rome 1, Via Salaria
km 29.300, 00015 Monterotondo Scalo, Roma, Italy
| | - Shoshan Abrahami
- Department
of Materials and Chemistry, Research Group Electrochemical and Surface
Engineering (SURF), Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Thijs Boehme
- Imec, Kapeldreef 75, B-3001 Leuven, Belgium
- IKS-Department of Physics, KU Leuven, Celestijnenlaan
200D, B-3001 Leuven, Belgium
| | | | - Wilfried Vandervorst
- Imec, Kapeldreef 75, B-3001 Leuven, Belgium
- IKS-Department of Physics, KU Leuven, Celestijnenlaan
200D, B-3001 Leuven, Belgium
| | - Josephus G. Buijnsters
- Department of Precision
and Microsystems Engineering, Research Group of Micro and Nano Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands
- E-mail: . Tel.: +31 (0)15 27 85396 (J.G.B)
| |
Collapse
|
11
|
Meijs S, McDonald M, Sørensen S, Rechendorff K, Fekete L, Klimša L, Petrák V, Rijkhoff N, Taylor A, Nesládek M, Pennisi CP. Diamond/Porous Titanium Nitride Electrodes With Superior Electrochemical Performance for Neural Interfacing. Front Bioeng Biotechnol 2018; 6:171. [PMID: 30525031 PMCID: PMC6262293 DOI: 10.3389/fbioe.2018.00171] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 10/25/2018] [Indexed: 11/24/2022] Open
Abstract
Robust devices for chronic neural stimulation demand electrode materials which exhibit high charge injection (Qinj) capacity and long-term stability. Boron-doped diamond (BDD) electrodes have shown promise for neural stimulation applications, but their practical applications remain limited due to the poor charge transfer capability of diamond. In this work, we present an attractive approach to produce BDD electrodes with exceptionally high surface area using porous titanium nitride (TiN) as interlayer template. The TiN deposition parameters were systematically varied to fabricate a range of porous electrodes, which were subsequently coated by a BDD thin-film. The electrodes were investigated by surface analysis methods and electrochemical techniques before and after BDD deposition. Cyclic voltammetry (CV) measurements showed a wide potential window in saline solution (between −1.3 and 1.2 V vs. Ag/AgCl). Electrodes with the highest thickness and porosity exhibited the lowest impedance magnitude and a charge storage capacity (CSC) of 253 mC/cm2, which largely exceeds the values previously reported for porous BDD electrodes. Electrodes with relatively thinner and less porous coatings displayed the highest pulsing capacitances (Cpulse), which would be more favorable for stimulation applications. Although BDD/TiN electrodes displayed a higher impedance magnitude and a lower Cpulse as compared to the bare TiN electrodes, the wider potential window likely allows for higher Qinj without reaching unsafe potentials. The remarkable reduction in the impedance and improvement in the charge transfer capacity, together with the known properties of BDD films, makes this type of coating as an ideal candidate for development of reliable devices for chronic neural interfacing.
Collapse
Affiliation(s)
- Suzan Meijs
- SMI, Department of Health, Science and Technology, Aalborg University, Aalborg, Denmark
| | - Matthew McDonald
- Institute for Materials Research, University of Hasselt, Diepenbeek, Belgium
| | - Søren Sørensen
- Materials Division, Danish Technological Institute, Århus, Denmark
| | | | - Ladislav Fekete
- Department of Functional Materials, Institute of Physics of the Czech Academy of Sciences, Prague, Czechia
| | - Ladislav Klimša
- Department of Functional Materials, Institute of Physics of the Czech Academy of Sciences, Prague, Czechia
| | - Václav Petrák
- Department of Functional Materials, Institute of Physics of the Czech Academy of Sciences, Prague, Czechia
| | - Nico Rijkhoff
- SMI, Department of Health, Science and Technology, Aalborg University, Aalborg, Denmark
| | - Andrew Taylor
- Department of Functional Materials, Institute of Physics of the Czech Academy of Sciences, Prague, Czechia
| | - Miloš Nesládek
- Institute for Materials Research, University of Hasselt, Diepenbeek, Belgium
| | - Cristian P Pennisi
