1
|
Bocková J, Jones NC, Hoffmann SV, Meinert C. The astrochemical evolutionary traits of phospholipid membrane homochirality. Nat Rev Chem 2024; 8:652-664. [PMID: 39025922 DOI: 10.1038/s41570-024-00627-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/05/2024] [Indexed: 07/20/2024]
Abstract
Compartmentalization is crucial for the evolution of life. Present-day phospholipid membranes exhibit a high level of complexity and species-dependent homochirality, the so-called lipid divide. It is possible that less stable, yet more dynamic systems, promoting out-of-equilibrium environments, facilitated the evolution of life at its early stages. The composition of the preceding primitive membranes and the evolutionary route towards complexity and homochirality remain unexplained. Organics-rich carbonaceous chondrites are evidence of the ample diversity of interstellar chemistry, which may have enriched the prebiotic milieu on early Earth. This Review evaluates the detections of simple amphiphiles - likely ancestors of membrane phospholipids - in extraterrestrial samples and analogues, along with potential pathways to form primitive compartments on primeval Earth. The chiroptical properties of the chiral backbones of phospholipids provide a guide for future investigations into the origins of phospholipid membrane homochirality. We highlight a plausible common pathway towards homochirality of lipids, amino acids, and sugars starting from enantioenriched monomers. Finally, given their high recalcitrance and resistance to degradation, lipids are among the best candidate biomarkers in exobiology.
Collapse
Affiliation(s)
- Jana Bocková
- Institut de Chimie de Nice, CNRS UMR 7272, Université Côte d'Azur, Nice, France
| | - Nykola C Jones
- ISA, Department of Physics and Astronomy, Aarhus University, Aarhus, Denmark
| | - Søren V Hoffmann
- ISA, Department of Physics and Astronomy, Aarhus University, Aarhus, Denmark
| | - Cornelia Meinert
- Institut de Chimie de Nice, CNRS UMR 7272, Université Côte d'Azur, Nice, France.
| |
Collapse
|
2
|
Rácz R, Kovács STS, Lakatos G, Rahul KK, Mifsud DV, Herczku P, Sulik B, Juhász Z, Perduk Z, Ioppolo S, Mason NJ, Field TA, Biri S, McCullough RW. AQUILA: A laboratory facility for the irradiation of astrochemical ice analogs by keV ions. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2024; 95:095105. [PMID: 39240155 DOI: 10.1063/5.0207967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 08/13/2024] [Indexed: 09/07/2024]
Abstract
The detection of various molecular species, including complex organic molecules relevant to biochemical and geochemical processes, in astronomical settings, such as the interstellar medium or the outer solar system, has led to the increased need for a better understanding of the chemistry occurring in these cold regions of space. In this context, the chemistry of ices prepared and processed at cryogenic temperatures has proven to be of particular interest due to the fact that many interstellar molecules are believed to originate within the icy mantles adsorbed on nano- and micro-scale dust particles. The chemistry leading to the formation of such molecules may be initiated by ionizing radiation in the form of galactic cosmic rays or stellar winds, and thus, there has been an increased interest in commissioning experimental setups capable of simulating and better characterizing this solid-phase radiation astrochemistry. In this article, we describe a new facility called AQUILA (Atomki-Queen's University Ice Laboratory for Astrochemistry), which has been purposefully designed to study the chemical evolution of ices analogous to those that may be found in the dense interstellar medium or the outer solar system as a result of their exposure to keV ion beams. The results of some ion irradiation studies of CH3OH ice at 20 K are discussed to exemplify the experimental capabilities of the AQUILA as well as to highlight its complementary nature to another laboratory astrochemistry setup at our institute.
Collapse
Affiliation(s)
- R Rácz
- HUN-REN Institute for Nuclear Research (Atomki), Debrecen H-4026, Hungary
| | - S T S Kovács
- HUN-REN Institute for Nuclear Research (Atomki), Debrecen H-4026, Hungary
| | - G Lakatos
- HUN-REN Institute for Nuclear Research (Atomki), Debrecen H-4026, Hungary
- Institute of Chemistry, University of Debrecen, Debrecen H-4032, Hungary
| | - K K Rahul
- HUN-REN Institute for Nuclear Research (Atomki), Debrecen H-4026, Hungary
| | - D V Mifsud
- HUN-REN Institute for Nuclear Research (Atomki), Debrecen H-4026, Hungary
| | - P Herczku
- HUN-REN Institute for Nuclear Research (Atomki), Debrecen H-4026, Hungary
| | - B Sulik
- HUN-REN Institute for Nuclear Research (Atomki), Debrecen H-4026, Hungary
| | - Z Juhász
- HUN-REN Institute for Nuclear Research (Atomki), Debrecen H-4026, Hungary
| | - Z Perduk
- HUN-REN Institute for Nuclear Research (Atomki), Debrecen H-4026, Hungary
| | - S Ioppolo
- Centre for Interstellar Catalysis (InterCat), Department of Physics and Astronomy, Aarhus University, Aarhus DK-8000, Denmark
| | - N J Mason
- HUN-REN Institute for Nuclear Research (Atomki), Debrecen H-4026, Hungary
- Centre for Astrophysics and Planetary Science (CAPS), School of Physics and Astronomy, University of Kent, Canterbury CT2 7NH, United Kingdom
| | - T A Field
- Department of Physics and Astronomy, School of Mathematics and Physics, Queen's University Belfast, Belfast BT7 1NN, United Kingdom
| | - S Biri
- HUN-REN Institute for Nuclear Research (Atomki), Debrecen H-4026, Hungary
| | - R W McCullough
- Department of Physics and Astronomy, School of Mathematics and Physics, Queen's University Belfast, Belfast BT7 1NN, United Kingdom
| |
Collapse
|
3
|
Flowers AM, Brown A, Klobukowski M. An investigation into transition states of cyclic tetra-atomic silicon and germanium interstellar dust compounds: Si xC 4-x, Ge xC 4-x, and Ge xSi 4-x ( x ∈ {1,2,3}). Phys Chem Chem Phys 2024. [PMID: 39041061 DOI: 10.1039/d4cp02150a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Presented in this work is a thorough determination of the transition states between the different isomers of cyclic tetra-atomic silicon carbide, germanium carbide, and germanium silicide clusters. Through use of density functional theory (B3LYP-D3BJ, M06-2X, ωB97X-D4, and B2GP-PLYP) in conjunction with the aug-cc-pVTZ basis set, transition state structures and their barrier heights are determined for the interconversions between the various isomers for the family of tetra-atomic SiC, GeC, and GeSi compounds. SiC dust grains are known to be prevalent in interstellar dust, and among this group, so far only diamond-shaped (d-)SiC3 has been detected in the interstellar medium (ISM). Determining which other structures might be detectable not only depends on their intrinsic spectroscopic features, but whether or not they are likely to exist as isomers in interstellar environments. By examining the energy barrier heights for transitions between isomers, we determined that many of these structures are unlikely to exhibit interconversion in the ISM, outside of hotter circumstellar environments. Although Boltzmann population ratios at approximate circumstellar temperatures suggest the presence of higher energy minima, it is likely that once interconversion happens, as molecules travel away from a star and cool, they will get kinetically trapped in the potential energy well they inhabit, making how the ratios freeze out dependent on the time and pathways the molecules take to cool down. As such, many of these higher energy minima may still be good candidates for detection including (rhomboidal) r-SiC3, r-GeC3, r-GeSi3, (trapezoidal) t-Si2C2, r-Ge2C2, and d-Si3C.
