1
|
Elsayed DH, Nagadi SA, Abdelrazek HMA, El-Hawy AS, El-Bassiony MF, Helmy SA, Mahmoud YK, Helal IE, Hassan ST. Dietary Nannochloropsis oculata ameliorates lead acetate induced reproductive toxicity in Barki rams: NF-κB and cytokines pathways. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 289:117452. [PMID: 39644577 DOI: 10.1016/j.ecoenv.2024.117452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 11/25/2024] [Accepted: 11/29/2024] [Indexed: 12/09/2024]
Abstract
The study aimed to explore the protective effect of Nannochloropsis oculata (N.oculata) on lead induced reproductive toxicity in rams. Sixteen Barki rams were divided equally in to 4 groups; group A: control, group B: was administered 3 % dietary N. oculate, group C: was gavaged 5 mg/kg/day lead acetate and group D: was supplemented with 3 % dietary N. oculata and gavaged with 5 mg/kg/day lead acetate. The experiment lasted 180 days. Semen and blood samples were obtained. Ejaculates were examined for semen criteria besides, analysis of testosterone. Testicular oxidant/antioxidant markers, cytokines, gene expression of interleukin-6 (IL-6) and nuclear factor Kappa B (NF-κB) were estimated. Alga-treated rams revealed significant upgrades in semen criteria, serum testosterone and reduced glutathione (GSH); meanwhile, downregulation in malondialdehyde (MDA), IL-4, IL-2 as well as gene expressions of IL-6 and NF-κB as compared to other treated groups. However, lead-treated rams showed significant deteriorations in semen criteria and reduced GSH while significant elevations in MDA, IL-4, IL-2 as well as gene expression of IL-6 and NF-κB were noticed than control. Alga supplementation to lead-intoxicated rams significantly upgraded the lead induced alterations that were manifested by improvement in testicular histopathology. In conclusion, the addition of alga mitigated lead induced reproductive toxicity in rams via improving testosterone, oxidant/antioxidant status, semen criteria and reducing inflammatory cytokines.
Collapse
Affiliation(s)
- Doaa H Elsayed
- Department of Theriogenology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Sameer A Nagadi
- Department of Agriculture, Faculty of Environment Sciences, King Abdulaziz University, Jeddah 80269, Saudi Arabia
| | - Heba M A Abdelrazek
- Department of Physiology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt.
| | - Ahmed S El-Hawy
- Animal and Poultry Production Division, Desert Research Center, Cairo, Egypt
| | | | - Seham A Helmy
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Yasmina K Mahmoud
- Department of Biochemistry, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Ibrahim E Helal
- Department of Agriculture, Faculty of Environment Sciences, King Abdulaziz University, Jeddah 80269, Saudi Arabia; Department of Surgery, Anesthesiology and Radiology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Shady T Hassan
- Department of Theriogenology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| |
Collapse
|
2
|
Yang Z, Wang Y, Lukwambe B, Nicholaus R, Yang W, Zhu J, Zheng Z. Using ozone nanobubbles, and microalgae to promote the removal of nutrients from aquaculture wastewater: Insights from the changes of microbiomes. ENVIRONMENTAL RESEARCH 2024; 257:119349. [PMID: 38844029 DOI: 10.1016/j.envres.2024.119349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 05/27/2024] [Accepted: 06/04/2024] [Indexed: 06/10/2024]
Abstract
Integrated aquaculture wastewater treatment systems (IAWTSs) are widely used in treating aquaculture wastewater with the aeration-microalgae unit serving as an important component. In this study, we artificially constructed an IAWTS and applied two aeration-microalgae methods: ordinary aeration or ozone nanobubbles (ONBs) with microalgae (Nannochloropsis oculata). The impact of N.oculata and ONBs on the removal performance of nutrients and the underlying micro-ecological mechanisms were investigated using 16S rRNA gene amplicon sequencing. The results demonstrated that the combined use of ONBs and N.oculata exhibited superior purification effects with 78.25%, 76.59% and 86.71% removal of CODMn, TN and TP. N.oculata played a pivotal role as the primary element in wastewater purification, while ONBs influenced nutrient dynamics by affecting both N.oculata and bacterial communities. N.oculata actively shaped bacterial communities, with a specific focus on nitrogen and phosphorus cycling in the micro-environment remodeled by ONBs. Rare bacterial communities displayed heightened activity in response to the changes in N.oculata, ONBs, and nutrient levels. These findings provide a novel approach to improve the technological processes the IAWTS, contributing to the advancement of sustainable aquaculture practices by offering valuable insights into wastewater purification efficiency and micro-ecological mechanisms.
Collapse
Affiliation(s)
- Zhao Yang
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Yangcai Wang
- Ningbo Academy of Oceanology and Fishery, Ningbo, 315048, China.
| | - Betina Lukwambe
- School of Aquatic Sciences and Fisheries Technology, University of Dar es Salaam, Tanzania
| | - Regan Nicholaus
- Department of Natural Sciences, Mbeya University of Science and Technology, Tanzania
| | - Wen Yang
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Jinyong Zhu
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Zhongming Zheng
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
3
|
Zhang X, Yuan T, Chen X, Liu X, Hu J, Liu Z. Effects of DHA on cognitive dysfunction in aging and Alzheimer's disease: The mediating roles of ApoE. Prog Lipid Res 2024; 93:101256. [PMID: 37890592 DOI: 10.1016/j.plipres.2023.101256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/22/2023] [Accepted: 10/23/2023] [Indexed: 10/29/2023]
Abstract
The prevalence of Alzheimer's disease (AD) continues to rise due to the increasing aging population. Among the various genetic factors associated with AD, apolipoprotein E (ApoE), a lipid transporter, stands out as the primary genetic risk factor. Specifically, individuals carrying the ApoE4 allele exhibit a significantly higher risk. However, emerging research indicates that dietary factors play a prominent role in modifying the risk of AD. Docosahexaenoic acid (DHA), a prominent ω-3 fatty acid, has garnered considerable attention for its potential to ameliorate cognitive function. The intricate interplay between DHA and the ApoE genotype within the brain, which may influence DHA's utilization and functionality, warrants further investigation. This review meticulously examines experimental and clinical studies exploring the effects of DHA on cognitive decline. Special emphasis is placed on elucidating the role of ApoE gene polymorphism and the underlying mechanisms are discussed. These studies suggest that early DHA supplementation may confer benefits to cognitively normal older adults carrying the ApoE4 gene. However, once AD develops, ApoE4 non-carriers may experience greater benefits compared to ApoE4 carriers, although the overall effectiveness of DHA supplementation at this stage is limited. Potential mechanisms underlying these differential effects may include accelerated DHA catabolism in ApoE4 carriers, impaired transport across the blood-brain barrier (BBB), and compromised lipidation and circulatory function in ApoE4 carriers. Thus, the supplementation of DHA may represent a potential intervention strategy aimed at compensating for these deficiencies in ApoE4 carriers prior to the onset of AD.
