1
|
Vana F, Szabo Z, Masarik M, Kratochvilova M. The interplay of transition metals in ferroptosis and pyroptosis. Cell Div 2024; 19:24. [PMID: 39097717 PMCID: PMC11297737 DOI: 10.1186/s13008-024-00127-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 07/08/2024] [Indexed: 08/05/2024] Open
Abstract
Cell death is one of the most important mechanisms of maintaining homeostasis in our body. Ferroptosis and pyroptosis are forms of necrosis-like cell death. These cell death modalities play key roles in the pathophysiology of cancer, cardiovascular, neurological diseases, and other pathologies. Transition metals are abundant group of elements in all living organisms. This paper presents a summary of ferroptosis and pyroptosis pathways and their connection to significant transition metals, namely zinc (Zn), copper (Cu), molybdenum (Mo), lead (Pb), cobalt (Co), iron (Fe), cadmium (Cd), nickel (Ni), mercury (Hg), uranium (U), platinum (Pt), and one crucial element, selenium (Se). Authors aim to summarize the up-to-date knowledge of this topic.In this review, there are categorized and highlighted the most common patterns in the alterations of ferroptosis and pyroptosis by transition metals. Special attention is given to zinc since collected data support its dual nature of action in both ferroptosis and pyroptosis. All findings are presented together with a brief description of major biochemical pathways involving mentioned metals and are visualized in attached comprehensive figures.This work concludes that the majority of disruptions in the studied metals' homeostasis impacts cell fate, influencing both death and survival of cells in the complex system of altered pathways. Therefore, this summary opens up the space for further research.
Collapse
Affiliation(s)
- Frantisek Vana
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, CZ-625 00, Czech Republic
| | - Zoltan Szabo
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, CZ-625 00, Czech Republic
- Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Zluty kopec 7, Brno, 656 53, Czech Republic
| | - Michal Masarik
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, CZ-625 00, Czech Republic
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, CZ-625 00, Czech Republic
- First Faculty of Medicine, BIOCEV, Charles University, Prumyslova 595, Vestec, CZ-252 50, Czech Republic
| | - Monika Kratochvilova
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, CZ-625 00, Czech Republic.
| |
Collapse
|
2
|
Tang X, Deng P, Jiang Y, Zhang L, He Y, Yang H. An Overview of Recent Advances in the Neuroprotective Potentials of Fisetin against Diverse Insults in Neurological Diseases and the Underlying Signaling Pathways. Biomedicines 2023; 11:2878. [PMID: 38001882 PMCID: PMC10669030 DOI: 10.3390/biomedicines11112878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/18/2023] [Accepted: 10/22/2023] [Indexed: 11/26/2023] Open
Abstract
The nervous system plays a leading role in the regulation of physiological functions and activities in the body. However, a variety of diseases related to the nervous system have a serious impact on human health. It is increasingly clear that neurological diseases are multifactorial pathological processes involving multiple cellular systems, and the onset of these diseases usually involves a diverse array of molecular mechanisms. Unfortunately, no effective therapy exists to slow down the progression or prevent the development of diseases only through the regulation of a single factor. To this end, it is pivotal to seek an ideal therapeutic approach for challenging the complicated pathological process to achieve effective treatment. In recent years, fisetin, a kind of flavonoid widely existing in fruits, vegetables and other plants, has shown numerous interesting biological activities with clinical potentials including anti-inflammatory, antioxidant and neurotrophic effects. In addition, fisetin has been reported to have diverse pharmacological properties and neuroprotective potentials against various neurological diseases. The neuroprotective effects were ascribed to its unique biological properties and multiple clinical pharmacological activities associated with the treatment of different neurological disorders. In this review, we summarize recent research progress regarding the neuroprotective potential of fisetin and the underlying signaling pathways of the treatment of several neurological diseases.
Collapse
Affiliation(s)
- Xiangwen Tang
- Translational Medicine Center, Hong Hui Hospital, Xi’an Jiaotong University, Xi’an 710054, China; (X.T.); (L.Z.)