Collapse
Affiliation(s)
- A Mackenzie Flowers
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada.
| | - Alex Brown
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada.
| | - Mariusz Klobukowski
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada.
| |
Collapse
|
4
|
Solov’yov AV, Verkhovtsev AV, Mason NJ, Amos RA, Bald I, Baldacchino G, Dromey B, Falk M, Fedor J, Gerhards L, Hausmann M, Hildenbrand G, Hrabovský M, Kadlec S, Kočišek J, Lépine F, Ming S, Nisbet A, Ricketts K, Sala L, Schlathölter T, Wheatley AEH, Solov’yov IA. Condensed Matter Systems Exposed to Radiation: Multiscale Theory, Simulations, and Experiment. Chem Rev 2024; 124:8014-8129. [PMID: 38842266 PMCID: PMC11240271 DOI: 10.1021/acs.chemrev.3c00902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 05/02/2024] [Accepted: 05/10/2024] [Indexed: 06/07/2024]
Abstract
This roadmap reviews the new, highly interdisciplinary research field studying the behavior of condensed matter systems exposed to radiation. The Review highlights several recent advances in the field and provides a roadmap for the development of the field over the next decade. Condensed matter systems exposed to radiation can be inorganic, organic, or biological, finite or infinite, composed of different molecular species or materials, exist in different phases, and operate under different thermodynamic conditions. Many of the key phenomena related to the behavior of irradiated systems are very similar and can be understood based on the same fundamental theoretical principles and computational approaches. The multiscale nature of such phenomena requires the quantitative description of the radiation-induced effects occurring at different spatial and temporal scales, ranging from the atomic to the macroscopic, and the interlinks between such descriptions. The multiscale nature of the effects and the similarity of their manifestation in systems of different origins necessarily bring together different disciplines, such as physics, chemistry, biology, materials science, nanoscience, and biomedical research, demonstrating the numerous interlinks and commonalities between them. This research field is highly relevant to many novel and emerging technologies and medical applications.
Collapse
Affiliation(s)
| | | | - Nigel J. Mason
- School
of Physics and Astronomy, University of
Kent, Canterbury CT2 7NH, United
Kingdom
| | - Richard A. Amos
- Department
of Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT, U.K.
| | - Ilko Bald
- Institute
of Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
| | - Gérard Baldacchino
- Université
Paris-Saclay, CEA, LIDYL, 91191 Gif-sur-Yvette, France
- CY Cergy Paris Université,
CEA, LIDYL, 91191 Gif-sur-Yvette, France
| | - Brendan Dromey
- Centre
for Light Matter Interactions, School of Mathematics and Physics, Queen’s University Belfast, Belfast BT7 1NN, United Kingdom
| | - Martin Falk
- Institute
of Biophysics of the Czech Academy of Sciences, Královopolská 135, 61200 Brno, Czech Republic
- Kirchhoff-Institute
for Physics, Heidelberg University, Im Neuenheimer Feld 227, 69120 Heidelberg, Germany
| | - Juraj Fedor
- J.
Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, Dolejškova 3, 18223 Prague, Czech Republic
| | - Luca Gerhards
- Institute
of Physics, Carl von Ossietzky University, Carl-von-Ossietzky-Str. 9-11, 26129 Oldenburg, Germany
| | - Michael Hausmann
- Kirchhoff-Institute
for Physics, Heidelberg University, Im Neuenheimer Feld 227, 69120 Heidelberg, Germany
| | - Georg Hildenbrand
- Kirchhoff-Institute
for Physics, Heidelberg University, Im Neuenheimer Feld 227, 69120 Heidelberg, Germany
- Faculty
of Engineering, University of Applied Sciences
Aschaffenburg, Würzburger
Str. 45, 63743 Aschaffenburg, Germany
| | | | - Stanislav Kadlec
- Eaton European
Innovation Center, Bořivojova
2380, 25263 Roztoky, Czech Republic
| | - Jaroslav Kočišek
- J.
Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, Dolejškova 3, 18223 Prague, Czech Republic
| | - Franck Lépine
- Université
Claude Bernard Lyon 1, CNRS, Institut Lumière
Matière, F-69622, Villeurbanne, France
| | - Siyi Ming
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield
Road, Cambridge CB2 1EW, United Kingdom
| | - Andrew Nisbet
- Department
of Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT, U.K.
| | - Kate Ricketts
- Department
of Targeted Intervention, University College
London, Gower Street, London WC1E 6BT, United Kingdom
| | - Leo Sala
- J.
Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, Dolejškova 3, 18223 Prague, Czech Republic
| | - Thomas Schlathölter
- Zernike
Institute for Advanced Materials, University
of Groningen, Nijenborgh
4, 9747 AG Groningen, The Netherlands
- University
College Groningen, University of Groningen, Hoendiepskade 23/24, 9718 BG Groningen, The Netherlands
| | - Andrew E. H. Wheatley
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield
Road, Cambridge CB2 1EW, United Kingdom
| | - Ilia A. Solov’yov
- Institute
of Physics, Carl von Ossietzky University, Carl-von-Ossietzky-Str. 9-11, 26129 Oldenburg, Germany
| |
Collapse
|
5
|
Rosa CA, Bergantini A, Herczku P, Mifsud DV, Lakatos G, Kovács STS, Sulik B, Juhász Z, Ioppolo S, Quitián-Lara HM, Mason NJ, Lage C. Infrared Spectral Signatures of Nucleobases in Interstellar Ices I: Purines. Life (Basel) 2023; 13:2208. [PMID: 38004348 PMCID: PMC10672069 DOI: 10.3390/life13112208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/01/2023] [Accepted: 11/12/2023] [Indexed: 11/26/2023] Open
Abstract
The purine nucleobases adenine and guanine are complex organic molecules that are essential for life. Despite their ubiquitous presence on Earth, purines have yet to be detected in observations of astronomical environments. This work therefore proposes to study the infrared spectra of purines linked to terrestrial biochemical processes under conditions analogous to those found in the interstellar medium. The infrared spectra of adenine and guanine, both in neat form and embedded within an ice made of H2O:NH3:CH4:CO:CH3OH (10:1:1:1:1), were analysed with the aim of determining which bands attributable to adenine and/or guanine can be observed in the infrared spectrum of an astrophysical ice analogue rich in other volatile species known to be abundant in dense molecular clouds. The spectrum of adenine and guanine mixed together was also analysed. This study has identified three purine nucleobase infrared absorption bands that do not overlap with bands attributable to the volatiles that are ubiquitous in the dense interstellar medium. Therefore, these three bands, which are located at 1255, 940, and 878 cm-1, are proposed as an infrared spectral signature for adenine, guanine, or a mixture of these molecules in astrophysical ices. All three bands have integrated molar absorptivity values (ψ) greater than 4 km mol-1, meaning that they should be readily observable in astronomical targets. Therefore, if these three bands were to be observed together in the same target, then it is possible to propose the presence of a purine molecule (i.e., adenine or guanine) there.
Collapse
Affiliation(s)
- Caroline Antunes Rosa
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro 21941-170, Brazil
| | - Alexandre Bergantini
- Celso Suckow da Fonseca Federal Centre for Technological Education, Rio de Janeiro 20271-110, Brazil
| | - Péter Herczku
- HUN-REN Institute for Nuclear Research (Atomki), H-4026 Debrecen, Hungary
| | - Duncan V. Mifsud
- HUN-REN Institute for Nuclear Research (Atomki), H-4026 Debrecen, Hungary
| | - Gergő Lakatos
- HUN-REN Institute for Nuclear Research (Atomki), H-4026 Debrecen, Hungary
- Institute of Chemistry, University of Debrecen, H-4032 Debrecen, Hungary
| | | | - Béla Sulik
- HUN-REN Institute for Nuclear Research (Atomki), H-4026 Debrecen, Hungary
| | - Zoltán Juhász
- HUN-REN Institute for Nuclear Research (Atomki), H-4026 Debrecen, Hungary
| | - Sergio Ioppolo
- Centre for Interstellar Catalysis (InterCat), Department of Physics and Astronomy, University of Aarhus, DK-8000 Aarhus, Denmark
| | - Heidy M. Quitián-Lara
- Centre for Astrophysics and Planetary Science, School of Physics and Astronomy, University of Kent, Canterbury CT2 7NH, UK
| | - Nigel J. Mason
- HUN-REN Institute for Nuclear Research (Atomki), H-4026 Debrecen, Hungary
- Centre for Astrophysics and Planetary Science, School of Physics and Astronomy, University of Kent, Canterbury CT2 7NH, UK
| | - Claudia Lage
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro 21941-170, Brazil
| |
Collapse
|
6
|
Chu W, Yu C, Xiao Z, Zhang Q, Chen Y, Zhao D. Gas-phase optical absorption spectra of the indene cation (C 9H 8+). Mol Phys 2022. [DOI: 10.1080/00268976.2022.2150703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Wangyou Chu
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, People's Republic of China
| | - Chunting Yu
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, People's Republic of China
| | - Zengjun Xiao
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, People's Republic of China
| | - Qiang Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, People's Republic of China
| | - Yang Chen
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, People's Republic of China
| | - Dongfeng Zhao
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, People's Republic of China
| |
Collapse
|
7
|
Ventura E, Bezerra MG, Leitão EFV, do Monte SA. Acid Enriched with Methanol: Formation of a Prebiotic Cluster in the Interstellar Medium. Chemphyschem 2022; 23:e202200403. [PMID: 35962978 DOI: 10.1002/cphc.202200403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/12/2022] [Indexed: 11/12/2022]
Abstract
Organic molecules are a potential source of prebiotic chemistry in the interstellar medium (ISM). Methanol (MetOH) is a very important source of more complex molecules. H 3 O + (aq) and Cl - (aq) are fundamental to living organisms and can be generated in the ISM from the dissociation of HCl with just four water molecules, yielding the (H 3 O) + (H 2 O) 3 Cl - ion-pair. Here, a detailed mechanism, based on density functional theory (DFT) and ab-initio (2 nd order Mfller-Plesset perturbation theory, MP2) calculations, is suggested for the substitution reactions of these water molecules by MetOH. The time required for formation of an appreciable amount of the product ((H 3 O) + (MetOH) 3 Cl - ) can be only few years. Such reaction can take place in Sagittarius B2, where HCl, H 2 O and MetOH have already been identified and it can be an important source for the formation of more complex prebiotic structures.