Collapse
Affiliation(s)
- Xin Zhang
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Tian Yuan
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China; Northwest A&F University Shenzhen Research Institute, Shenzhen, Guangdong 518000, China
| | - Xuhui Chen
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, China
| | - Xuebo Liu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jun Hu
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, China.
| | - Zhigang Liu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China; Northwest A&F University Shenzhen Research Institute, Shenzhen, Guangdong 518000, China; Dongguan Chuangwei Precision Nutrition and Health Innovation Center, Dongguan, Guangdong 523170, China; Shaanxi Precision Nutrition and Health Research Institute, Xi'an, Shaanxi 710300, China.
| |
Collapse
|
4
|
Navarro López E, Jiménez Callejón MJ, Macías Sánchez MD, González Moreno PA, Robles Medina A. Obtaining eicosapentaenoic acid-enriched polar lipids from microalga Nannochloropsis sp. by lipase-catalysed hydrolysis. ALGAL RES 2023. [DOI: 10.1016/j.algal.2023.103073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
5
|
Lipidomic Characterization and Antioxidant Activity of Macro- and Microalgae Blend. LIFE (BASEL, SWITZERLAND) 2023; 13:life13010231. [PMID: 36676180 PMCID: PMC9865938 DOI: 10.3390/life13010231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/05/2023] [Accepted: 01/09/2023] [Indexed: 01/18/2023]
Abstract
Macro- and microalgae are currently recognized sources of lipids with great nutritional quality and attractive bioactivities for human health promotion and disease prevention. Due to the lipidomic diversity observed among algae species, giving rise to different nutritional and functional characteristics, the mixture of macro- and microalgae has the potential to present important synergistic effects resulting from the complementarity among algae. The aim of this work was to characterize for the first time the lipidome of a blend of macro- and microalgae and evaluate the antioxidant capacity of its lipid fraction. Fatty acids were profiled by GC-MS, the polar lipidome was identified by high resolution LC-MS, and ABTS+• and DPPH• assays were used to assess the antioxidant potential. The most abundant fatty acids were oleic (18:1 n-9), α-linolenic (18:3 n-3), and linoleic (18:2 n-6) acids. The lipid extract presented a beneficial n-6/n-3 ratio (0.98) and low values of atherogenic (0.41) and thrombogenic indices (0.27). The polar lipidome revealed 462 lipid species distributed by glycolipids, phospholipids, and betaine lipids, including some species bearing PUFA and a few with reported bioactivities. The lipid extract also showed antioxidant activity. Overall, the results are promising for the valorization of this blend for food, nutraceutical, and biotechnological applications.
Collapse
|
6
|
Kaushik A, Sangtani R, Parmar HS, Bala K. Algal metabolites: Paving the way towards new generation antidiabetic therapeutics. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Parameswari RP, Lakshmi T. Microalgae as a potential therapeutic drug candidate for neurodegenerative diseases. J Biotechnol 2022; 358:128-139. [PMID: 36122597 DOI: 10.1016/j.jbiotec.2022.09.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 09/05/2022] [Accepted: 09/15/2022] [Indexed: 11/20/2022]
Abstract
Microalgae are highly photosynthetic unicellular organism that have increased demand in the recent days owing to the presence of valuable cellular metabolites. They are ubiquitous in terrestrial and aquatic habitats, rich in species diversity and are capable of generating significant biomass by efficiently using CO2, light and other nutrients like nitrogen, phosphate etc., The microalgal biomass has upsurged in economic potential and is used as both food and feed in many countries across the world, accounting for more than 75 % of annual microalgal biomass production in the past decades. The microalgal cells are sustainable resource that synthesize various secondary metabolites such as carotenoids, polysaccharides, polyphenols, essential amino acids, sterols, and polyunsaturated fatty acids (PUFA). Microalgae and its derived compounds possess significant pharmacological and biological effects such as antioxidant, anti-inflammatory, anti-cancer, immunomodulatory and anti-obesity. Because of their potential health promoting properties, the utilization of microalgae and its derived substances in food, pharmaceutical and cosmetic industries has skyrocketed in recent years. In this context, the current review discusses about the benefits of microalgae and its bioactive compounds against several neurodegenerative disorders like Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS).
Collapse
Affiliation(s)
- R P Parameswari
- Centre for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai 600 077, Tamil Nadu, India
| | - Thangavelu Lakshmi
- Centre for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai 600 077, Tamil Nadu, India.
| |
Collapse
|
8
|
Jiménez Callejón MJ, Robles Medina A, Macías Sánchez MD, González Moreno PA, Navarro López E, Esteban Cerdán L, Molina Grima E. Supercritical fluid extraction and pressurized liquid extraction processes applied to eicosapentaenoic acid-rich polar lipid recovery from the microalga Nannochloropsis sp. ALGAL RES 2022. [DOI: 10.1016/j.algal.2021.102586] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
9
|
Lopes D, Rey F, Leal MC, Lillebø AI, Calado R, Domingues MR. Bioactivities of Lipid Extracts and Complex Lipids from Seaweeds: Current Knowledge and Future Prospects. Mar Drugs 2021; 19:686. [PMID: 34940685 PMCID: PMC8708724 DOI: 10.3390/md19120686] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/23/2021] [Accepted: 11/28/2021] [Indexed: 01/03/2023] Open
Abstract
While complex lipids of seaweeds are known to display important phytochemical properties, their full potential is yet to be explored. This review summarizes the findings of a systematic survey of scientific publications spanning over the years 2000 to January 2021 retrieved from Web of Science (WoS) and Scopus databases to map the state of the art and identify knowledge gaps on the relationship between the complex lipids of seaweeds and their reported bioactivities. Eligible publications (270 in total) were classified in five categories according to the type of studies using seaweeds as raw biomass (category 1); studies using organic extracts (category 2); studies using organic extracts with identified complex lipids (category 3); studies of extracts enriched in isolated groups or classes of complex lipids (category 4); and studies of isolated complex lipids molecular species (category 5), organized by seaweed phyla and reported bioactivities. Studies that identified the molecular composition of these bioactive compounds in detail (29 in total) were selected and described according to their bioactivities (antitumor, anti-inflammatory, antimicrobial, and others). Overall, to date, the value for seaweeds in terms of health and wellness effects were found to be mostly based on empirical knowledge. Although lipids from seaweeds are little explored, the published work showed the potential of lipid extracts, fractions, and complex lipids from seaweeds as functional ingredients for the food and feed, cosmeceutical, and pharmaceutical industries. This knowledge will boost the use of the chemical diversity of seaweeds for innovative value-added products and new biotechnological applications.
Collapse
Affiliation(s)
- Diana Lopes
- Centre for Environmental and Marine Studies, CESAM, Department of Chemistry, Santiago University Campus, University of Aveiro, 3810-193 Aveiro, Portugal; (D.L.); (F.R.)
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, Santiago University Campus, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Felisa Rey
- Centre for Environmental and Marine Studies, CESAM, Department of Chemistry, Santiago University Campus, University of Aveiro, 3810-193 Aveiro, Portugal; (D.L.); (F.R.)