- Basic Medical School Academy, Shaanxi University of Traditional Chinese Medicine, Xianyang 712046, China; (P.D.); (Y.J.)
| | - Peng Deng
- Basic Medical School Academy, Shaanxi University of Traditional Chinese Medicine, Xianyang 712046, China; (P.D.); (Y.J.)
| | - Yizhen Jiang
- Basic Medical School Academy, Shaanxi University of Traditional Chinese Medicine, Xianyang 712046, China; (P.D.); (Y.J.)
| | - Lingling Zhang
- Translational Medicine Center, Hong Hui Hospital, Xi’an Jiaotong University, Xi’an 710054, China; (X.T.); (L.Z.)
| | - Yuqing He
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China;
| | - Hao Yang
- Translational Medicine Center, Hong Hui Hospital, Xi’an Jiaotong University, Xi’an 710054, China; (X.T.); (L.Z.)
| |
Collapse
|
3
|
Chang PR, Liou JW, Chen PY, Gao WY, Wu CL, Wu MJ, Yen JH. The Neuroprotective Effects of Flavonoid Fisetin against Corticosterone-Induced Cell Death through Modulation of ERK, p38, and PI3K/Akt/FOXO3a-Dependent Pathways in PC12 Cells. Pharmaceutics 2023; 15:2376. [PMID: 37896136 PMCID: PMC10610442 DOI: 10.3390/pharmaceutics15102376] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/17/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
The overactive hypothalamic-pituitary-adrenal (HPA) axis is believed to trigger the overproduction of corticosterone, leading to neurotoxicity in the brain. Fisetin is a flavonoid commonly found in fruits and vegetables. It has been suggested to possess various biological activities, including antioxidant, anti-inflammatory, and neuroprotective effects. This study aims to explore the potential neuroprotective properties of fisetin against corticosterone-induced cell death and its underlying molecular mechanism in PC12 cells. Our results indicate that fisetin, at concentrations ranging from 5 to 40 μM, significantly protected PC12 cells against corticosterone-induced cell death. Fisetin effectively reduced the corticosterone-mediated generation of reactive oxygen species (ROS) in PC12 cells. Fisetin treatments also showed potential in inhibiting the corticosterone-induced apoptosis of PC12 cells. Moreover, inhibitors targeting MAPK/ERK kinase 1/2 (MEK1/2), p38 MAPK, and phosphatidylinositol 3-kinase (PI3K) were found to significantly block the increase in cell viability induced by fisetin in corticosterone-treated cells. Consistently, fisetin enhanced the phosphorylation levels of ERK, p38, Akt, and c-AMP response element-binding protein (CREB) in PC12 cells. Additionally, it was found that the diminished levels of p-CREB and p-ERK by corticosterone can be restored by fisetin treatment. Furthermore, the investigation of crosstalk between ERK and CREB revealed that p-CREB activation by fisetin occurred through the ERK-independent pathway. Moreover, we demonstrated that fisetin effectively counteracted the corticosterone-induced nuclear accumulation of FOXO3a, an apoptosis-triggering transcription factor, and concurrently promoted FOXO3a phosphorylation and its subsequent cytoplasmic localization through the PI3K/Akt pathway. In conclusion, our findings indicate that fisetin exerts its neuroprotective effect against corticosterone-induced cell death by modulating ERK, p38, and the PI3K/Akt/FOXO3a-dependent pathways in PC12 cells. Fisetin emerges as a promising phytochemical for neuroprotection.
Collapse
Affiliation(s)
- Pei-Rong Chang
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 970374, Taiwan; (P.-R.C.); (P.-Y.C.)
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien 970374, Taiwan;
| | - Je-Wen Liou
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien 970374, Taiwan;
| | - Pei-Yi Chen
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 970374, Taiwan; (P.-R.C.); (P.-Y.C.)
- Laboratory of Medical Genetics, Genetic Counseling Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970374, Taiwan;
| | - Wan-Yun Gao
- Institute of Medical Sciences, Tzu Chi University, Hualien 970374, Taiwan;
| | - Chia-Ling Wu
- Laboratory of Medical Genetics, Genetic Counseling Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970374, Taiwan;
| | - Ming-Jiuan Wu
- Department of Biotechnology, Chia-Nan University of Pharmacy and Science, Tainan 717301, Taiwan;
| | - Jui-Hung Yen
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 970374, Taiwan; (P.-R.C.); (P.-Y.C.)