Collapse
Affiliation(s)
- Elizete Ventura
- Universidade Federal da Paraiba, Departamento de Química, Centro de Ciências Exatas e da Natureza, 58-059-900, Joao Pessoa, BRAZIL
| | - Mariana Guedes Bezerra
- Universidade Federal da Paraiba, Departamento de Química, Centro de Ciências Exatas e da Natureza - Campus I, 58-059-900, Joao Pessoa, BRAZIL
| | - Ezequiel Fragoso Vieira Leitão
- Universidade Federal de Campina Grande, Unidade Acadêmica de Ciências Exatas e da Natureza, 58900-000, Cajazeiras, BRAZIL
| | - Silmar Andrade do Monte
- Universidade Federal da Paraiba, Quimica, Departamento de Quimica, CCEN,, Cidade Universitaria - Campus I, 58059-900, Joao Pessoa, BRAZIL
| |
Collapse
|
8
|
Thripati S. Computational studies on the possible formation of glycine via open shell gas-phase chemistry in the interstellar medium. Org Biomol Chem 2022; 20:4189-4203. [PMID: 35543204 DOI: 10.1039/d2ob00407k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Glycine is the simplest proteinogenic amino acid. It has significant astrobiological implications owing to the ongoing investigation for its detection in the interstellar medium (ISM). Hence, a suitable mechanistic elucidation for its formation in the ISM is of current research interest. In the present work, by employing electronic structure calculations [UCCSD(T) and density functional theory (DFT)], various plausible chemical pathways in the gas phase have been examined for the formation of glycine (whose existence has been indirectly proposed in the ISM) and other simple amino acids (yet to be detected in the ISM) from some simpler molecules present in the ISM. This work suggests that step 1: HO-CO (radical) + CH2NH → NHCH2COOH (radical) and step 2a: NHCH2COOH (radical) + H2 → glycine + H (radical) have very small barriers of 0.14 kcal mol-1 and ∼3 kcal mol-1, respectively (easily surmountable at a temperature of ∼50 K under putative interstellar conditions). Hence this should likely be feasible in interstellar gas-phase chemistry. Therefore, HO-CO (radical), CH2NH, and H2 could be the possible precursors for the formation of glycine (subject to the presence of the HO-CO radical). The energetic information related to the interstellar reactions, and how this work takes the putative interstellar conditions into account are presented. This paper also highlights how a reaction found to be unsuitable for interstellar molecular evolution via surface chemistry could nonetheless occur via gas-phase chemistry. Based on our results, this work also recommends detecting three new open-shell molecules, HO-CO radical, NHCH2COOH radical, and NH2CHCOOH radical, in the ISM.
Collapse
Affiliation(s)
- Sorakayala Thripati
- Department of Chemistry, Indian Institute of Science Education and Research Tirupati, Andhra Pradesh - 517507, India.
| |
Collapse
|
9
|
Rimola A, Balucani N, Ceccarelli C, Ugliengo P. Tracing the Primordial Chemical Life of Glycine: A Review from Quantum Chemical Simulations. Int J Mol Sci 2022; 23:4252. [PMID: 35457069 PMCID: PMC9030215 DOI: 10.3390/ijms23084252] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/08/2022] [Accepted: 04/09/2022] [Indexed: 12/28/2022] Open
Abstract
Glycine (Gly), NH2CH2COOH, is the simplest amino acid. Although it has not been directly detected in the interstellar gas-phase medium, it has been identified in comets and meteorites, and its synthesis in these environments has been simulated in terrestrial laboratory experiments. Likewise, condensation of Gly to form peptides in scenarios resembling those present in a primordial Earth has been demonstrated experimentally. Thus, Gly is a paradigmatic system for biomolecular building blocks to investigate how they can be synthesized in astrophysical environments, transported and delivered by fragments of asteroids (meteorites, once they land on Earth) and comets (interplanetary dust particles that land on Earth) to the primitive Earth, and there react to form biopolymers as a step towards the emergence of life. Quantum chemical investigations addressing these Gly-related events have been performed, providing fundamental atomic-scale information and quantitative energetic data. However, they are spread in the literature and difficult to harmonize in a consistent way due to different computational chemistry methodologies and model systems. This review aims to collect the work done so far to characterize, at a quantum mechanical level, the chemical life of Gly, i.e., from its synthesis in the interstellar medium up to its polymerization on Earth.
Collapse
Affiliation(s)
- Albert Rimola
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Catalonia, Spain
| | - Nadia Balucani
- Dipartimento di Chimica, Biologia e Biotecnologie, Università di Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy;
- Osservatorio Astrosico di Arcetri, Largo E. Fermi 5, 50125 Firenze, Italy
| | - Cecilia Ceccarelli
- CNRS, Institut de Planétologie et d’Astrophysique de Grenoble (IPAG), Université Grenoble Alpes, 38000 Grenoble, France;
| | - Piero Ugliengo
- Dipartimento di Chimica and Nanostructured Interfaces and Surfaces (NIS) Centre, Università degli Studi di Torino, Via P. Giuria 7, 10125 Torino, Italy;
| |
Collapse
|
10
|
Serra-Peralta M, Domínguez-Dalmases C, Rimola A. Water formation on interstellar silicates: the role of Fe 2+/H 2 interactions in the O + H 2 → H 2O reaction. Phys Chem Chem Phys 2022; 24:28381-28393. [DOI: 10.1039/d2cp04051d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Water formation by reaction of H2 and O on silicate surfaces as a first step towards the generation of interstellar ice mantles is possible thanks to the activation of H2 inferred by Fe2+ ions and quantum tunnelling effects.
Collapse
Affiliation(s)
- Marc Serra-Peralta
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Bellaterra, Catalonia, Spain
| | | | - Albert Rimola
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Bellaterra, Catalonia, Spain
| |
Collapse
|
11
|
Kolesniková L, León I, Alonso ER, Mata S, Alonso JL. An Innovative Approach for the Generation of Species of the Interstellar Medium. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202110325] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Lucie Kolesniková
- Department of Analytical Chemistry University of Chemistry and Technology Technická 5 16628 Prague 6 Czech Republic
| | - Iker León
- Grupo de Espectroscopia Molecular (GEM) Edificio Quifima Área de Química-Física Laboratorios de Espectroscopia y, Bioespectroscopia Parque Científico UVa Unidad Asociada CSIC Universidad de Valladolid 47011 Valladolid Spain
| | - Elena R. Alonso
- Instituto Biofisika (UPV/EHU, CSIC) University of the Basque Country 48940 Leioa Spain
- Departamento de Química Física Facultad de Ciencia y Tecnología Universidad del País Vasco Barrio Sarriena s/n 48940 Leioa Spain
| | - Santiago Mata
- Grupo de Espectroscopia Molecular (GEM) Edificio Quifima Área de Química-Física Laboratorios de Espectroscopia y, Bioespectroscopia Parque Científico UVa Unidad Asociada CSIC Universidad de Valladolid 47011 Valladolid Spain
| | - Jose Luis Alonso
- Grupo de Espectroscopia Molecular (GEM) Edificio Quifima Área de Química-Física Laboratorios de Espectroscopia y, Bioespectroscopia Parque Científico UVa Unidad Asociada CSIC Universidad de Valladolid 47011 Valladolid Spain
| |
Collapse
|
12
|
Kolesniková L, León I, Alonso ER, Mata S, Alonso JL. An Innovative Approach for the Generation of Species of the Interstellar Medium. Angew Chem Int Ed Engl 2021; 60:24461-24466. [PMID: 34496111 PMCID: PMC8597129 DOI: 10.1002/anie.202110325] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/02/2021] [Indexed: 11/16/2022]
Abstract
The large amount of unstable species in the realm of interstellar chemistry drives an urgent need to develop efficient methods for the in situ generations of molecules that enable their spectroscopic characterizations. Such laboratory experiments are fundamental to decode the molecular universe by matching the interstellar and terrestrial spectra. We propose an approach based on laser ablation of nonvolatile solid organic precursors. The generated chemical species are cooled in a supersonic expansion and probed by high‐resolution microwave spectroscopy. We present a proof of concept through a simultaneous formation of interstellar compounds and the first generation of aminocyanoacetylene using diaminomaleonitrile as a prototypical precursor. With this micro‐laboratory, we open the door to generation of unsuspected species using precursors not typically accessible to traditional techniques such as electric discharge and pyrolysis.