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, Santiago University Campus, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Miguel C. Leal
- ECOMARE, Centre for Environmental and Marine Studies, CESAM, Department of Biology, Santiago University Campus, University of Aveiro, 3810-193 Aveiro, Portugal; (M.C.L.); (A.I.L.); (R.C.)
| | - Ana I. Lillebø
- ECOMARE, Centre for Environmental and Marine Studies, CESAM, Department of Biology, Santiago University Campus, University of Aveiro, 3810-193 Aveiro, Portugal; (M.C.L.); (A.I.L.); (R.C.)
| | - Ricardo Calado
- ECOMARE, Centre for Environmental and Marine Studies, CESAM, Department of Biology, Santiago University Campus, University of Aveiro, 3810-193 Aveiro, Portugal; (M.C.L.); (A.I.L.); (R.C.)
| | - Maria Rosário Domingues
- Centre for Environmental and Marine Studies, CESAM, Department of Chemistry, Santiago University Campus, University of Aveiro, 3810-193 Aveiro, Portugal; (D.L.); (F.R.)
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, Santiago University Campus, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
10
|
Conde TA, Zabetakis I, Tsoupras A, Medina I, Costa M, Silva J, Neves B, Domingues P, Domingues MR. Microalgal Lipid Extracts Have Potential to Modulate the Inflammatory Response: A Critical Review. Int J Mol Sci 2021; 22:9825. [PMID: 34576003 PMCID: PMC8471354 DOI: 10.3390/ijms22189825] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/01/2021] [Accepted: 09/08/2021] [Indexed: 12/24/2022] Open
Abstract
Noncommunicable diseases (NCD) and age-associated diseases (AAD) are some of the gravest health concerns worldwide, accounting for up to 70% of total deaths globally. NCD and AAD, such as diabetes, obesity, cardiovascular disease, and cancer, are associated with low-grade chronic inflammation and poor dietary habits. Modulation of the inflammatory status through dietary components is a very appellative approach to fight these diseases and is supported by increasing evidence of natural and dietary components with strong anti-inflammatory activities. The consumption of bioactive lipids has a positive impact on preventing chronic inflammation and consequently NCD and AAD. Thus, new sources of bioactive lipids have been sought out. Microalgae are rich sources of bioactive lipids such as omega-6 and -3 polyunsaturated fatty acids (PUFA) and polar lipids with associated anti-inflammatory activity. PUFAs are enzymatically and non-enzymatically catalyzed to oxylipins and have a significant role in anti and pro-resolving inflammatory responses. Therefore, a large and rapidly growing body of research has been conducted in vivo and in vitro, investigating the potential anti-inflammatory activities of microalgae lipids. This review sought to summarize and critically analyze recent evidence of the anti-inflammatory potential of microalgae lipids and their possible use to prevent or mitigate chronic inflammation.
Collapse
Affiliation(s)
- Tiago Alexandre Conde
- CESAM-Centre for Environmental and Marine Studies, Department of Chemistry, Santiago University Campus, University of Aveiro, 3810-193 Aveiro, Portugal;
- Mass Spectrometry Centre, LAQV REQUIMTE, Department of Chemistry, Santiago University Campus, University of Aveiro, 3810-193 Aveiro, Portugal;
- Department of Medical Sciences, Institute of Biomedicine–iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Ioannis Zabetakis
- Department of Biological Sciences, University of Limerick, V94 T9PX Limerick, Ireland; (I.Z.); (A.T.)
- Health Research Institute (HRI), University of Limerick, V94 T9PX Limerick, Ireland
- Bernal Institute, University of Limerick, V94 T9PX Limerick, Ireland
| | - Alexandros Tsoupras
- Department of Biological Sciences, University of Limerick, V94 T9PX Limerick, Ireland; (I.Z.); (A.T.)
- Health Research Institute (HRI), University of Limerick, V94 T9PX Limerick, Ireland
- Bernal Institute, University of Limerick, V94 T9PX Limerick, Ireland
| | - Isabel Medina
- Instituto de Investigaciones Marinas-Consejo Superior de Investigaciones Científicas (IIM-CSIC), Eduardo Cabello 6, E-36208 Vigo, Spain;
| | - Margarida Costa
- R&D Department, Allmicroalgae Natural Products SAA, Rua 25 de Abril 1974, 2445-287 Pataias, Portugal; (M.C.); (J.S.)
| | - Joana Silva
- R&D Department, Allmicroalgae Natural Products SAA, Rua 25 de Abril 1974, 2445-287 Pataias, Portugal; (M.C.); (J.S.)
| | - Bruno Neves
- Department of Medical Sciences, Institute of Biomedicine–iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Pedro Domingues
- Mass Spectrometry Centre, LAQV REQUIMTE, Department of Chemistry, Santiago University Campus, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - M. Rosário Domingues
- CESAM-Centre for Environmental and Marine Studies, Department of Chemistry, Santiago University Campus, University of Aveiro, 3810-193 Aveiro, Portugal;
- Mass Spectrometry Centre, LAQV REQUIMTE, Department of Chemistry, Santiago University Campus, University of Aveiro, 3810-193 Aveiro, Portugal;
| |
Collapse
|
11
|
Unlocking the Health Potential of Microalgae as Sustainable Sources of Bioactive Compounds. Int J Mol Sci 2021; 22:ijms22094383. [PMID: 33922258 PMCID: PMC8122763 DOI: 10.3390/ijms22094383] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/14/2021] [Accepted: 04/18/2021] [Indexed: 12/15/2022] Open
Abstract
Microalgae are known to produce a plethora of compounds derived from the primary and secondary metabolism. Different studies have shown that these compounds may have allelopathic, antimicrobial, and antipredator activities. In addition, in vitro and in vivo screenings have shown that several compounds have interesting bioactivities (such as antioxidant, anti-inflammatory, anticancer, and antimicrobial) for the possible prevention and treatment of human pathologies. Additionally, the enzymatic pathways responsible for the synthesis of these compounds, and the targets and mechanisms of their action have also been investigated for a few species. However, further research is necessary for their full exploitation and possible pharmaceutical and other industrial applications. Here, we review the current knowledge on the chemical characteristics, biological activities, mechanism of action, and the enzymes involved in the synthesis of microalgal metabolites with potential benefits for human health.
Collapse
|
12
|
Isolation of Industrial Important Bioactive Compounds from Microalgae. Molecules 2021; 26:molecules26040943. [PMID: 33579001 PMCID: PMC7916812 DOI: 10.3390/molecules26040943] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/24/2020] [Accepted: 01/05/2021] [Indexed: 12/24/2022] Open
Abstract
Microalgae are known as a rich source of bioactive compounds which exhibit different biological activities. Increased demand for sustainable biomass for production of important bioactive components with various potential especially therapeutic applications has resulted in noticeable interest in algae. Utilisation of microalgae in multiple scopes has been growing in various industries ranging from harnessing renewable energy to exploitation of high-value products. The focuses of this review are on production and the use of value-added components obtained from microalgae with current and potential application in the pharmaceutical, nutraceutical, cosmeceutical, energy and agri-food industries, as well as for bioremediation. Moreover, this work discusses the advantage, potential new beneficial strains, applications, limitations, research gaps and future prospect of microalgae in industry.