- Institute of Medical Sciences, Tzu Chi University, Hualien 970374, Taiwan;
| |
Collapse
|
4
|
Gravandi MM, Abdian S, Tahvilian M, Iranpanah A, Moradi SZ, Fakhri S, Echeverría J. Therapeutic targeting of Ras/Raf/MAPK pathway by natural products: A systematic and mechanistic approach for neurodegeneration. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 115:154821. [PMID: 37119761 DOI: 10.1016/j.phymed.2023.154821] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 04/03/2023] [Accepted: 04/11/2023] [Indexed: 05/21/2023]
Abstract
BACKGROUND Multiple dysregulated pathways are behind the pathogenesis of neurodegenerative diseases (NDDs); however, the crucial targets are still unknown. Oxidative stress, apoptosis, autophagy, and inflammation are the most dominant pathways that strongly influence neurodegeneration. In this way, targeting the Ras/Raf/mitogen-activated protein kinases (MAPKs) pathway appears to be a developing strategy for combating NDDs like Parkinson's disease, Alzheimer's disease, stroke, aging, and other NDDs. Accordingly, plant secondary metabolites have shown promising potentials for the simultaneous modulation of the Ras/Raf/MAPKs pathway and play an essential role in NDDs. MAPKs include p38 MAPK, extracellular signal-regulated kinase 1/2 (ERK 1/2), and c-Jun N-terminal kinase (JNK), which are important molecular players in neurodegeneration. Ras/Raf, which is located the upstream of MAPK pathway influences the initiation and progression of neurodegeneration and is regulated by natural products. PURPOSE Thus, the present study aimed to investigate the neuroprotective roles of plant- and marine-derived secondary metabolites against several NDDs through the modulation of the Ras/Raf/MAPK signaling pathway. STUDY DESIGN AND METHODS A systematic and comprehensive review was performed to highlight the modulatory roles of natural products on the Ras/Raf/MAPK signaling pathway in NDDs, according to the PRISMA guideline, using scholarly electronic databases, including PubMed, Scopus, and Web of Sciences. Associated reference lists were also searched for the literature review. RESULTS From a total of 1495 results, finally 107 articles were included in the present study. The results show that several natural compounds such as alkaloid, phenolic, terpenoids, and nanoformulation were shown to have modulatory effects on the Ras/Raf/MAPKs pathway. CONCLUSION Natural products are promising multi-targeted agents with on NDDs through Ras/Raf/MAPKs pathway. Nevertheless, additional and complementary studies are necessary to check its efficacy and potential side effects.
Collapse
Affiliation(s)
| | - Sadaf Abdian
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Maedeh Tahvilian
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Amin Iranpanah
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Seyed Zachariah Moradi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran; Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran
| | - Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Javier Echeverría
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9170022, Chile.
| |
Collapse
|
5
|
Pharmacological Approaches to Decelerate Aging: A Promising Path. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4201533. [PMID: 35860429 PMCID: PMC9293537 DOI: 10.1155/2022/4201533] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 05/24/2022] [Accepted: 06/26/2022] [Indexed: 11/17/2022]
Abstract
Biological aging or senescence is a course in which cellular function decreases over a period of time and is a consequence of altered signaling mechanisms that are triggered in stressed cells leading to cell damage. Aging is among the principal risk factors for many chronic illnesses such as cancer, cardiovascular disorders, and neurodegenerative diseases. Taking this into account, targeting fundamental aging mechanisms therapeutically may effectively impact numerous chronic illnesses. Selecting ideal therapeutic options in order to hinder the process of aging and decelerate the progression of age-related diseases is valuable. Along therapeutic options, life style modifications may well render the process of aging. The process of aging is affected by alteration in many cellular and signaling pathways amid which mTOR, SIRT1, and AMPK pathways are the most emphasized. Herein, we have discussed the mechanisms of aging focusing mainly on the mentioned pathways as well as the role of inflammation and autophagy in aging. Moreover, drugs and natural products with antiaging properties are discussed in detail.