Collapse
Affiliation(s)
- Lucie Kolesniková
- Department of Analytical Chemistry, University of Chemistry and Technology, Technická 5, 16628, Prague 6, Czech Republic
| | - Iker León
- Grupo de Espectroscopia Molecular (GEM), Edificio Quifima, Área de Química-Física, Laboratorios de Espectroscopia y, Bioespectroscopia, Parque Científico UVa, Unidad Asociada CSIC, Universidad de Valladolid, 47011, Valladolid, Spain
| | - Elena R Alonso
- Instituto Biofisika (UPV/EHU, CSIC), University of the Basque Country, 48940, Leioa, Spain.,Departamento de Química Física, Facultad de Ciencia y Tecnología, Universidad del País Vasco, Barrio Sarriena s/n, 48940, Leioa, Spain
| | - Santiago Mata
- Grupo de Espectroscopia Molecular (GEM), Edificio Quifima, Área de Química-Física, Laboratorios de Espectroscopia y, Bioespectroscopia, Parque Científico UVa, Unidad Asociada CSIC, Universidad de Valladolid, 47011, Valladolid, Spain
| | - Jose Luis Alonso
- Grupo de Espectroscopia Molecular (GEM), Edificio Quifima, Área de Química-Física, Laboratorios de Espectroscopia y, Bioespectroscopia, Parque Científico UVa, Unidad Asociada CSIC, Universidad de Valladolid, 47011, Valladolid, Spain
| |
Collapse
|
13
|
Barreiro-Lage D, Bolognesi P, Chiarinelli J, Richter R, Zettergren H, Stockett MH, Carlini L, Diaz-Tendero S, Avaldi L. "Smart Decomposition" of Cyclic Alanine-Alanine Dipeptide by VUV Radiation: A Seed for the Synthesis of Biologically Relevant Species. J Phys Chem Lett 2021; 12:7379-7386. [PMID: 34324354 DOI: 10.1021/acs.jpclett.1c01788] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A combined experimental and theoretical study shows how the interaction of VUV radiation with cyclo-(alanine-alanine), one of the 2,5-diketopiperazines (DKPs), produces reactive oxazolidinone intermediates. The theoretical simulations reveal that the interaction of these intermediates with other neutral and charged fragments, released in the molecular decomposition, leads either to the reconstruction of the cyclic dipeptide or to the formation of longer linear peptide chains. These results may explain how DKPs could have, on one hand, survived hostile chemical environments and, on the other, provided the seed for amino acid polymerization. Shedding light on the mechanisms of production of such prebiotic building blocks is of paramount importance to understanding the abiotic synthesis of relevant biologically active compounds.
Collapse
Affiliation(s)
- Darío Barreiro-Lage
- Departamento de Química, Módulo 13, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Paola Bolognesi
- Institute of Structure of Matter-CNR (ISM-CNR), Area della Ricerca di Roma 1, Via Salaria km 29.300, 00015 Monterotondo, Italy
| | - Jacopo Chiarinelli
- Institute of Structure of Matter-CNR (ISM-CNR), Area della Ricerca di Roma 1, Via Salaria km 29.300, 00015 Monterotondo, Italy
| | - Robert Richter
- Elettra Sincrotrone Trieste, 34149 Basovizza, Trieste, Italy
| | | | - Mark H Stockett
- Department of Physics, Stockholm University, Se-10691 Stockholm, Sweden
| | - Laura Carlini
- Institute of Structure of Matter-CNR (ISM-CNR), Area della Ricerca di Roma 1, Via Salaria km 29.300, 00015 Monterotondo, Italy
| | - Sergio Diaz-Tendero
- Departamento de Química, Módulo 13, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Institute for Advanced Research in Chemical Science (IAdChem), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Lorenzo Avaldi
- Institute of Structure of Matter-CNR (ISM-CNR), Area della Ricerca di Roma 1, Via Salaria km 29.300, 00015 Monterotondo, Italy
| |
Collapse
|
14
|
Rani N. Rotational and Vibrational Signatures of Astrophyscially relevant Gas-Phase Stereo-isomeric Species of Proteinogenic Amino acid Leucine. LIFE SCIENCES IN SPACE RESEARCH 2021; 30:29-38. [PMID: 34281662 DOI: 10.1016/j.lssr.2021.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 05/16/2021] [Accepted: 05/17/2021] [Indexed: 06/13/2023]
Abstract
The search for life-supporting molecules in outer space is an ever-growing endeavour. Towards this, the computational chemistry supporting the astronomical spectroscopic observations is becoming a valuable tool to unravel the complex chemical network in interstellar medium (ISM). In the present work, quantum-mechanical computations, accounting for anharmonic effects, are performed to obtain the rotational and vibrational line-data for the gas-phase conformers of proteinogenic amino acid Leucine and its isomeric species predicted to be involved in its stereoinversion under the extreme environment of ISM. These species exhibit diverse chemistry including branched skeleton and zwitterionic ammonium ylides. A few of the species have significantly high dipole moment, which can act as tracer for the conformers of Leucine having low dipole moment. Besides this, the species, which are terrestrially less stable, can be of significant importance to the astronomers. Notably, the spectral database generated in this work can assist in the detection of proteinogenic Leucine and its isomeric species in different regions of ISM.
Collapse
Affiliation(s)
- Namrata Rani
- Quantum Chemistry Group, Department of Chemistry & Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh-160014, India
| |
Collapse
|
15
|
Potapov A, McCoustra M. Physics and chemistry on the surface of cosmic dust grains: a laboratory view. INT REV PHYS CHEM 2021. [DOI: 10.1080/0144235x.2021.1918498] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Alexey Potapov
- Laboratory Astrophysics Group of the Max Planck Institute for Astronomy at the Friedrich Schiller University Jena, Jena, Germany
| | - Martin McCoustra
- Institute of Chemical Sciences, Heriot-Watt University, Edinburgh, UK
| |
Collapse
|
16
|
Thripati S, Ramabhadran RO. Pathways for the Formation of Formamide, a Prebiotic Biomonomer: Metal-Ions in Interstellar Gas-Phase Chemistry. J Phys Chem A 2021; 125:3457-3472. [PMID: 33861935 DOI: 10.1021/acs.jpca.1c02132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The chemistry occurring in the interstellar medium (ISM) is an active area of contemporary research. New aspects of interstellar chemistry are getting unraveled regularly. In this context, the role of metal-ions in the chemistry occurring in the ISM is not well-studied so far. Herein, we highlight the role of metal-ions in interstellar chemistry. For this purpose, we choose the problem of gas-phase formamide formation in interstellar molecular clouds. Formamide is a key biomonomer and contains the simplest peptide [-(C═O)-NH-] linkage. With its two electronegative atoms ("O" and "N"), it provides an excellent platform to probe the role of the metal-ions. The metal-ions chosen are Na+, K+, Al+, Mg+, and Mg2+-all of them present in the ISM. The metal-ions are studied in three different forms as bare positively charged ions, as hydrated metal-ions co-ordinated with a molecule of water, and when the metal-ions are part of a neutral covalent molecule. With the aid of electronic structure calculations [CCSD(T) and DFT methods], we study different gas-phase pathways which result in the generation of interstellar formamide. Throughout our study, we find that metal-ions lower the barriers (with Mg+, Mg++, and Al+ offering maximal stabilization of the transition states) and facilitate the reactions. The chemical factors influencing the reactions, how we consider the putative conditions in the ISM, the astrochemical implications of this study, and its connection with terrestrial prebiotic chemistry and refractory astrochemistry are subsequently presented. Based on our results, we also recommend the detection of two new closed-shell molecules, NH2CH2OH (aminomethanol) and CH2NH2+ (iminium ion), and two open-shell molecules, CONH2 (carbamyl radical) and HCONH (an isomer of carbamyl radical), in the ISM.