Collapse
|
13
|
Balakrishnan J, Kannan S, Govindasamy A. Structured form of DHA prevents neurodegenerative disorders: A better insight into the pathophysiology and the mechanism of DHA transport to the brain. Nutr Res 2020; 85:119-134. [PMID: 33482601 DOI: 10.1016/j.nutres.2020.12.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 11/24/2020] [Accepted: 12/01/2020] [Indexed: 12/16/2022]
Abstract
Docosahexaenoic acid (DHA) is one of the most important fatty acids that plays a critical role in maintaining proper brain function and cognitive development. Deficiency of DHA leads to several neurodegenerative disorders and, therefore, dietary supplementations of these fatty acids are essential to maintain cognitive health. However, the complete picture of how DHA is incorporated into the brain is yet to be explored. In general, the de novo synthesis of DHA is poor, and targeting the brain with specific phospholipid carriers provides novel insights into the process of reduction of disease progression. Recent studies have suggested that compared to triacylglycerol form of DHA, esterified form of DHA (i.e., lysophosphatidylcholine [lysoPC]) is better incorporated into the brain. Free DHA is transported across the outer membrane leaflet of the blood-brain barrier via APOE4 receptors, whereas DHA-lysoPC is transported across the inner membrane leaflet of the blood-brain barrier via a specific protein called Mfsd2a. Dietary supplementation of this lysoPC specific form of DHA is a novel therapy and is used to decrease the risk of various neurodegenerative disorders. Currently, structured glycerides of DHA - novel nutraceutical agents - are being widely used for the prevention and treatment of various neurological diseases. However, it is important to fully understand their metabolic regulation and mechanism of transportation to the brain. This article comprehensively reviews various studies that have evaluated the bioavailability of DHA, mechanisms of DHA transport, and role of DHA in preventing neurodegenerative disorders, which provides better insight into the pathophysiology of these disorders and use of structured DHA in improving neurological health.
Collapse
Affiliation(s)
- Jeyakumar Balakrishnan
- Central Research Laboratory, Vinayaka Mission's Medical College and Hospital, Vinayaka Mission's Research Foundation (Deemed to be University), Karaikal, Puducherry, India.
| | - Suganya Kannan
- Central Research Laboratory, Vinayaka Mission's Medical College and Hospital, Vinayaka Mission's Research Foundation (Deemed to be University), Karaikal, Puducherry, India
| | - Ambujam Govindasamy
- Department of General Surgery, Vinayaka Mission's Medical College and Hospital, Vinayaka Mission Research Foundation (Deemed to be University), Karaikal. Puducherry, India
| |
Collapse
|
14
|
Yanagita T, Tsuge K, Koga M, Inoue N, Nagao K. Eicosapentaenoic acid-containing polar lipids from seaweed Susabinori (Pyropia yezoensis) alleviate hepatic steatosis in obese db/db mice. Arch Biochem Biophys 2020; 691:108486. [PMID: 32710880 DOI: 10.1016/j.abb.2020.108486] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/21/2020] [Accepted: 07/03/2020] [Indexed: 12/11/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is emerging as the most common liver disease in industrialized countries. Because hepatic steatosis is an early pathogenesis of NAFLD, the discovery of food components that could ameliorate hepatic steatosis is of interest. Susabinori (Pyropia yezoensis) is recognized as one of the most delicious edible brown algae, and we prepared lipid component of susabinori (SNL), which is rich in eicosapentaenoic acid (EPA)-containing polar lipids. In this study, we tested whether feeding SNL to db/db mice protects them from developing obesity-induced hepatic steatosis. After four weeks of feeding, hepatomegaly, hepatic steatosis, and hepatic injury were markedly alleviated in SNL-fed db/db mice. These effects were partly attributable to the suppression of activities and mRNA expressions of lipogenic enzymes and enhanced levels of adiponectin due to the SNL diet. Additionally, mRNA expression of monocyte chemoattractant protein-1, an inflammatory chemokine, was markedly suppressed, and the mRNA levels of PPARδ, the anti-inflammatory transcription factor, were strongly enhanced in the livers of db/db mice by the SNL diet. We speculate that the development and progression of obesity-induced hepatic steatosis was prevented by the suppression of chronic inflammation due to the combination of bioactivities of EPA, phospholipids, and glycolipids in the SNL diet.
Collapse
Affiliation(s)
- Teruyoshi Yanagita
- Department of Biological Resource Science, Saga University, Saga, 840-8502, Japan; Department of Health and Nutrition Sciences, Nishikyushu University, Kanzaki, 842-8585, Japan; Saga Regional Industry Support Center, Saga, 849-0932, Japan
| | - Keisuke Tsuge
- Industrial Technology Center of Saga, Saga, 849-0932, Japan
| | - Misato Koga
- Department of Biological Resource Science, Saga University, Saga, 840-8502, Japan
| | - Nao Inoue
- Faculty of Agriculture, Yamagata University, Tsuruoka, 997-8555, Japan
| | - Koji Nagao
- Department of Biological Resource Science, Saga University, Saga, 840-8502, Japan.
| |
Collapse
|
15
|
Poole LB, Parsonage D, Sergeant S, Miller LR, Lee J, Furdui CM, Chilton FH. Acyl-lipid desaturases and Vipp1 cooperate in cyanobacteria to produce novel omega-3 PUFA-containing glycolipids. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:83. [PMID: 32399061 PMCID: PMC7203895 DOI: 10.1186/s13068-020-01719-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 04/16/2020] [Indexed: 05/08/2023]
Abstract
BACKGROUND Dietary omega-3 (n-3), long chain (LC-, ≥ 20 carbons), polyunsaturated fatty acids (PUFAs) derived largely from marine animal sources protect against inflammatory processes and enhance brain development and function. With the depletion of natural stocks of marine animal sources and an increasing demand for n-3 LC-PUFAs, alternative, sustainable supplies are urgently needed. As a result, n-3 18-carbon and LC-PUFAs are being generated from plant or algal sources, either by engineering new biosynthetic pathways or by augmenting existing systems. RESULTS We utilized an engineered plasmid encoding two cyanobacterial acyl-lipid desaturases (DesB and DesD, encoding Δ15 and Δ6 desaturases, respectively) and "vesicle-inducing protein in plastids" (Vipp1) to induce production of stearidonic acid (SDA, 18:4 n-3) at high levels in three strains of cyanobacteria (10, 17 and 27% of total lipids in Anabaena sp. PCC7120, Synechococcus sp. PCC7002, and Leptolyngbya sp. strain BL0902, respectively). Lipidomic analysis revealed that in addition to SDA, the rare anti-inflammatory n-3 LC-PUFA eicosatetraenoic acid (ETA, 20:4 n-3) was synthesized in these engineered strains, and ~ 99% of SDA and ETA was complexed to bioavailable monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG) species. Importantly, novel molecular species containing alpha-linolenic acid (ALA), SDA and/or ETA in both acyl positions of MGDG and DGDG were observed in the engineered Leptolyngbya and Synechococcus strains, suggesting that these could provide a rich source of anti-inflammatory molecules. CONCLUSIONS Overall, this technology utilizes solar energy, consumes carbon dioxide, and produces large amounts of nutritionally important n-3 PUFAs and LC-PUFAs. Importantly, it can generate previously undescribed, highly bioavailable, anti-inflammatory galactosyl lipids. This technology could therefore be transformative in protecting ocean fisheries and augmenting the nutritional quality of human and animal food products.