Collapse
|
6
|
Flavonoids Enhance Lipofection Efficiency and Ameliorate Cytotoxicity in Colon26 and HepG2 Cells via Oxidative Stress Regulation. Pharmaceutics 2022; 14:pharmaceutics14061203. [PMID: 35745776 PMCID: PMC9231055 DOI: 10.3390/pharmaceutics14061203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/01/2022] [Accepted: 06/04/2022] [Indexed: 12/10/2022] Open
Abstract
The generation of reactive oxygen species (ROS) can affect cationic liposome-mediated transfection. In this study, we focused on a specific class of antioxidants, flavonoids, to investigate the transfection efficiency using cationic liposome/plasmid DNA complexes (lipoplexes) in 2D and 3D cultures of Colon26 and HepG2 cells, respectively. All tested flavonoids enhanced the transfection efficiency in 2D Colon26 and HepG2 cells. Among the tested flavonoids, 25 µM quercetin showed the highest promotion effect of 8.4- and 7.6-folds in 2D Colon26 and HepG2 cells, respectively. Transfection was also performed in 3D cultures of Colon26 and HepG2 cells using lipoplexes with quercetin. Quercetin (12.5 µM) showed the highest transfection efficiency at all transfection timings in 3D Colon26 and HepG2 cells with increased cell viability. Flow cytometry revealed that quercetin treatment reduced the population of gene expression-negative cells with high ROS levels and increased the number of gene expression-positive cells with low ROS levels in HepG2 cells. Information from this study can be valuable to develop strategies to promote transfection efficiency and attenuate cytotoxicity using lipoplexes.
Collapse
|
7
|
Acharya S, Misra R. Hypoxia responsive phytonanotheranostics: A novel paradigm towards fighting cancer. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2022; 42:102549. [PMID: 35301157 DOI: 10.1016/j.nano.2022.102549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 02/22/2022] [Accepted: 03/02/2022] [Indexed: 06/14/2023]
Abstract
Hypoxia enhances tumor aggressiveness, thereby reducing the efficacy of anticancer therapies. Phytomedicine, which is nowadays considered as the new panacea owing to its dynamic physiological properties, is often plagued by shortcomings. Incorporating these wonder drugs in nanoparticles (phytonanomedicine) for hypoxia therapy is a new prospect in the direction of cancer management. Similarly, the concept of phytonanotheranostics for the precise tumor lesion detection and treatment monitoring in the hypoxic scenario is going on a rampant speed. In the same line, smart nanoparticles which step in for "on-demand" drug release based on internal or external stimuli are also being explored as a new tool for cancer management. However, studies regarding these smart and tailor-made nanotheranostics in the hypoxic tumor microenvironment are very limited. The present review is an attempt to collate these smart stimuli-responsive phytonanotherapeutics in one place for initiating future research in this upcoming field for better cancer treatment.
Collapse
Affiliation(s)
- Sarbari Acharya
- School of Applied Sciences, Kalinga Institute of Industrial Technology, Bhubaneswar, Odisha, India.
| | - Ranjita Misra
- Centre for Nanoscience and Nanotechnology, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India.
| |
Collapse
|
8
|
Zeng M, Shao C, Zhou H, He Y, Li W, Zeng J, Zhao X, Yang J, Wan H. Protocatechudehyde improves mitochondrial energy metabolism through the HIF1α/PDK1 signaling pathway to mitigate ischemic stroke-elicited internal capsule injury. JOURNAL OF ETHNOPHARMACOLOGY 2021; 277:114232. [PMID: 34044078 DOI: 10.1016/j.jep.2021.114232] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 05/13/2021] [Accepted: 05/20/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The internal capsule is vulnerable to ischemia, and mild ischemic stroke often results in lesion of the internal capsule, manifested as contralateral hemiplegia. Protocatechudehyde (PCA), a potential neuroprotective agent, has shown therapeutic effects in the study of a variety of nervous system diseases, including ischemic stroke. AIM OF THE STUDY The aim of this study was to evaluate the effects of PCA on cerebral ischemia reperfusion (CI/R)-elicited internal capsule injury and to elucidate the role of mitochondrial energy metabolism in the underlying mechanism of neuroprotective effects on ischemic stroke. MATERIALS AND METHODS A rat tMCAO model was established to investigate the therapeutic effects of intravenous PCA (20, 40, and 80 mg/kg, once per day, continued for 7 days) on CI/R-induced internal capsule injury and the regulation of PCA on molecules related to mitochondrial energy metabolism. In vitro, an OGD/R model of PC12 cells was established to further verify the therapeutic mechanism of PCA. RESULTS Results showed that PCA dose-dependently attenuated neurological deficit, reduced cerebral infarction, alleviated histopathological damage, and improved mitochondrial ultrastructure of the internal capsule after CI/R. Moreover, PCA reversed the upregulation of HIF1α, PDK1 and pPDHA1 expression induced by CI/R and significantly increased the content of acetyl-CoA, ATP, and the activity of ATP synthase. In vitro, PCA treatment promoted cell survival, inhibited apoptosis, attenuated the dissipation of mitochondrial membrane potential in OGD/R-treated PC12 cells, and these therapeutic effects were reversed by the combination of cobalt chloride (CoCl2), a specific pharmacological inducer of HIF1a expression. CONCLUSIONS These results indicate that PCA exerts a protective effect against CI/R-induced internal capsule injury and improves mitochondrial energy metabolism in the internal capsule, and the mechanism is associated with the inhibition of HIF1α/PDK1 signaling pathway.