Collapse
Affiliation(s)
- Sorakayala Thripati
- Department of Chemistry, Indian Institute of Science Education and Research, Tirupati Andhra Pradesh 517507, India.,Center for Atomic, Molecular, and Optical Sciences and Technologies (CAMOST), Tirupati, Andhra Pradesh 517507, India
| | - Raghunath O Ramabhadran
- Department of Chemistry, Indian Institute of Science Education and Research, Tirupati Andhra Pradesh 517507, India.,Center for Atomic, Molecular, and Optical Sciences and Technologies (CAMOST), Tirupati, Andhra Pradesh 517507, India
| |
Collapse
|
17
|
Fioroni M, DeYonker NJ. Complex Organic Matter Synthesis on Siloxyl Radicals in the Presence of CO. Front Chem 2021; 8:621898. [PMID: 33598449 PMCID: PMC7882687 DOI: 10.3389/fchem.2020.621898] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 12/15/2020] [Indexed: 12/23/2022] Open
Abstract
Heterogeneous phase astrochemistry plays an important role in the synthesis of complex organic matter (COM) as found on comets and rocky body surfaces like asteroids, planetoids, moons and planets. The proposed catalytic model is based on two assumptions: (a) siliceous rocks in both crystalline or amorphous states show surface-exposed defective centers such as siloxyl (Si-O•) radicals; (b) the second phase is represented by gas phase CO molecules, an abundant C1 building block found in space. By means of quantum chemistry; (DFT, PW6B95/def2-TZVPP); the surface of a siliceous rock in presence of CO is modeled by a simple POSS (polyhedral silsesquioxane) where a siloxyl (Si-O•) radical is present. Four CO molecules have been consecutively added to the Si-O• radical and to the nascent polymeric CO (pCO) chain. The first CO insertion shows no activation free energy with ΔG200K = −21.7 kcal/mol forming the SiO-CO• radical. The second and third CO insertions show ΔG200K‡ ≤ 10.5 kcal/mol. Ring closure of the SiO-CO-CO• (oxalic anhydride) moiety as well as of the SiO-CO-CO-CO• system (di-cheto form of oxetane) are thermodynamically disfavored. The last CO insertion shows no free energy of activation resulting in the stable five member pCO ring, precursor to 1,4-epoxy-1,2,3-butanone. Hydrogenation reactions of the pCO have been considered on the SiO oxygen or on the carbons and oxygens of the pCO chains. The formation of the reactive aldehyde SiO-CHO on the siliceous surface is possible. In principle, the complete hydrogenation of the (CO)1−4 series results in the formation of methanol and polyols. Furthermore, all the SiO-pCO intermediates and the lactone 1,4-epoxy-1,2,3-butanone product in its radical form can be important building blocks in further polymerization reactions and/or open ring reactions with H (aldehydes, polyols) or CN (chetonitriles), resulting in highly reactive multi-functional compounds contributing to COM synthesis.
Collapse
Affiliation(s)
- Marco Fioroni
- Department of Chemistry, The University of Memphis, Memphis, TN, United States
| | - Nathan J DeYonker
- Department of Chemistry, The University of Memphis, Memphis, TN, United States
| |
Collapse
|
18
|
Gurusinghe RM, Dias N, Broderick BM. Buffer gas cooling for sensitive rotational spectroscopy of ice chemistry: A proposal. Chem Phys Lett 2021. [DOI: 10.1016/j.cplett.2020.138125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
19
|
Computational Surface Modelling of Ices and Minerals of Interstellar Interest—Insights and Perspectives. MINERALS 2020. [DOI: 10.3390/min11010026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The universe is molecularly rich, comprising from the simplest molecule (H2) to complex organic molecules (e.g., CH3CHO and NH2CHO), some of which of biological relevance (e.g., amino acids). This chemical richness is intimately linked to the different physical phases forming Solar-like planetary systems, in which at each phase, molecules of increasing complexity form. Interestingly, synthesis of some of these compounds only takes place in the presence of interstellar (IS) grains, i.e., solid-state sub-micron sized particles consisting of naked dust of silicates or carbonaceous materials that can be covered by water-dominated ice mantles. Surfaces of IS grains exhibit particular characteristics that allow the occurrence of pivotal chemical reactions, such as the presence of binding/catalytic sites and the capability to dissipate energy excesses through the grain phonons. The present know-how on the physicochemical features of IS grains has been obtained by the fruitful synergy of astronomical observational with astrochemical modelling and laboratory experiments. However, current limitations of these disciplines prevent us from having a full understanding of the IS grain surface chemistry as they cannot provide fundamental atomic-scale of grain surface elementary steps (i.e., adsorption, diffusion, reaction and desorption). This essential information can be obtained by means of simulations based on computational chemistry methods. One capability of these simulations deals with the construction of atom-based structural models mimicking the surfaces of IS grains, the very first step to investigate on the grain surface chemistry. This perspective aims to present the current state-of-the-art methods, techniques and strategies available in computational chemistry to model (i.e., construct and simulate) surfaces present in IS grains. Although we focus on water ice mantles and olivinic silicates as IS test case materials to exemplify the modelling procedures, a final discussion on the applicability of these approaches to simulate surfaces of other cosmic grain materials (e.g., cometary and meteoritic) is given.
Collapse
|
20
|
Amicangelo JC, Lee YP. Hydrogenation of pyrrole: Infrared spectra of the 2,3-dihydropyrrol-2-yl and 2,3-dihydropyrrol-3-yl radicals isolated in solid para-hydrogen. J Chem Phys 2020; 153:164302. [DOI: 10.1063/5.0024495] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Jay C. Amicangelo
- School of Science, Penn State Erie, The Behrend College, 4205 College Drive, Erie, Pennsylvania 16563, USA
| | - Yuan-Pern Lee
- Department of Applied Chemistry and Institute of Molecular Science, National Chiao Tung University, Hsinchu 300093, Taiwan
- Center for Emergent Functional Matter Science, National Chiao Tung University, Hsinchu 300093, Taiwan
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106319, Taiwan
| |
Collapse
|
21
|
Mohandas S, Ramabhadran RO, Kumar SS. Theoretical Investigation of a Vital Step in the Gas-Phase Formation of Interstellar Ammonia NH 2+ + H 2 → NH 3+ + H. J Phys Chem A 2020; 124:8373-8382. [PMID: 32870677 DOI: 10.1021/acs.jpca.0c05019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A crucial step in the gas-phase formation of ammonia in the interstellar medium (ISM) is the reaction of NH2+ with molecular hydrogen. Understanding the electronic structure of the participating species in this reaction and the evaluation of the rate coefficients at interstellar temperatures are, therefore, critical to gain new insights into the mechanisms of formation of interstellar ammonia. We present here the first theoretical results of the rate coefficients of this reaction as a function of temperatures relevant to the ISM, computed using transition-state theory. The results are in reasonable agreement with recent experimental data. This exothermic reaction features a tiny barrier which is primarily a consequence of zero-point energy corrections. The results demonstrate that quantum mechanical tunneling and core-electron correlations play significant roles in determining the rate of the reaction. The noteworthy failure of popular density functionals to describe this reaction is also highlighted.
Collapse
Affiliation(s)
- Salvi Mohandas
- Department of Physics, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517507 Andhra Pradesh, India.,Center for Atomic, Molecular, and Optical Sciences & Technologies, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517507 Andhra Pradesh, India
| | - Raghunath O Ramabhadran
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517507 Andhra Pradesh, India.,Center for Atomic, Molecular, and Optical Sciences & Technologies, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517507 Andhra Pradesh, India
| | - S Sunil Kumar
- Department of Physics, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517507 Andhra Pradesh, India.,Center for Atomic, Molecular, and Optical Sciences & Technologies, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517507 Andhra Pradesh, India
| |
Collapse
|
22
|
Rani N, Vikas. Extra‐Terrestrial Gas‐Phase Stereoinversion in Amino Acid Leucine: Thermal and Photochemical Channels. Chemphyschem 2020. [DOI: 10.1002/cphc.202000230] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Namrata Rani
- Quantum Chemistry Group, Department of Chemistry & Centre of Advanced Studies in ChemistryPanjab University Chandigarh 160014 India
| | - Vikas
- Quantum Chemistry Group, Department of Chemistry & Centre of Advanced Studies in ChemistryPanjab University Chandigarh 160014 India
| |
Collapse
|
23
|
Couto RC, Kjellsson L, Ågren H, Carravetta V, Sorensen SL, Kubin M, Bülow C, Timm M, Zamudio-Bayer V, von Issendorff B, Lau JT, Söderström J, Rubensson JE, Lindblad R. The carbon and oxygen K-edge NEXAFS spectra of CO+. Phys Chem Chem Phys 2020; 22:16215-16223. [DOI: 10.1039/d0cp02207a] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We present and analyze high resolution near edge X-ray absorption fine structure (NEXAFS) spectra of CO+ at the carbon and oxygen K-edges.