Collapse
Affiliation(s)
- Leslie B. Poole
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC 27157 USA
- Center for Redox Biology and Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157 USA
| | - Derek Parsonage
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC 27157 USA
- Center for Redox Biology and Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157 USA
| | - Susan Sergeant
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC 27157 USA
| | - Leslie R. Miller
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC 27157 USA
- Present Address: 139 N St. Patrick St., New Orleans, LA 70119 USA
| | - Jingyun Lee
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157 USA
- Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, NC 27157 USA
| | - Cristina M. Furdui
- Center for Redox Biology and Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157 USA
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157 USA
- Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, NC 27157 USA
| | - Floyd H. Chilton
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC 27157 USA
- Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, NC 27157 USA
- Department of Nutritional Sciences and the BIO5 Institute, University of Arizona, Tucson, AZ USA
| |
Collapse
|
16
|
Lordan R, Redfern S, Tsoupras A, Zabetakis I. Inflammation and cardiovascular disease: are marine phospholipids the answer? Food Funct 2020; 11:2861-2885. [DOI: 10.1039/c9fo01742a] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This review presents the latest research on the cardioprotective effects of n-3 fatty acids (FA) and n-3 FA bound to polar lipids (PL). Overall, n-3 PL may have enhanced bioavailability and potentially bioactivityversusfree FA and ester forms of n-3 FA.
Collapse
Affiliation(s)
- Ronan Lordan
- Department of Biological Sciences
- University of Limerick
- Limerick
- Ireland
- Health Research Institute (HRI)
| | - Shane Redfern
- Department of Biological Sciences
- University of Limerick
- Limerick
- Ireland
| | - Alexandros Tsoupras
- Department of Biological Sciences
- University of Limerick
- Limerick
- Ireland
- Health Research Institute (HRI)
| | - Ioannis Zabetakis
- Department of Biological Sciences
- University of Limerick
- Limerick
- Ireland
- Health Research Institute (HRI)
| |
Collapse
|
17
|
Ahmmed MK, Ahmmed F, Tian HS, Carne A, Bekhit AED. Marine omega-3 (n-3) phospholipids: A comprehensive review of their properties, sources, bioavailability, and relation to brain health. Compr Rev Food Sci Food Saf 2019; 19:64-123. [PMID: 33319514 DOI: 10.1111/1541-4337.12510] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 10/06/2019] [Accepted: 10/27/2019] [Indexed: 12/15/2022]
Abstract
For several decades, there has been considerable interest in marine-derived long chain n-3 fatty acids (n-3 LCPUFAs) due to their outstanding health benefits. n-3 LCPUFAs can be found in nature either in triglycerides (TAGs) or in phospholipid (PL) form. From brain health point of view, PL n-3 is more bioavailable and potent compared to n-3 in TAG form, as only PL n-3 is able to cross the blood-brain barrier and can be involved in brain biochemical reactions. However, PL n-3 has been ignored in the fish oil industry and frequently removed as an impurity during degumming processes. As a result, PL products derived from marine sources are very limited compared to TAG products. Commercially, PLs are being used in pharmaceutical industries as drug carriers, in food manufacturing as emulsifiers and in cosmetic industries as skin care agents, but most of the PLs used in these applications are produced from vegetable sources that contain less (without EPA, DPA, and DHA) or sometimes no n-3 LCPUFAs. This review provides a comprehensive account of the properties, structures, and major sources of marine PLs, and provides focussed discussion of their relationship to brain health. Epidemiological, laboratory, and clinical studies on n-3 LCPUFAs enriched PLs using different model systems in relation to brain and mental health that have been published over the past few years are discussed in detail.
Collapse
Affiliation(s)
- Mirja Kaizer Ahmmed
- Department of Food Science, University of Otago, Dunedin, New Zealand.,Department of Fishing and Post-Harvest Technology, Faculty of Fisheries, Chittagong Veterinary and Animal Sciences University, Khulshi, Bangladesh
| | - Fatema Ahmmed
- Department of Chemistry, University of Otago, Dunedin, New Zealand
| | | | - Alan Carne
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | | |
Collapse
|
18
|
He Y, Huang Z, Zhong C, Guo Z, Chen B. Pressurized liquid extraction with ethanol as a green and efficient technology to lipid extraction of Isochrysis biomass. BIORESOURCE TECHNOLOGY 2019; 293:122049. [PMID: 31484103 DOI: 10.1016/j.biortech.2019.122049] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/17/2019] [Accepted: 08/19/2019] [Indexed: 06/10/2023]
Abstract
This work was the first time to establish a green pressurized liquid extraction (PLE) process to extract microalgal lipids from Isochrysis biomass. PLE with ethanol exhibited superior lipid extraction performance in comparison to Soxhlet and Folch methods and PLE with n-hexane. To reduce the cost in ethanol utilization, ethanol concentration was optimized and found that PLE with 90% ethanol concentration obtained the highest lipid extraction efficiency (41.5 wt%) and total fatty acids (TFAs) recovery value (92.17 wt%) using Isochrysis sp. biomass. Results about lipid class detected by TLC-FID technique showed that ethanol concentration distinctly affected the content of lipidic class during lipid extraction by PLE. Similarly, the process with 90% ethanol concentration achieved over 90 wt% of TFAs recovery values with three different Isochrysis species. Overall, PLE process mediated with ethanol was a promising approach to extract Isochrysis-derived lipids from sustainable microalgal biomass for food application.
Collapse
Affiliation(s)
- Yongjin He
- College of Life Science, Fujian Normal University, No.1, Keji Road, Minhou, Fuzhou 350117, China; Department of Engineering, Aarhus University, Gustav WiedsVej 10, 8000 Aarhus C, Denmark; Engineering Research Center of Industrial Microbiology of Ministry of Education, Fujian Normal University, No.1, Keji Road, Minhou, Fuzhou 350117, China.