Collapse
Affiliation(s)
- Miaolin Zeng
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, PR China
| | - Chongyu Shao
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, 310053, PR China
| | - Huifen Zhou
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, 310053, PR China
| | - Yu He
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, PR China
| | - Wentao Li
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, PR China
| | - Jieqiong Zeng
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, PR China
| | - Xixi Zhao
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, PR China
| | - Jiehong Yang
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, PR China.
| | - Haitong Wan
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, PR China; College of Life Science, Zhejiang Chinese Medical University, Hangzhou, 310053, PR China.
| |
Collapse
|
9
|
Cloacal temperature responses of broiler chickens administered with fisetin and probiotic ( Saccharomyces cerevisiae) and exposed to heat stress. EXPERIMENTAL RESULTS 2021. [DOI: 10.1017/exp.2021.15] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Abstract
There is dearth information on the role of fisetin as an antistress agent in ameliorating heat stress in broiler chickens. Here, we experimentally compared probiotic, an antioxidant and antistress agent, with fisetin, an antioxidant agent with little or no report on its antistress effect. Sixty-day-old broiler chickens (Arbo Acre breed) were allotted into 4 groups of 15 birds each as follows; control, fisetin, probiotic, and fisetin + probiotic groups, respectively. All administrations were performed orally through gavage for the treatment groups. The environmental and cloacal temperature (CT) parameters were measured bi-hourly at Days 21, 28, and 35 from 7:00 to 7:00 hr, during the period of study. The environmental parameters exceeded the thermoneutral zone for broiler chickens. The probiotic-supplemented group had the least overall mean CT values all through the experimental period. Based on our findings, fisetin was not a potent antistress agent in mitigating heat stress in birds.
Collapse
|
10
|
Fakhri S, Iranpanah A, Gravandi MM, Moradi SZ, Ranjbari M, Majnooni MB, Echeverría J, Qi Y, Wang M, Liao P, Farzaei MH, Xiao J. Natural products attenuate PI3K/Akt/mTOR signaling pathway: A promising strategy in regulating neurodegeneration. PHYTOMEDICINE 2021; 91:153664. [PMID: 34391082 DOI: 10.1016/j.phymed.2021.153664] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 07/04/2021] [Accepted: 07/12/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND As common, progressive, and chronic causes of disability and death, neurodegenerative diseases (NDDs) significantly threaten human health, while no effective treatment is available. Given the engagement of multiple dysregulated pathways in neurodegeneration, there is an imperative need to target the axis and provide effective/multi-target agents to tackle neurodegeneration. Recent studies have revealed the role of phosphoinositide 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) in some diseases and natural products with therapeutic potentials. PURPOSE This is the first systematic and comprehensive review on the role of plant-derived secondary metabolites in managing and/or treating various neuronal disorders via the PI3K/Akt/mTOR signaling pathway. STUDY DESIGN AND METHODS A systematic and comprehensive review was done based on the PubMed, Scopus, Web of Science, and Cochrane electronic databases. Two independent investigators followed the PRISMA guidelines and included papers on PI3K/Akt/mTOR and interconnected pathways/mediators targeted by phytochemicals in NDDs. RESULTS Natural products are multi-target agents with diverse pharmacological and biological activities and rich sources for discovering and developing novel therapeutic agents. Accordingly, recent studies have shown increasing phytochemicals in combating Alzheimer's disease, aging, Parkinson's disease, brain/spinal cord damages, depression, and other neuronal-associated dysfunctions. Amongst the emerging targets in neurodegeneration, PI3K/Akt/mTOR is of great importance. Therefore, attenuation of these mediators would be a great step towards neuroprotection in such NDDs. CONCLUSION The application of plant-derived secondary metabolites in managing and/or treating various neuronal disorders through the PI3K/Akt/mTOR signaling pathway is a promising strategy towards neuroprotection.