Collapse
|
24
|
Puzzarini C, Barone V. The challenging playground of astrochemistry: an integrated rotational spectroscopy - quantum chemistry strategy. Phys Chem Chem Phys 2020; 22:6507-6523. [PMID: 32163090 DOI: 10.1039/d0cp00561d] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
While it is now well demonstrated that the interstellar medium (ISM) is characterized by a diverse and complex chemistry, a significant number of features in radioastronomical spectra are still unassigned and call for new laboratory efforts, which are increasingly based on integrated experimental and computational strategies. In parallel, the identification of an increasing number of molecules containing more than five atoms and at least one carbon atom (the so-called "interstellar" complex organic molecules), which can play a relevant role in the chemistry of life, raises the additional issue of how these species can be produced in the typical harsh conditions of the ISM. On these grounds, this perspective aims to present an integrated rotational spectroscopy - quantum chemistry approach for supporting radioastronomical observations and a computational strategy for contributing to the elucidation of chemical reactivity in the interstellar space.
Collapse
Affiliation(s)
- Cristina Puzzarini
- Dipartimento di Chimica "Giacomo Ciamician", University of Bologna, via F. Selmi 2, I-40126 Bologna, Italy.
| | - Vincenzo Barone
- Scuola Normale Superiore, Piazza dei Cavalieri 7, Pisa, I-56126, Italy
| |
Collapse
|
25
|
Rimola A, Sodupe M, Ugliengo P. Role of Mineral Surfaces in Prebiotic Chemical Evolution. In Silico Quantum Mechanical Studies. Life (Basel) 2019; 9:E10. [PMID: 30658501 PMCID: PMC6463156 DOI: 10.3390/life9010010] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 01/10/2019] [Accepted: 01/12/2019] [Indexed: 01/07/2023] Open
Abstract
There is a consensus that the interaction of organic molecules with the surfaces of naturally-occurring minerals might have played a crucial role in chemical evolution and complexification in a prebiotic era. The hurdle of an overly diluted primordial soup occurring in the free ocean may have been overcome by the adsorption and concentration of relevant molecules on the surface of abundant minerals at the sea shore. Specific organic⁻mineral interactions could, at the same time, organize adsorbed molecules in well-defined orientations and activate them toward chemical reactions, bringing to an increase in chemical complexity. As experimental approaches cannot easily provide details at atomic resolution, the role of in silico computer simulations may fill that gap by providing structures and reactive energy profiles at the organic⁻mineral interface regions. Accordingly, numerous computational studies devoted to prebiotic chemical evolution induced by organic⁻mineral interactions have been proposed. The present article aims at reviewing recent in silico works, mainly focusing on prebiotic processes occurring on the mineral surfaces of clays, iron sulfides, titanium dioxide, and silica and silicates simulated through quantum mechanical methods based on the density functional theory (DFT). The DFT is the most accurate way in which chemists may address the behavior of the molecular world through large models mimicking chemical complexity. A perspective on possible future scenarios of research using in silico techniques is finally proposed.
Collapse
Affiliation(s)
- Albert Rimola
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.
| | - Mariona Sodupe
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.
| | - Piero Ugliengo
- Dipartimento di Chimica and Nanostructured Interfaces and Surfaces (NIS), Università degli Studi di Torino, Via P. Giuria 7, 10125 Torino, Italy.
| |
Collapse
|
26
|
Hua Z, Feng S, Zhou Z, Liang H, Chen Y, Zhao D. A cryogenic cylindrical ion trap velocity map imaging spectrometer. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2019; 90:013101. [PMID: 30709209 DOI: 10.1063/1.5079264] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 12/15/2018] [Indexed: 06/09/2023]
Abstract
A cryogenic cylindrical ion trap velocity map imaging spectrometer has been developed to study photodissociation spectroscopy and dynamics of gaseous molecular ions and ionic complexes. A cylindrical ion trap made of oxygen-free copper is cryogenically cooled down to ∼7 K by using a closed cycle helium refrigerator and is coupled to a velocity map imaging (VMI) spectrometer. The cold trap is used to cool down the internal temperature of mass selected ions and to reduce the velocity spread of ions after extraction from the trap. For CO2 + ions, a rotational temperature of ∼12 K is estimated from the recorded [1 + 1] two-photon dissociation spectrum, and populations in spin-orbit excited X2Πg,1/2 and vibrationally excited states of CO2 + are found to be non-detectable, indicating an efficient internal cooling of the trapped ions. Based on the time-of-flight peak profile and the image of N3 +, the velocity spread of the ions extracted from the trap, both radially and axially, is interpreted as approximately ±25 m/s. An experimental image of fragmented Ar+ from 307 nm photodissociation of Ar2 + shows that, benefitting from the well-confined velocity spread of the cold Ar2 + ions, a VMI resolution of Δv/v ∼ 2.2% has been obtained. The current instrument resolution is mainly limited by the residual radial speed spread of the parent ions after extraction from the trap.
Collapse
Affiliation(s)
- Zefeng Hua
- CAS Center for Excellence in Quantum Information and Quantum Physics, Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Shaowen Feng
- CAS Center for Excellence in Quantum Information and Quantum Physics, Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Zhengfang Zhou
- CAS Center for Excellence in Quantum Information and Quantum Physics, Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Hao Liang
- CAS Center for Excellence in Quantum Information and Quantum Physics, Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Yang Chen
- CAS Center for Excellence in Quantum Information and Quantum Physics, Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Dongfeng Zhao
- CAS Center for Excellence in Quantum Information and Quantum Physics, Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| |
Collapse
|
27
|
Amicangelo JC, Lee YP. Infrared spectra of the 1,1-dimethylallyl and 1,2-dimethylallyl radicals isolated in solidpara-hydrogen. J Chem Phys 2018; 149:204304. [DOI: 10.1063/1.5054653] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Jay C. Amicangelo
- School of Science, Penn State Erie, The Behrend College, 4205 College Drive, Erie, Pennsylvania 16563, USA
| | - Yuan-Pern Lee
- Department of Applied Chemistry and Institute of Molecular Science, National Chiao Tung University, Hsinchu 30010, Taiwan
- Center for Emergent Functional Matter Science, National Chiao Tung University, Hsinchu 30010, Taiwan
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
| |
Collapse
|
28
|
Kaur R, Rani N, Vikas. Gas-Phase Stereoinversion in Aspartic Acid: Reaction Pathways, Computational Spectroscopic Analysis, and Its Astrophysical Relevance. ACS OMEGA 2018; 3:14431-14447. [PMID: 31458129 PMCID: PMC6645146 DOI: 10.1021/acsomega.8b01721] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 10/15/2018] [Indexed: 05/16/2023]
Abstract
Noncatalytic reaction pathways for the gas-phase stereoinversion in aspartic acid are mapped employing a global reaction route mapping strategy using quantum mechanical computations. The species including the transition states (TSs) traced along the stereoinversion pathways are characterized using rotational and vibrational computational spectroscopic analysis while accounting for the vibrational corrections to rotational constants and anharmonic effects. Notably, the TS structures traced along the stereochemical pathways resemble the achiral ammonium ylide and imine intermediates as observed in the Strecker synthesis of chiral amino acids. A few of the probable stereoinversion pathways proposed proceed through the proton or hydrogen atom transfer. The feasibility of the pathways under conditions akin to interstellar medium (ISM) is further discussed in terms of natural bond orbital analysis. The stereoinversion pathways proposed in this work may proceed via photoirradiation in the ISM, which though can be revealed by exploring the excited-state potential energy surface. In this context, the spectroscopic data generated in this work can provide valuable assistance toward the astrophysical detection of chiral molecules in outer space.