- Laboratory for Stem Cell Research, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| |
Collapse
|
12
|
Bag R, Mondal B, Bakthavachalam K, Roisnel T, Ghosh S. Heterometallic boride clusters: synthesis and characterization of butterfly and square pyramidal boride clusters*. PURE APPL CHEM 2017. [DOI: 10.1515/pac-2017-1001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
A number of heterometallic boride clusters have been synthesized and structurally characterized using various spectroscopic and crystallographic analyses. Thermolysis of [Ru3(CO)12] with [Cp*WH3(B4H8)] (1) yielded [{Cp*W(CO)2}2(μ
4-B){Ru(CO)3}2(μ-H)] (2), [{Cp*W(CO)2}2(μ
5-B){Ru(CO)3}2{Ru(CO)2}(μ-H)] (3), [{Cp*W(CO)2}(μ
5-B){Ru(CO)3}4] (4) and a ditungstaborane cluster [(Cp*W)2B4H8Ru(CO)3] (5) (Cp*=η
5-C5Me5). Compound 2 contains 62 cluster valence-electrons, in which the boron atom occupies the semi-interstitial position of a M4-butterfly core, composed of two tungsten and two ruthenium atoms. Compounds 3 and 4 can be described as hetero-metallic boride clusters that contain 74-cluster valence electrons (cve), in which the boron atom is at the basal position of the M5-square pyramidal geometry. Cluster 5 is analogous to known [(Cp*W)2B5H9] where one of the BH vertices has been replaced by isolobal {Ru(CO)3} fragment. Computational studies with density functional theory (DFT) methods at the B3LYP level have been used to analyze the bonding of the synthesized molecules. The optimized geometries and computed 11B NMR chemical shifts satisfactorily corroborate with the experimental data. All the compounds have been characterized by mass spectrometry, IR, 1H, 11B and 13C NMR spectroscopy, and the structural architectures were unequivocally established by crystallographic analyses of clusters 2–5.
Collapse
Affiliation(s)
- Ranjit Bag
- Department of Chemistry , Indian Institute of Technology Madras , Chennai 600036 , India
| | - Bijan Mondal
- Department of Chemistry , Indian Institute of Technology Madras , Chennai 600036 , India
| | - K. Bakthavachalam
- Department of Chemistry , Indian Institute of Technology Madras , Chennai 600036 , India
| | - Thierry Roisnel
- Institut des Sciences Chimiques de Rennes , UMR 6226 CNRS-Université de Rennes 1-Ecole Nationale Supérieure de Chimie de Rennes , F-35042 Rennes Cedex , France
| | - Sundargopal Ghosh
- Department of Chemistry , Indian Institute of Technology Madras , Chennai 600036 , India
| |
Collapse
|
13
|
Carabelli V, Marcantoni A, Picollo F, Battiato A, Bernardi E, Pasquarelli A, Olivero P, Carbone E. Planar Diamond-Based Multiarrays to Monitor Neurotransmitter Release and Action Potential Firing: New Perspectives in Cellular Neuroscience. ACS Chem Neurosci 2017; 8:252-264. [PMID: 28027435 DOI: 10.1021/acschemneuro.6b00328] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
High biocompatibility, outstanding electrochemical responsiveness, inertness, and transparency make diamond-based multiarrays (DBMs) first-rate biosensors for in vitro detection of electrochemical and electrical signals from excitable cells together, with potential for in vivo applications as neural interfaces and prostheses. Here, we will review the electrochemical and physical properties of various DBMs and how these devices have been employed for recording released neurotransmitter molecules and all-or-none action potentials from living cells. Specifically, we will overview how DBMs can resolve localized exocytotic events from subcellular compartments using high-density microelectrode arrays (MEAs), or monitoring oxidizable neurotransmitter release from populations of cells in culture and tissue slices using low-density MEAs. Interfacing DBMs with excitable cells is currently leading to the promising opportunity of recording electrical signals as well as creating neuronal interfaces through the same device. Given the recent increasingly growing development of newly available DBMs of various geometries to monitor electrical activity and neurotransmitter release in a variety of excitable and neuronal tissues, the discussion will be limited to planar DBMs.