Collapse
Affiliation(s)
- Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran.
| | - Amin Iranpanah
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | | | - Seyed Zachariah Moradi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran; Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran.
| | - Mohammad Ranjbari
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | | | - Javier Echeverría
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile.
| | - Yaping Qi
- Purdue Quantum Science and Engineering Institute, Purdue University, West Lafayette, IN 47907, USA.
| | - Mingfu Wang
- School of Biological Sciences, The University of Hong Kong, Hong Kong, PR China.
| | - Pan Liao
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA.
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran.
| | - Jianbo Xiao
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, China; Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, E-32004 Ourense, Spain.
| |
Collapse
|
11
|
Iside C, Scafuro M, Nebbioso A, Altucci L. SIRT1 Activation by Natural Phytochemicals: An Overview. Front Pharmacol 2020; 11:1225. [PMID: 32848804 PMCID: PMC7426493 DOI: 10.3389/fphar.2020.01225] [Citation(s) in RCA: 124] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 07/27/2020] [Indexed: 12/22/2022] Open
Abstract
Sirtuins are class III histone deacetylases, whose enzymatic activity is dependent on NAD+ as a cofactor. Sirtuins are reported to modulate numerous activities by controlling gene expression, DNA repair, metabolism, oxidative stress response, mitochondrial function, and biogenesis. Deregulation of their expression and/or action may lead to tissue-specific degenerative events involved in the development of several human pathologies, including cancer, neurodegeneration, and cardiovascular disease. The most studied member of this class of enzymes is sirtuin 1 (SIRT1), whose expression is associated with increasing insulin sensitivity. SIRT1 has been implicated in both tumorigenic and anticancer processes, and is reported to regulate essential metabolic pathways, suggesting that its activation might be beneficial against disorders of the metabolism. Via regulation of p53 deacetylation and modulation of autophagy, SIRT1 is implicated in cellular response to caloric restriction and lifespan extension. In recent years, scientific interest focusing on the identification of SIRT1 modulators has led to the discovery of novel small molecules targeting SIRT1 activity. This review will examine compounds of natural origin recently found to upregulate SIRT1 activity, such as polyphenolic products in fruits, vegetables, and plants including resveratrol, fisetin, quercetin, and curcumin. We will also discuss the potential therapeutic effects of these natural compounds in the prevention and treatment of human disorders, with particular emphasis on their metabolic impact.
Collapse
Affiliation(s)
- Concetta Iside
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Marika Scafuro
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Angela Nebbioso
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Lucia Altucci
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
12
|
Luo H, Sun W, Shao J, Ma H, Jia Z, Jing L. Protective effect of nitronyl nitroxide against hypoxia-induced damage in PC12 cells. Biochem Cell Biol 2020; 98:345-353. [PMID: 31689131 DOI: 10.1139/bcb-2019-0269] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Hypoxia induces cellular oxidative stress that is associated with neurodegenerative diseases. HPN (4'-hydroxyl-2-substituted phenyl nitronyl nitroxide), a stable nitronyl nitroxide, has excellent free radical scavenging properties. The purpose of this study was to investigate the protective effects of HPN on hypoxia-induced damage in PC12 cells. It was shown that HPN significantly attenuated hypoxia-induced loss of cell viability, release of lactate dehydrogenase (LDH), and morphological changes in PC12 cells. Moreover, hypoxic PC12 cells had increased levels of reactive oxygen species (ROS), malondialdehyde (MDA), and expression of HIF-1α and VEGF, but had reduced levels of superoxide dismutase (SOD) and catalase (CAT), and HPN reversed these changes. HPN also inhibited hypoxia-induced cell apoptosis via suppressing the expression of Bax, cytochrome c, and caspase-3, and inducing the expression of Bcl-2. These results indicate that the protective effects of HPN on hypoxia-induced damage in PC12 cells is associated with the suppression of hypoxia-induced oxidative stress and cell apoptosis. HPN could be a promising candidate for the development of a novel neuroprotective agent.