Collapse
Affiliation(s)
- Ramanpreet Kaur
- Quantum Chemistry Group, Department
of Chemistry & Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Namrata Rani
- Quantum Chemistry Group, Department
of Chemistry & Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Vikas
- Quantum Chemistry Group, Department
of Chemistry & Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| |
Collapse
|
29
|
Abstract
AbstractThis paper provides a brief overview of the journey of molecules through the Cosmos, from local diffuse interstellar clouds and PDRs to distant galaxies, and from cold dark clouds to hot star-forming cores, protoplanetary disks, planetesimals and exoplanets. Recent developments in each area are sketched and the importance of connecting astronomy with chemistry and other disciplines is emphasized. Fourteen challenges for the field of Astrochemistry in the coming decades are formulated.
Collapse
|
30
|
Augé B, Been T, Boduch P, Chabot M, Dartois E, Madi T, Ramillon JM, Ropars F, Rothard H, Voivenel P. IGLIAS: A new experimental set-up for low temperature irradiation studies at large irradiation facilities. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2018; 89:075105. [PMID: 30068093 DOI: 10.1063/1.5028056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We designed and built a mobile experimental set-up for studying the interaction of ion beams with solid samples in a wide temperature range from 9 to 300 K. It is either possible to mount up to three samples prepared ex situ or to prepare samples by condensation of molecules from gases or vapours onto IR or Visible-ultraviolet (Vis-UV) transparent windows. The physico-chemical evolution during irradiation can be followed in situ with different analysis techniques including Fourier transform infrared spectroscopy, Vis-UV, and quadrupole mass spectrometry.
Collapse
Affiliation(s)
- B Augé
- Centre de Recherche sur les Ions, les Matériaux et la Photonique, UMR 6252, CEA/CNRS/ENSICAEN/Normandie Université, Caen, France
| | - T Been
- Centre de Recherche sur les Ions, les Matériaux et la Photonique, UMR 6252, CEA/CNRS/ENSICAEN/Normandie Université, Caen, France
| | - P Boduch
- Centre de Recherche sur les Ions, les Matériaux et la Photonique, UMR 6252, CEA/CNRS/ENSICAEN/Normandie Université, Caen, France
| | - M Chabot
- Institut de Physique Nucléaire Orsay, UMR 8608, CNRS/IN2P3, Orsay, France
| | - E Dartois
- Institut des Sciences Moléculaire d'Orsay, UMR 8214, CNRS/Université Paris-Saclay, Orsay, France
| | - T Madi
- Centre de Recherche sur les Ions, les Matériaux et la Photonique, UMR 6252, CEA/CNRS/ENSICAEN/Normandie Université, Caen, France
| | - J M Ramillon
- Centre de Recherche sur les Ions, les Matériaux et la Photonique, UMR 6252, CEA/CNRS/ENSICAEN/Normandie Université, Caen, France
| | - F Ropars
- Centre de Recherche sur les Ions, les Matériaux et la Photonique, UMR 6252, CEA/CNRS/ENSICAEN/Normandie Université, Caen, France
| | - H Rothard
- Centre de Recherche sur les Ions, les Matériaux et la Photonique, UMR 6252, CEA/CNRS/ENSICAEN/Normandie Université, Caen, France
| | - P Voivenel
- Centre de Recherche sur les Ions, les Matériaux et la Photonique, UMR 6252, CEA/CNRS/ENSICAEN/Normandie Université, Caen, France
| |
Collapse
|
31
|
Peláez RJ, Maté B, Tanarro I, Molpeceres G, Jiménez-Redondo M, Timón V, Escribano R, Herrero VJ. Plasma generation and processing of interstellar carbonaceous dust analogs. PLASMA SOURCES SCIENCE & TECHNOLOGY 2018; 27:035007. [PMID: 29983483 PMCID: PMC6031293 DOI: 10.1088/1361-6595/aab185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Interstellar (IS) dust analogs, based on amorphous hydrogenated carbon (a-C:H) were generated by plasma deposition in RF discharges of CH4 + He mixtures. The a-C:H samples were characterized by means of secondary electron microscopy (SEM), infrared (IR) spectroscopy and UV-visible reflectivity. DFT calculations of structure and IR spectra were also carried out. From the experimental data, atomic compositions were estimated. Both IR and reflectivity measurements led to similar high proportions (≈ 50%) of H atoms, but there was a significant discrepancy in the sp2/sp3 hybridization ratios of C atoms (sp2/sp3 = 1.5 from IR and 0.25 from reflectivity). Energetic processing of the samples with 5 keV electrons led to a decay of IR aliphatic bands and to a growth of aromatic bands, which is consistent with a dehydrogenation and graphitization of the samples. The decay of the CH aliphatic stretching band at 3.4 µm upon electron irradiation is relatively slow. Estimates based on the absorbed energy and on models of cosmic ray (CR) flux indicate that CR bombardment is not enough to justify the observed disappearance of this band in dense IS clouds.
Collapse
Affiliation(s)
- R. J. Peláez
- Instituto de Estructura de la Materia (IEM-CSIC), Serrano 121-123, 28006, Madrid, Spain
| | - B. Maté
- Instituto de Estructura de la Materia (IEM-CSIC), Serrano 121-123, 28006, Madrid, Spain
| | - I. Tanarro
- Instituto de Estructura de la Materia (IEM-CSIC), Serrano 121-123, 28006, Madrid, Spain
| | - G. Molpeceres
- Instituto de Estructura de la Materia (IEM-CSIC), Serrano 121-123, 28006, Madrid, Spain
| | - M. Jiménez-Redondo
- Centro de Física da Universidade do Minho, Universidade do Minho, 4710-057, Braga, Portugal
| | - V. Timón
- Instituto de Estructura de la Materia (IEM-CSIC), Serrano 121-123, 28006, Madrid, Spain
| | - R. Escribano
- Instituto de Estructura de la Materia (IEM-CSIC), Serrano 121-123, 28006, Madrid, Spain
| | - V. J. Herrero
- Instituto de Estructura de la Materia (IEM-CSIC), Serrano 121-123, 28006, Madrid, Spain
| |
Collapse
|
32
|
Gavdush A, Giuliano B, Müller B, Komandin G, Palumbo M, Baratta G, Sciré C, Yurchenko S, Zaytsev K, Ivlev A, Caselli P. Terahertz time-domain spectroscopy of astrophysical ice analogs: A pilot study. EPJ WEB OF CONFERENCES 2018. [DOI: 10.1051/epjconf/201819506004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
33
|
Metal-Ion- and Hydrogen-Bond-Mediated Interstellar Prebiotic Chemistry: The First Step in the Formose Reaction. J Phys Chem A 2017; 121:8659-8674. [DOI: 10.1021/acs.jpca.7b08002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
34
|
Potapov A, Canosa A, Jiménez E, Rowe B. Chemie mit Überschall: 30 Jahre astrochemische Forschung und künftige Herausforderungen. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201611240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Alexey Potapov
- Laborastrophysikgruppe des Max-Planck-Instituts für Astronomie am Institut für Festkörperphysik; Friedrich-Schiller-Universität Jena; Helmholtzweg 3 07743 Jena Deutschland
| | - André Canosa
- Département de Physique Moléculaire; Institut de Physique de Rennes, UMR CNRS-UR1 6251, Université de Rennes 1, Campus de Beaulieu; 263 Avenue du Général Leclerc 35042 Rennes Cedex Frankreich
| | - Elena Jiménez
- Departamento de Química Física, Facultad de Ciencias y Tecnologías Químicas; Universidad de Castilla-La Mancha; Avda. Camilo José Cela, 1B 13071 Ciudad Real Spanien
| | - Bertrand Rowe
- Rowe-consulting, 22 Chemin des Moines; 22750 Saint Jacut de la Mer Frankreich
| |
Collapse
|
35
|
Observing Femtosecond Fragmentation Using Ultrafast X-ray-Induced Auger Spectra. APPLIED SCIENCES-BASEL 2017. [DOI: 10.3390/app7070681] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
36
|
Macià Escatllar A, Ugliengo P, Bromley ST. Modeling hydroxylated nanosilica: Testing the performance of ReaxFF and FFSiOH force fields. J Chem Phys 2017; 146:224704. [DOI: 10.1063/1.4985083] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
- Antoni Macià Escatllar
- Departament de Ciència de Materials i Química Física and Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, E-08028 Barcelona, Spain
| | - Piero Ugliengo
- Dipartimento di Chimica and NIS Centre, Università degli Studi di Torino, 10125 Torino, Italy
| | - Stefan T. Bromley
- Departament de Ciència de Materials i Química Física and Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, E-08028 Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), E-08010 Barcelona, Spain
| |
Collapse
|
37
|
Potapov A, Canosa A, Jiménez E, Rowe B. Uniform Supersonic Chemical Reactors: 30 Years of Astrochemical History and Future Challenges. Angew Chem Int Ed Engl 2017; 56:8618-8640. [DOI: 10.1002/anie.201611240] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 01/27/2017] [Indexed: 11/06/2022]
Affiliation(s)
- Alexey Potapov
- Laborastrophysikgruppe des Max-Planck-Instituts für Astronomie am Institut für Festkörperphysik; Friedrich-Schiller-Universität Jena; Helmholtzweg 3 07743 Jena Germany
| | - André Canosa
- Département de Physique Moléculaire; Institut de Physique de Rennes, UMR CNRS-UR1 6251, Université de Rennes 1, Campus de Beaulieu; 263 Avenue du Général Leclerc 35042 Rennes Cedex France
| | - Elena Jiménez
- Departamento de Química Física, Facultad de Ciencias y Tecnologías Químicas; Universidad de Castilla-La Mancha; Avda. Camilo José Cela, 1B 13071 Ciudad Real Spain
| | - Bertrand Rowe
- Rowe-consulting, 22 Chemin des Moines; 22750 Saint Jacut de la Mer France
| |
Collapse
|
38
|
Haupa KA, Tielens AGGM, Lee YP. Reaction of H + HONO in solid para-hydrogen: infrared spectrum of ˙ONH(OH). Phys Chem Chem Phys 2017; 19:16169-16177. [DOI: 10.1039/c7cp02621h] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hydrogenation reactions in the N/O chemical network are important for an understanding of the mechanism of formation of organic molecules in dark interstellar clouds, but many reactions remain unknown.