| | - Zicheng Huang
- College of Life Science, Fujian Normal University, No.1, Keji Road, Minhou, Fuzhou 350117, China
| | - Chen Zhong
- College of Life Science, Fujian Normal University, No.1, Keji Road, Minhou, Fuzhou 350117, China
| | - Zheng Guo
- Department of Engineering, Aarhus University, Gustav WiedsVej 10, 8000 Aarhus C, Denmark
| | - Bilian Chen
- College of Life Science, Fujian Normal University, No.1, Keji Road, Minhou, Fuzhou 350117, China; Engineering Research Center of Industrial Microbiology of Ministry of Education, Fujian Normal University, No.1, Keji Road, Minhou, Fuzhou 350117, China
| |
Collapse
|
19
|
Pandeirada CO, Maricato É, Ferreira SS, Correia VG, Pinheiro BA, Evtuguin DV, Palma AS, Correia A, Vilanova M, Coimbra MA, Nunes C. Structural analysis and potential immunostimulatory activity of Nannochloropsis oculata polysaccharides. Carbohydr Polym 2019; 222:114962. [DOI: 10.1016/j.carbpol.2019.06.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/17/2019] [Accepted: 06/03/2019] [Indexed: 11/27/2022]
|
20
|
Manisali AY, Sunol AK, Philippidis GP. Effect of macronutrients on phospholipid production by the microalga Nannochloropsis oculata in a photobioreactor. ALGAL RES 2019. [DOI: 10.1016/j.algal.2019.101514] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
21
|
Qiu C, He Y, Huang Z, Li S, Huang J, Wang M, Chen B. Lipid extraction from wet Nannochloropsis biomass via enzyme-assisted three phase partitioning. BIORESOURCE TECHNOLOGY 2019; 284:381-390. [PMID: 30959375 DOI: 10.1016/j.biortech.2019.03.148] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/28/2019] [Accepted: 03/29/2019] [Indexed: 06/09/2023]
Abstract
A green and efficient enzyme assisted three phase partitioning (EA-TPP) process was firstly developed to extract microalgal lipids using wet Nannochloropsis sp. biomass. In the pretreatment of microalgal biomass by four hydrolytic enzymes, TPP obtained a higher TFAs lipid extraction efficiency by cellulase compared with the resting enzymes. After optimization by EA-TPP of the wet disrupted Nannochloropsis biomass (3 g), the maximum TFAs extraction yield (90.40%) was attained at 20% ammonium sulphate, 6-7 pH, 1:2 slurry/tert-butanol ratio and 70 °C for 2 h incubation time and two extraction cycles. Moreover, results also revealed that the lipidic species compositions of Nannochloropsis sp. biomass were greatly related with the EA-TPP parameters. In the laboratory scale for wet disrupted microalgae biomass, EA-TPP process achieved 88.70% TFAs extraction yield under the optimized conditions. In all, EA-TPP process could be a promising approach to extract microalgae lipids for food application using wet microalgae biomass.
Collapse
Affiliation(s)
- Changyang Qiu
- College of Life Science, Fujian Normal University, Fuzhou 350117, China
| | - Yongjin He
- College of Life Science, Fujian Normal University, Fuzhou 350117, China; Key Laboratory of Feed Biotechnology, The Ministry of Agriculture of the People's Republic of China, Beijing 100081, China
| | - Zicheng Huang
- College of Life Science, Fujian Normal University, Fuzhou 350117, China
| | - Shaofeng Li
- College of Life Science, Fujian Normal University, Fuzhou 350117, China
| | - Jian Huang
- College of Life Science, Fujian Normal University, Fuzhou 350117, China; Engineering Research Center of Industrial Microbiology, Ministry of Education, Fujian Normal University, Fuzhou 350117, China
| | - Mingzi Wang
- College of Life Science, Fujian Normal University, Fuzhou 350117, China; Engineering Research Center of Industrial Microbiology, Ministry of Education, Fujian Normal University, Fuzhou 350117, China
| | - Bilian Chen
- College of Life Science, Fujian Normal University, Fuzhou 350117, China; Engineering Research Center of Industrial Microbiology, Ministry of Education, Fujian Normal University, Fuzhou 350117, China.
| |
Collapse
|
22
|
McCauley JI, Winberg PC, Meyer BJ, Skropeta D. Effects of nutrients and processing on the nutritionally important metabolites of Ulva sp. (Chlorophyta). ALGAL RES 2018. [DOI: 10.1016/j.algal.2018.09.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
23
|
Bernaerts TMM, Panozzo A, Verhaegen KAF, Gheysen L, Foubert I, Moldenaers P, Hendrickx ME, Van Loey AM. Impact of different sequences of mechanical and thermal processing on the rheological properties ofPorphyridium cruentumandChlorella vulgarisas functional food ingredients. Food Funct 2018; 9:2433-2446. [DOI: 10.1039/c8fo00261d] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Different processing sequences result in specific rheological properties of these microalgae as functional food ingredients.
Collapse
Affiliation(s)
- Tom M. M. Bernaerts
- Laboratory of Food Technology (member of Leuven Food Science and Nutrition Research Center
- LFoRCe)
- Department of Microbial and Molecular Systems (M2S)
- KU Leuven
- 3001 Heverlee
| | - Agnese Panozzo
- Laboratory of Food Technology (member of Leuven Food Science and Nutrition Research Center
- LFoRCe)
- Department of Microbial and Molecular Systems (M2S)
- KU Leuven
- 3001 Heverlee
| | - Katrien A. F. Verhaegen
- Laboratory of Food Technology (member of Leuven Food Science and Nutrition Research Center
- LFoRCe)
- Department of Microbial and Molecular Systems (M2S)
- KU Leuven
- 3001 Heverlee
| | - Lore Gheysen
- Laboratory Food and Lipids (member of Leuven Food Science and Nutrition Research Center
- LFoRCe)
- Department of Microbial and Molecular Systems (M2S)
- KU Leuven Kulak
- 8500 Kortrijk
| | - Imogen Foubert
- Laboratory Food and Lipids (member of Leuven Food Science and Nutrition Research Center
- LFoRCe)
- Department of Microbial and Molecular Systems (M2S)
- KU Leuven Kulak
- 8500 Kortrijk
| | - Paula Moldenaers
- Soft Matter
- Rheology and Technology
- Department of Chemical Engineering
- KU Leuven
- 3001 Heverlee
| | - Marc E. Hendrickx
- Laboratory of Food Technology (member of Leuven Food Science and Nutrition Research Center
- LFoRCe)
- Department of Microbial and Molecular Systems (M2S)
- KU Leuven
- 3001 Heverlee
| | - Ann M. Van Loey
- Laboratory of Food Technology (member of Leuven Food Science and Nutrition Research Center
- LFoRCe)
- Department of Microbial and Molecular Systems (M2S)
- KU Leuven
- 3001 Heverlee
| |
Collapse
|
24
|
Xie D, Mu H, Tang T, Wang X, Wei W, Jin J, Wang X, Jin Q. Production of three types of krill oils from krill meal by a three-step solvent extraction procedure. Food Chem 2017; 248:279-286. [PMID: 29329855 DOI: 10.1016/j.foodchem.2017.12.068] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 11/07/2017] [Accepted: 12/18/2017] [Indexed: 12/22/2022]
Abstract
In this study, a three-step extraction method (separately use acetone, hexane, and ethanol as extraction solvent in each step) was conducted to selectively extract three types of krill oils with different compositions. The lipid yields were 5.08% in step 1, 4.80% in step 2, and 9.11% in step 3, with a total of 18.99%. The krill oil extracted with acetone in step 1 (A-KO) contained the lowest contents of phospholipids (PL) (2.32%) and n-3 polyunsaturated fatty acids (PUFA) (16.63%), but the highest levels of minor components (505.00 mg/kg of astaxanthin, 29.39 mg/100 g of tocopherols, 34.32 mg/100 g of vitamin A and 27.95 mg/g of cholesterol). By contrast, despite having traces of minor components, the krill oil extracted using ethanol in step 3 (E-KO) was the most abundant in PL (59.52%) and n-3 PUFA (41.74%). The krill oil extracted using hexane in step 2 (H-KO) expressed medium contents of all the testing indices. The oils showed significant differences in the antioxidant capacity (E-KO > H-KO > A-KO) which exhibited positive correlation with the PL content. These results could be used for further development of a wide range of krill oil products with tailor-made functions.