Collapse
Affiliation(s)
- Valentina Carabelli
- Consorzio Nazionale Interuniversitario per le Scienze fisiche della Materia (CNISM), 10125 Torino Unit, Italy
| | - Andrea Marcantoni
- Consorzio Nazionale Interuniversitario per le Scienze fisiche della Materia (CNISM), 10125 Torino Unit, Italy
| | - Federico Picollo
- Consorzio Nazionale Interuniversitario per le Scienze fisiche della Materia (CNISM), 10125 Torino Unit, Italy
- Istituto Nazionale di Fisica Nucleare (INFN), 10125 sez. Torino, Italy
| | - Alfio Battiato
- Consorzio Nazionale Interuniversitario per le Scienze fisiche della Materia (CNISM), 10125 Torino Unit, Italy
- Istituto Nazionale di Fisica Nucleare (INFN), 10125 sez. Torino, Italy
| | - Ettore Bernardi
- Consorzio Nazionale Interuniversitario per le Scienze fisiche della Materia (CNISM), 10125 Torino Unit, Italy
- Istituto Nazionale di Fisica Nucleare (INFN), 10125 sez. Torino, Italy
| | - Alberto Pasquarelli
- Institute
of Electron Devices and Circuits, Ulm University, 89081 Ulm, Germany
| | - Paolo Olivero
- Consorzio Nazionale Interuniversitario per le Scienze fisiche della Materia (CNISM), 10125 Torino Unit, Italy
- Istituto Nazionale di Fisica Nucleare (INFN), 10125 sez. Torino, Italy
| | - Emilio Carbone
- Consorzio Nazionale Interuniversitario per le Scienze fisiche della Materia (CNISM), 10125 Torino Unit, Italy
| |
Collapse
|
14
|
Seyock S, Maybeck V, Scorsone E, Rousseau L, Hébert C, Lissorgues G, Bergonzo P, Offenhäusser A. Interfacing neurons on carbon nanotubes covered with diamond. RSC Adv 2017. [DOI: 10.1039/c6ra20207a] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Investigation of the interface and needed adhesion surface for neuronal cells on carbon nanotubes covered with diamond.
Collapse
Affiliation(s)
- Silke Seyock
- Institute of Complex Systems (ICS-8/PGI-8)
- Forschungszentrum Jülich
- 52428 Jülich
- Germany
| | - Vanessa Maybeck
- Institute of Complex Systems (ICS-8/PGI-8)
- Forschungszentrum Jülich
- 52428 Jülich
- Germany
| | | | | | | | | | | | - Andreas Offenhäusser
- Institute of Complex Systems (ICS-8/PGI-8)
- Forschungszentrum Jülich
- 52428 Jülich
- Germany
| |
Collapse
|
15
|
Szunerits S, Coffinier Y, Boukherroub R. Diamond Nanowires: A Recent Success Story for Biosensing. SPRINGER SERIES ON CHEMICAL SENSORS AND BIOSENSORS 2017. [DOI: 10.1007/5346_2017_17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
16
|
Picollo F, Battiato A, Bernardi E, Marcantoni A, Pasquarelli A, Carbone E, Olivero P, Carabelli V. Microelectrode Arrays of Diamond-Insulated Graphitic Channels for Real-Time Detection of Exocytotic Events from Cultured Chromaffin Cells and Slices of Adrenal Glands. Anal Chem 2016; 88:7493-9. [DOI: 10.1021/acs.analchem.5b04449] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Federico Picollo
- Istituto Nazionale di Fisica Nucleare (INFN), 10125 Torino, Italy
- Physics
Department, University of Torino, 10125 Torino, Italy
- “Nanostructured
Interfaces and Surfaces” Inter-departmental Centre, University of Torino, 10125 Torino, Italy
- Consorzio Nazionale Interuniversitario per le Scienze Fisiche della Materia (CNISM), Torino Unit, 10125 Torino, Italy
| | - Alfio Battiato
- Istituto Nazionale di Fisica Nucleare (INFN), 10125 Torino, Italy
- Physics
Department, University of Torino, 10125 Torino, Italy
- “Nanostructured
Interfaces and Surfaces” Inter-departmental Centre, University of Torino, 10125 Torino, Italy
- Consorzio Nazionale Interuniversitario per le Scienze Fisiche della Materia (CNISM), Torino Unit, 10125 Torino, Italy
| | - Ettore Bernardi
- Istituto Nazionale di Fisica Nucleare (INFN), 10125 Torino, Italy
- Physics
Department, University of Torino, 10125 Torino, Italy
- “Nanostructured
Interfaces and Surfaces” Inter-departmental Centre, University of Torino, 10125 Torino, Italy