Collapse
Affiliation(s)
- Karolina Anna Haupa
- Department of Applied Chemistry and Institute of Molecular Science
- National Chiao Tung University
- Hsinchu 30010
- Taiwan
| | | | - Yuan-Pern Lee
- Department of Applied Chemistry and Institute of Molecular Science
- National Chiao Tung University
- Hsinchu 30010
- Taiwan
- Institute of Atomic and Molecular Sciences
| |
Collapse
|
39
|
Carrascosa E, Meyer J, Wester R. Imaging the dynamics of ion–molecule reactions. Chem Soc Rev 2017; 46:7498-7516. [DOI: 10.1039/c7cs00623c] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A range of ion–molecule reactions have been studied in the last years using the crossed-beam ion imaging technique, from charge transfer and proton transfer to nucleophilic substitution and elimination.
Collapse
Affiliation(s)
- Eduardo Carrascosa
- Institut für Ionenphysik und Angewandte Physik
- Universität Innsbruck
- 6020 Innsbruck
- Austria
| | - Jennifer Meyer
- Institut für Ionenphysik und Angewandte Physik
- Universität Innsbruck
- 6020 Innsbruck
- Austria
| | - Roland Wester
- Institut für Ionenphysik und Angewandte Physik
- Universität Innsbruck
- 6020 Innsbruck
- Austria
| |
Collapse
|
40
|
Olah GA, Mathew T, Prakash GKS. Chemical Formation of Methanol and Hydrocarbon (“Organic”) Derivatives from CO2 and H2—Carbon Sources for Subsequent Biological Cell Evolution and Life’s Origin. J Am Chem Soc 2016; 139:566-570. [DOI: 10.1021/jacs.6b10230] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- George A. Olah
- Loker Hydrocarbon Research
Institute and Department of Chemistry, University of Southern California, Los Angeles, California 90089-1661, United States
| | - Thomas Mathew
- Loker Hydrocarbon Research
Institute and Department of Chemistry, University of Southern California, Los Angeles, California 90089-1661, United States
| | - G. K. Surya Prakash
- Loker Hydrocarbon Research
Institute and Department of Chemistry, University of Southern California, Los Angeles, California 90089-1661, United States
| |
Collapse
|
41
|
Carrascosa E, Kainz MA, Stei M, Wester R. Preferential Isomer Formation Observed in H 3+ + CO by Crossed Beam Imaging. J Phys Chem Lett 2016; 7:2742-2747. [PMID: 27352138 PMCID: PMC4959027 DOI: 10.1021/acs.jpclett.6b01028] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 06/28/2016] [Indexed: 06/06/2023]
Abstract
The proton transfer reaction H3(+) + CO is one of the cornerstone chemical processes in the interstellar medium. Here, the dynamics of this reaction have been investigated using crossed beam velocity map imaging. Formyl product cations are found to be predominantly scattered into the forward direction irrespective of the collision energy. In this process, a high amount of energy is transferred to internal product excitation. By fitting a sum of two distribution functions to the measured internal energy distributions, the product isomer ratio is extracted. A small HOC(+) fraction is obtained at a collision energy of 1.8 eV, characterized by an upper limit of 24% with a confidence level of 84%. At lower collision energies, the data indicate purely HCO(+) formation. Such low values are unexpected given the previously predicted efficient formation of both HCO(+) and HOC(+) isomers for thermal conditions. This is discussed in light of the direct reaction dynamics that are observed.
Collapse
|
42
|
Olah GA, Mathew T, Prakash GKS. Relevance and Significance of Extraterrestrial Abiological Hydrocarbon Chemistry. J Am Chem Soc 2016; 138:6905-11. [PMID: 27045758 DOI: 10.1021/jacs.6b03136] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Astrophysical observations show similarity of observed abiological "organics"-i.e., hydrocarbons, their derivatives, and ions (carbocations and carbanions)-with studied terrestrial chemistry. Their formation pathways, their related extraterrestrial hydrocarbon chemistry originating from carbon and other elements after the Big Bang, their parent hydrocarbon and derivative (methane and methanol, respectively), and transportation of derived building blocks of life by meteorites or comets to planet Earth are discussed in this Perspective. Their subsequent evolution on Earth under favorable "Goldilocks" conditions led to more complex molecules and biological systems, and eventually to humans. The relevance and significance of extraterrestrial hydrocarbon chemistry to the limits of science in relation to the physical aspects of evolution on our planet Earth are also discussed.
Collapse
Affiliation(s)
- George A Olah
- Loker Hydrocarbon Research Institute and Department of Chemistry, University of Southern California , Los Angeles, California 90089-1661, United States
| | - Thomas Mathew
- Loker Hydrocarbon Research Institute and Department of Chemistry, University of Southern California , Los Angeles, California 90089-1661, United States
| | - G K Surya Prakash
- Loker Hydrocarbon Research Institute and Department of Chemistry, University of Southern California , Los Angeles, California 90089-1661, United States
| |
Collapse
|
43
|
Cole CA, Wang ZC, Snow TP, Bierbaum VM. GAS-PHASE CHEMISTRY OF THE CYANATE ION, OCN−. ACTA ACUST UNITED AC 2015. [DOI: 10.1088/0004-637x/812/1/77] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
44
|
Bossa JB, Paardekooper DM, Isokoski K, Linnartz H. Methane ice photochemistry and kinetic study using laser desorption time-of-flight mass spectrometry at 20 K. Phys Chem Chem Phys 2015; 17:17346-54. [DOI: 10.1039/c5cp00578g] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Laser Desorption Post-Ionization Time-Of-Flight Mass Spectrometry is used to perform a systematic kinetic study on the pure methane photolysis in the condensed phase at 20 K and provides for the first time effective rate constants and branching ratios for primary processes leading to CH3, CH2, and CH radicals upon irradiation by VUV light in the 120–170 nm domain.
Collapse
Affiliation(s)
- J.-B. Bossa
- Raymond and Beverly Sackler Laboratory for Astrophysics
- Leiden Observatory
- Leiden University
- NL 2300 RA Leiden
- The Netherlands
| | - D. M. Paardekooper
- Raymond and Beverly Sackler Laboratory for Astrophysics
- Leiden Observatory
- Leiden University
- NL 2300 RA Leiden
- The Netherlands
| | - K. Isokoski
- Raymond and Beverly Sackler Laboratory for Astrophysics
- Leiden Observatory
- Leiden University
- NL 2300 RA Leiden
- The Netherlands
| | - H. Linnartz
- Raymond and Beverly Sackler Laboratory for Astrophysics
- Leiden Observatory
- Leiden University
- NL 2300 RA Leiden
- The Netherlands
| |
Collapse
|