Collapse
Affiliation(s)
- Hongbo Luo
- Department of Neurology, the Fifth Affiliated Hospital of Zunyi Medical University, Zhuhai, Guangdong, 519000, People's Republic of China
| | - Wei Sun
- Department of Pharmacy, the 940th Hospital of Joint Logistics Support force of PLA, 333 Binhenan Road, Qilihe district Lanzhou, Gansu, 730050, People's Republic of China
| | - Jin Shao
- Department of Pharmacy, the 940th Hospital of Joint Logistics Support force of PLA, 333 Binhenan Road, Qilihe district Lanzhou, Gansu, 730050, People's Republic of China
| | - Huiping Ma
- Department of Pharmacy, the 940th Hospital of Joint Logistics Support force of PLA, 333 Binhenan Road, Qilihe district Lanzhou, Gansu, 730050, People's Republic of China
| | - Zhengping Jia
- Department of Pharmacy, the 940th Hospital of Joint Logistics Support force of PLA, 333 Binhenan Road, Qilihe district Lanzhou, Gansu, 730050, People's Republic of China
| | - Linlin Jing
- Department of Pharmacy, the 940th Hospital of Joint Logistics Support force of PLA, 333 Binhenan Road, Qilihe district Lanzhou, Gansu, 730050, People's Republic of China
| |
Collapse
|
13
|
c-Mpl and TPO expression in the human central nervous system neurons inhibits neuronal apoptosis. Aging (Albany NY) 2020; 12:7397-7410. [PMID: 32341206 PMCID: PMC7202501 DOI: 10.18632/aging.103086] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 04/13/2020] [Indexed: 12/11/2022]
Abstract
Thrombopoietin (TPO) is a growth factor for the megakaryocytic/platelet lineage. In this study, we investigated the expression of TPO and its receptor, c-Mpl, in the human central nervous system (CNS) and their roles after a neural insult. Our results demonstrate that both TPO and c-Mpl are expressed in the neurons of the human CNS. TPO was also detected in human cerebrospinal fluid. TPO was found to be neuroprotective in hypoxic-ischemic neonatal rat brain models. In these rat models, treatment with TPO reduced brain damage and improved sensorimotor functions. In addition, TPO promoted C17.2 cell proliferation through activation of the PI3K/Akt signaling pathway. Via the Bcl-2/BAX signaling pathway, TPO exerted an antiapoptotic effect by suppressing mitochondrial membrane potentials. Taken together, our results indicate that TPO is neuroprotective in the CNS.
Collapse
|
14
|
Long L, Han X, Ma X, Li K, Liu L, Dong J, Qin B, Zhang K, Yang K, Yan H. Protective effects of fisetin against myocardial ischemia/reperfusion injury. Exp Ther Med 2020; 19:3177-3188. [PMID: 32266013 PMCID: PMC7132235 DOI: 10.3892/etm.2020.8576] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 10/08/2019] [Indexed: 12/13/2022] Open
Abstract
The underlying mechanism of the myocardial protective effect of fisetin was studied in a rat ischemia/reperfusion injury model. Sprague-Dawley rats were randomly assigned to seven groups and pretreated with different solutions by gavage administration. A rat model of cardiac ischemia/reperfusion injury was established. Plasma levels of Von Willebrand factor (vWF) were determined by ELISA, flow cytometry was used to determine the level of cardiomyocyte apoptosis and 2,3,5-triphenyltetrazolium staining was used to determine the size of myocardial infarcts. Hematoxylin and eosin-stained sections of myocardial tissues were examined for pathological changes. Expressions of nuclear factor (NF)-κB and matrix metallopeptidase 9 (MMP-9) were measured by immunohistochemistry. Compared with the model group, rats pretreated with fisetin, quercetin and aspirin showed significant prolongation of clotting time, prothrombin time, thrombin time and activated partial thromboplastin time. Fisetin treatment better maintained the integrity of myocardial fibers and nuclear integrity, reduced the percentage of apoptotic myocardial cells, inhibited expression of NF-κB, decreased the loss of MMP-9 and reduced nuclear translocation of NF-kB. Rats pretreated with fisetin also demonstrated a significant decrease in plasma levels of vWF. In addition, the protective effect of fisetin on myocardial cells was found to be dose dependent.