- Consorzio Nazionale Interuniversitario per le Scienze Fisiche della Materia (CNISM), Torino Unit, 10125 Torino, Italy
| | - Andrea Marcantoni
- “Nanostructured
Interfaces and Surfaces” Inter-departmental Centre, University of Torino, 10125 Torino, Italy
- Consorzio Nazionale Interuniversitario per le Scienze Fisiche della Materia (CNISM), Torino Unit, 10125 Torino, Italy
- Department
of Drug Science and Technology, University of Torino, 10125 Torino, Italy
| | - Alberto Pasquarelli
- Institute
of Electron Devices and Circuits, Ulm University, 89081 Ulm, Germany
| | - Emilio Carbone
- “Nanostructured
Interfaces and Surfaces” Inter-departmental Centre, University of Torino, 10125 Torino, Italy
- Consorzio Nazionale Interuniversitario per le Scienze Fisiche della Materia (CNISM), Torino Unit, 10125 Torino, Italy
- Department
of Drug Science and Technology, University of Torino, 10125 Torino, Italy
| | - Paolo Olivero
- Istituto Nazionale di Fisica Nucleare (INFN), 10125 Torino, Italy
- Physics
Department, University of Torino, 10125 Torino, Italy
- “Nanostructured
Interfaces and Surfaces” Inter-departmental Centre, University of Torino, 10125 Torino, Italy
- Consorzio Nazionale Interuniversitario per le Scienze Fisiche della Materia (CNISM), Torino Unit, 10125 Torino, Italy
| | - Valentina Carabelli
- “Nanostructured
Interfaces and Surfaces” Inter-departmental Centre, University of Torino, 10125 Torino, Italy
- Consorzio Nazionale Interuniversitario per le Scienze Fisiche della Materia (CNISM), Torino Unit, 10125 Torino, Italy
- Department
of Drug Science and Technology, University of Torino, 10125 Torino, Italy
| |
Collapse
|
17
|
Sekretaryova AN, Eriksson M, Turner AP. Bioelectrocatalytic systems for health applications. Biotechnol Adv 2016; 34:177-97. [DOI: 10.1016/j.biotechadv.2015.12.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 12/15/2015] [Accepted: 12/15/2015] [Indexed: 01/06/2023]
|
18
|
Braunschweig H, Ewing WC, Ghosh S, Kramer T, Mattock JD, Östreicher S, Vargas A, Werner C. Trimetallaborides as starting points for the syntheses of large metal-rich molecular borides and clusters. Chem Sci 2016; 7:109-116. [PMID: 29861971 PMCID: PMC5950574 DOI: 10.1039/c5sc03206g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 10/19/2015] [Indexed: 11/21/2022] Open
Abstract
Treatment of an anionic dimanganaborylene complex ([{Cp(CO)2Mn}2B]-) with coinage metal cations stabilized by a very weakly coordinating Lewis base (SMe2) led to the coordination of the incoming metal and subsequent displacement of dimethylsulfide in the formation of hexametalladiborides featuring planar four-membered M2B2 cores (M = Cu, Au) comparable to transition metal clusters constructed around four-membered rings composed solely of coinage metals. The analogies between compounds consisting of B2M2 units and M4 (M = Cu, Au) units speak to the often overlooked metalloid nature of boron. Treatment of one of these compounds (M = Cu) with a Lewis-basic metal fragment (Pt(PCy3)2) led to the formation of a tetrametallaboride featuring two manganese, one copper and one platinum atom, all bound to boron in a geometry not yet seen for this kind of compound. Computational examination suggests that this geometry is the result of d10-d10 dispersion interactions between the copper and platinum fragments.
Collapse
Affiliation(s)
- Holger Braunschweig
- Institut für Anorganische Chemie , Julius-Maximilians-Universität Würzburg , Am Hubland , 97074 Würzburg , Germany .
| | - William C Ewing
- Institut für Anorganische Chemie , Julius-Maximilians-Universität Würzburg , Am Hubland , 97074 Würzburg , Germany .
| | - Sundargopal Ghosh
- Department of Chemistry , Indian Institute of Technology Madras , Chennai 600 036 , India
| | - Thomas Kramer
- Institut für Anorganische Chemie , Julius-Maximilians-Universität Würzburg , Am Hubland , 97074 Würzburg , Germany .