Collapse
Affiliation(s)
- Dan Xie
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, National Engineering Research Center for Functional Food, School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, PR China; Zhonghai Ocean (Wuxi) Marine Equipment Engineering Co., Ltd, Jiangnan University National University Science Park, 100 Jinxi Road, Wuxi, Jiangsu 214125, PR China
| | - Hongyan Mu
- College of Food Science and Engineering, Qingdao Agricultural University, 700 Changcheng Road, Qingdao, Shandong 266109, PR China
| | - Tianpei Tang
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, National Engineering Research Center for Functional Food, School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, PR China
| | - Xiaosan Wang
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, National Engineering Research Center for Functional Food, School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, PR China
| | - Wei Wei
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, National Engineering Research Center for Functional Food, School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, PR China
| | - Jun Jin
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, National Engineering Research Center for Functional Food, School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, PR China
| | - Xingguo Wang
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, National Engineering Research Center for Functional Food, School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, PR China
| | - Qingzhe Jin
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, National Engineering Research Center for Functional Food, School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, PR China.
| |
Collapse
|
25
|
Yu J, Ma Y, Sun J, Ran L, Li Y, Wang N, Yu T, Gao W, Jia W, Jiang R, Guo M, Bi Y, Wu Y. Microalgal Oil fromSchizochytriumsp. Prevents HFD-Induced Abdominal Fat Accumulation in Mice. J Am Coll Nutr 2017; 36:347-356. [DOI: 10.1080/07315724.2017.1302366] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Jinhui Yu
- Institute for Genome Engineered Animal Models of Human Diseases, Dalian Medical University, Dalian, Liaoning, China
- College of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, China
- Shandong Centre of Crop Germplasm Resources, Jinan, Shandong, China
| | - Yong Ma
- Institute for Genome Engineered Animal Models of Human Diseases, Dalian Medical University, Dalian, Liaoning, China
| | - Jie Sun
- Institute for Genome Engineered Animal Models of Human Diseases, Dalian Medical University, Dalian, Liaoning, China
- College of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, China
| | - Liyuan Ran
- Institute for Genome Engineered Animal Models of Human Diseases, Dalian Medical University, Dalian, Liaoning, China
- College of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, China
| | - Youwei Li
- Institute for Genome Engineered Animal Models of Human Diseases, Dalian Medical University, Dalian, Liaoning, China
- College of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, China
| | - Ning Wang
- Institute for Genome Engineered Animal Models of Human Diseases, Dalian Medical University, Dalian, Liaoning, China
- College of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, China
| | - Tao Yu
- Institute for Genome Engineered Animal Models of Human Diseases, Dalian Medical University, Dalian, Liaoning, China
- College of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, China
| | - Wenting Gao
- Institute for Genome Engineered Animal Models of Human Diseases, Dalian Medical University, Dalian, Liaoning, China
| | - Wenbin Jia
- Shandong Centre of Crop Germplasm Resources, Jinan, Shandong, China
| | - Rujiao Jiang
- Institute for Genome Engineered Animal Models of Human Diseases, Dalian Medical University, Dalian, Liaoning, China
- College of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, China
| | - Meihua Guo
- Institute for Genome Engineered Animal Models of Human Diseases, Dalian Medical University, Dalian, Liaoning, China
- College of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, China
| | - Yuping Bi
- Biotechnology Research Center, Shang Dong Academy of Agricultural Sciences, Jinan, Shandong, China
| | - Yingjie Wu
- Institute for Genome Engineered Animal Models of Human Diseases, Dalian Medical University, Dalian, Liaoning, China
- College of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, China
| |
Collapse
|
26
|
Fu W, Nelson D, Yi Z, Xu M, Khraiwesh B, Jijakli K, Chaiboonchoe A, Alzahmi A, Al-Khairy D, Brynjolfsson S, Salehi-Ashtiani K. Bioactive Compounds From Microalgae: Current Development and Prospects. STUDIES IN NATURAL PRODUCTS CHEMISTRY 2017. [DOI: 10.1016/b978-0-444-63929-5.00006-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
27
|
Matos J, Cardoso C, Bandarra NM, Afonso C. Microalgae as healthy ingredients for functional food: a review. Food Funct 2017; 8:2672-2685. [DOI: 10.1039/c7fo00409e] [Citation(s) in RCA: 189] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Microalgae are very interesting and valuable natural sources of highly valuable bioactive compounds, such as vitamins, essential amino acids, polyunsaturated fatty acids, minerals, carotenoids, enzymes and fibre.
Collapse
Affiliation(s)
- J. Matos
- Division of Aquaculture and Upgrading
- Portuguese Institute of the Sea and Atmosphere
- IPMA
- 1449-006 Lisboa
- Portugal
| | - C. Cardoso
- Division of Aquaculture and Upgrading
- Portuguese Institute of the Sea and Atmosphere
- IPMA
- 1449-006 Lisboa
- Portugal
| | - N. M. Bandarra
- Division of Aquaculture and Upgrading
- Portuguese Institute of the Sea and Atmosphere
- IPMA
- 1449-006 Lisboa
- Portugal
| | - C. Afonso
- Division of Aquaculture and Upgrading
- Portuguese Institute of the Sea and Atmosphere
- IPMA
- 1449-006 Lisboa
- Portugal
| |
Collapse
|
28
|
Zhang L, Wang D, Wen M, Du L, Xue C, Wang J, Xu J, Wang Y. Rapid modulation of lipid metabolism in C57BL/6J mice induced by eicosapentaenoic acid-enriched phospholipid from Cucumaria frondosa. J Funct Foods 2017. [DOI: 10.1016/j.jff.2016.10.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
29
|
An assessment of the techno-functional and sensory properties of yoghurt fortified with a lipid extract from the microalga Pavlova lutheri. INNOV FOOD SCI EMERG 2016. [DOI: 10.1016/j.ifset.2016.03.017] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
30
|
Navarro López E, Robles Medina A, González Moreno PA, Esteban Cerdán L, Molina Grima E. Extraction of microalgal lipids and the influence of polar lipids on biodiesel production by lipase-catalyzed transesterification. BIORESOURCE TECHNOLOGY 2016; 216:904-913. [PMID: 27323242 DOI: 10.1016/j.biortech.2016.06.035] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 06/09/2016] [Accepted: 06/10/2016] [Indexed: 06/06/2023]
Abstract
In order to obtain microalgal saponifiable lipids (SLs) fractions containing different polar lipid (glycolipids and phospholipids) contents, SLs were extracted from wet Nannochloropsis gaditana microalgal biomass using seven extraction systems, and the polar lipid contents of some fractions were reduced by low temperature acetone crystallization. We observed that the polar lipid content in the extracted lipids depended on the polarity of the first solvent used in the extraction system. Lipid fractions with polar lipid contents between 75.1% and 15.3% were obtained. Some of these fractions were transformed into fatty acid methyl esters (FAMEs, biodiesel) by methanolysis, catalyzed by the lipases Novozym 435 and Rhizopus oryzae in tert-butanol medium. We observed that the reaction velocity was higher the lower the polar lipid content, and that the final FAME conversions achieved after using the same lipase batch to catalyze consecutive reactions decreased in relation to an increase in the polar lipid content.