| | - James D Mattock
- Department of Chemistry , School of Life Sciences , University of Sussex , Brighton BN1 9QJ , Sussex , UK
| | - Sebastian Östreicher
- Institut für Anorganische Chemie , Julius-Maximilians-Universität Würzburg , Am Hubland , 97074 Würzburg , Germany .
| | - Alfredo Vargas
- Department of Chemistry , School of Life Sciences , University of Sussex , Brighton BN1 9QJ , Sussex , UK
| | - Christine Werner
- Institut für Anorganische Chemie , Julius-Maximilians-Universität Würzburg , Am Hubland , 97074 Würzburg , Germany .
| |
Collapse
|
19
|
Taylor AC, Vagaska B, Edgington R, Hébert C, Ferretti P, Bergonzo P, Jackman RB. Biocompatibility of nanostructured boron doped diamond for the attachment and proliferation of human neural stem cells. J Neural Eng 2015; 12:066016. [DOI: 10.1088/1741-2560/12/6/066016] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
20
|
Taylor AC, Edgington R, Jackman RB. Patterning of nanodiamond tracks and nanocrystalline diamond films using a micropipette for additive direct-write processing. ACS APPLIED MATERIALS & INTERFACES 2015; 7:6490-5. [PMID: 25669757 DOI: 10.1021/am507900a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The ability to pattern the seeding of nanodiamonds (NDs), and thus selectively control areas of diamond growth, is a useful capability for many applications, including photonics, microelectromechanical systems (MEMS) prototyping, and biomaterial design. A microprinting technique using a computer-driven micropipette has been developed to deposit patterns of ND monolayers from an unreactive water/glycerol ND ink to 5-μm resolution. The concentration and composition of the ND solution were optimized to realize high-density monolayers of NDs and consistent ND printing. Subsequent nanocrystalline diamond (NCD) patterns grown using chemical vapor deposition showed a high level of compliance with the printed ND pattern. This "direct-write", bottom-up, and additive process offers a versatile and simple alternative to pattern diamond. The process has the particular advantage that it does not require lithography or destructive processing such as reactive-ion etching (RIE) and, pertinently, does not involve reactive chemicals that could alter the surface chemistry of NDs. Furthermore, given that this process obviates the use of conventional lithography, substrates that are not suitable for lithographic processing (e.g., excessively small or three-dimensional structured substrates) can be inscribed with ND patterns. The technique also allows for the growth of discrete, localized, single-crystal nanodiamonds with applications in quantum technology.
Collapse
|
21
|
Dyatkin B, Ash PA, Sharma S. Highlights from Faraday Discussion 172: Carbon in Electrochemistry, Sheffield, UK, July 2014. Chem Commun (Camb) 2015; 51:2199-207. [DOI: 10.1039/c4cc90483d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Boris Dyatkin
- A.J. Drexel Nanomaterials Institute and the Department of Materials Science and Engineering
- Drexel University
- Philadelphia
- USA
| | - Philip A. Ash
- Inorganic Chemistry Laboratory
- Department of Chemistry
- University of Oxford
- Oxford
- UK
| | - Surbhi Sharma
- Centre for Hydrogen and Fuel Cell Research
- School of Chemical Engineering
- University of Birmingham
- UK
| |
Collapse
|
22
|
Abstract
This contribution provides a personal overview and summary of Faraday Discussion 172 on “Carbon in Electrochemistry”, covering some of the key points made at the meeting within the broader context of other recent developments on carbon materials for electrochemical applications. Although carbon electrodes have a long history of use in electrochemistry, methods and techniques are only just becoming available that can test long-established models and identify key features for further exploration. This Discussion has highlighted the need for a better understanding of the impact of surface structure, defects, local density of electronic states, and surface functionality and contamination, in order to advance fundamental knowledge of various electrochemical processes and phenomena at carbon electrodes. These developments cut across important materials such as graphene, carbon nanotubes, conducting diamond and high surface area carbon materials. With more detailed pictures of structural and electronic controls of electrochemistry at carbon electrodes (and electrodes generally), will come rational advances in various technological applications, from sensors to energy technology (particularly batteries, supercapacitors and fuel cells), that have been well-illustrated at this Discussion.
Collapse
Affiliation(s)
- Patrick R. Unwin
- Department of Chemistry
- University of Warwick
- Coventry CV4 7AL, UK
| |
Collapse
|