Collapse
|
31
|
da Costa E, Silva J, Mendonça SH, Abreu MH, Domingues MR. Lipidomic Approaches towards Deciphering Glycolipids from Microalgae as a Reservoir of Bioactive Lipids. Mar Drugs 2016; 14:md14050101. [PMID: 27213410 PMCID: PMC4882575 DOI: 10.3390/md14050101] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 05/09/2016] [Accepted: 05/12/2016] [Indexed: 12/31/2022] Open
Abstract
In recent years, noteworthy research has been performed around lipids from microalgae. Among lipids, glycolipids (GLs) are quite abundant in microalgae and are considered an important source of fatty acids (FAs). GLs are rich in 16- and 18-carbon saturated and unsaturated fatty acids and often contain polyunsaturated fatty acids (PUFAs) like n-3 α-linolenic (ALA 18:3), eicosapentaenoic (EPA, 20:5) and docosahexaenoic (DHA, 22:6). GLs comprise three major classes: monogalactosyldiacyl glycerolipids (MGDGs), digalactosyl diacylglycerolipids (DGDGs) and sulfoquinovosyl diacylglycerolipids (SQDGs), whose composition in FA directly depends on the growth conditions. Some of these lipids are high value-added compounds with antitumoral, antimicrobial and anti-inflammatory activities and also with important nutritional significance. To fully explore GLs’ bioactive properties it is necessary to fully characterize their structure and to understand the relation between the structure and their biological properties, which can be addressed using modern mass spectrometry (MS)-based lipidomic approaches. This review will focus on the up-to-date FA composition of GLs identified by MS-based lipidomics and their potential as phytochemicals.
Collapse
Affiliation(s)
- Elisabete da Costa
- Centro de Espectrometria de Massa, Departamento de Química & QOPNA, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Joana Silva
- Allmicroalgae-Natural Products S.A., Avenida das Forças Armadas, 125, 7º piso, 1600-079 Lisboa, Portugal.
| | - Sofia Hoffman Mendonça
- Allmicroalgae-Natural Products S.A., Avenida das Forças Armadas, 125, 7º piso, 1600-079 Lisboa, Portugal.
| | - Maria Helena Abreu
- ALGAplus-Produção e Comercialização de Algas e Derivados, Lda., 3830-196 Ílhavo, Portugal.
| | - Maria Rosário Domingues
- Centro de Espectrometria de Massa, Departamento de Química & QOPNA, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|
32
|
Talero E, García-Mauriño S, Ávila-Román J, Rodríguez-Luna A, Alcaide A, Motilva V. Bioactive Compounds Isolated from Microalgae in Chronic Inflammation and Cancer. Mar Drugs 2015; 13:6152-209. [PMID: 26437418 PMCID: PMC4626684 DOI: 10.3390/md13106152] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 09/09/2015] [Accepted: 09/15/2015] [Indexed: 12/12/2022] Open
Abstract
The risk of onset of cancer is influenced by poorly controlled chronic inflammatory processes. Inflammatory diseases related to cancer development include inflammatory bowel disease, which can lead to colon cancer, or actinic keratosis, associated with chronic exposure to ultraviolet light, which can progress to squamous cell carcinoma. Chronic inflammatory states expose these patients to a number of signals with tumorigenic effects, including nuclear factor kappa B (NF-κB) and mitogen-activated protein kinases (MAPK) activation, pro-inflammatory cytokines and prostaglandins release and ROS production. In addition, the participation of inflammasomes, autophagy and sirtuins has been demonstrated in pathological processes such as inflammation and cancer. Chemoprevention consists in the use of drugs, vitamins, or nutritional supplements to reduce the risk of developing or having a recurrence of cancer. Numerous in vitro and animal studies have established the potential colon and skin cancer chemopreventive properties of substances from marine environment, including microalgae species and their products (carotenoids, fatty acids, glycolipids, polysaccharides and proteins). This review summarizes the main mechanisms of actions of these compounds in the chemoprevention of these cancers. These actions include suppression of cell proliferation, induction of apoptosis, stimulation of antimetastatic and antiangiogenic responses and increased antioxidant and anti-inflammatory activity.
Collapse
Affiliation(s)
- Elena Talero
- Department of Pharmacology, Faculty of Pharmacy, University of Seville, Seville 41012, Spain.
| | - Sofía García-Mauriño
- Department of Plant Biology and Ecology, Faculty of Biology, University of Seville, Seville 41012, Spain.
| | - Javier Ávila-Román
- Department of Pharmacology, Faculty of Pharmacy, University of Seville, Seville 41012, Spain.
| | - Azahara Rodríguez-Luna
- Department of Pharmacology, Faculty of Pharmacy, University of Seville, Seville 41012, Spain.
| | - Antonio Alcaide
- Department of Pharmacology, Faculty of Pharmacy, University of Seville, Seville 41012, Spain.
| | - Virginia Motilva
- Department of Pharmacology, Faculty of Pharmacy, University of Seville, Seville 41012, Spain.
| |
Collapse
|
33
|
Abstract
Micro-algae synthesize high levels of lipids, carbohydrates and proteins photoautotrophically, thus attracting considerable interest for the biotechnological production of fuels, environmental remediation, functional foods and nutraceuticals. Currently, only a few micro-algae species are grown commercially at large-scale, primarily for “health-foods” and pigments. For a range of potential products (fuel to pharma), high lipid productivity strains are required to mitigate the economic costs of mass culture. Here we present a screen concentrating on marine micro-algal strains, which if suitable for scale-up would minimise competition with agriculture for water. Mass-Spectrophotometric analysis (MS) of nitrogen (N) and carbon (C) was subsequently validated by measurement of total fatty acids (TFA) by Gas-Chromatography (GC). This identified a rapid and accurate screening strategy based on elemental analysis. The screen identified Nannochloropsis oceanica CCAP 849/10 and a marine isolate of Chlorella vulgaris CCAP 211/21A as the best lipid producers. Analysis of C, N, protein, carbohydrate and Fatty Acid (FA) composition identified a suite of strains for further biotechnological applications e.g. Dunaliella polymorpha CCAP 19/14, significantly the most productive for carbohydrates, and Cyclotella cryptica CCAP 1070/2, with utility for EPA production and N-assimilation.
Collapse
|