Collapse
Affiliation(s)
- Lihui Long
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi 710077, P.R. China
| | - Xuliang Han
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi 710077, P.R. China
| | - Xingming Ma
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi 710077, P.R. China
| | - Kai Li
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi 710077, P.R. China
| | - Linjie Liu
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi 710077, P.R. China
| | - Juanni Dong
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi 710077, P.R. China
| | - Bei Qin
- Department of Pharmacology, College of Pharmacy of Xi'an Medical University, Xi'an, Shaanxi 710061, P.R. China
| | - Kelin Zhang
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi 710077, P.R. China
| | - Kuan Yang
- Department of Pharmacology, College of Pharmacy of Xi'an Medical University, Xi'an, Shaanxi 710061, P.R. China
| | - Honglin Yan
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi 710077, P.R. China
| |
Collapse
|
15
|
Yang C, Zhang X, Yin H, Du Z, Yang Z. MiR-429/200a/200b negatively regulate Notch1 signaling pathway to suppress CoCl 2-induced apoptosis in PC12 cells. Toxicol In Vitro 2020; 65:104787. [PMID: 32004541 DOI: 10.1016/j.tiv.2020.104787] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 01/11/2020] [Accepted: 01/28/2020] [Indexed: 12/11/2022]
Abstract
Neuronal apoptosis is a central hallmark of cerebral ischemia, which is serious threats to human health. Notch1 signaling pathway and three members of miR-200 family, miR-429, miR-200a and miR-200b, are reported to have tight connection with hypoxia-induced injury. However, their mutual regulation relationship and their roles in neuronal apoptosis caused by hypoxia are rarely reported. In the present study, differentiated pheochromocytoma (PC12) cells were treated with chemical hypoxia inducer, cobalt chloride (CoCl2) to establish in vitro neuronal hypoxia model. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay, Western blot assay and Hoechst staining indicated that CoCl2 caused apoptosis of PC12 cells along with the activation of Notch1 signallilng pathway. The treatment of N-[N-(3,5-difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butylester (DAPT) inhibited Notch1 signaling pathway and attenuated the apoptosis induced by CoCl2. Real-time polymerase chain reaction (RT-PCR) showed that expressions of miR-429/200a/200b were dynamically changed during the treatment of CoCl2, and significantly decreased after 12-hour treatment of CoCl2. Overexpression of miR-429/200a/200b inhibited the Notch1 signaling pathway and suppressed CoCl2-induced apoptosis in PC12 cells. These results may clarify the roles of miR-429/200a/200b and Notch1 signaling pathway in hypoxia-induced nerve injury and provide a new theoretical basis to relieve nerve injury.
Collapse
Affiliation(s)
- Chunxiao Yang
- College of Medicine, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for Ministry of Education, Nankai University, Tianjin 300071, China
| | - Xiaochen Zhang
- College of Medicine, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for Ministry of Education, Nankai University, Tianjin 300071, China
| | - Hongqiang Yin
- College of Medicine, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for Ministry of Education, Nankai University, Tianjin 300071, China
| | - Zhanqiang Du
- College of Medicine, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for Ministry of Education, Nankai University, Tianjin 300071, China
| | - Zhuo Yang
- College of Medicine, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for Ministry of Education, Nankai University, Tianjin 300071, China.
| |
Collapse
|
16
|
Zilony-Hanin N, Rosenberg M, Richman M, Yehuda R, Schori H, Motiei M, Rahimipour S, Groisman A, Segal E, Shefi O. Neuroprotective Effect of Nerve Growth Factor Loaded in Porous Silicon Nanostructures in an Alzheimer's Disease Model and Potential Delivery to the Brain. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1904203. [PMID: 31482695 DOI: 10.1002/smll.201904203] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Indexed: 06/10/2023]
Abstract
Nerve growth factor (NGF) plays a vital role in reducing the loss of cholinergic neurons in Alzheimer's disease (AD). However, its delivery to the brain remains a challenge. Herein, NGF is loaded into degradable oxidized porous silicon (PSiO2 ) carriers, which are designed to carry and continuously release the protein over a 1 month period. The released NGF exhibits a substantial neuroprotective effect in differentiated rat pheochromocytoma PC12 cells against amyloid-beta (Aβ)-induced cytotoxicity, which is associated with Alzheimer's disease. Next, two potential localized administration routes of the porous carriers into murine brain are investigated: implantation of PSiO2 chips above the dura mater, and biolistic bombardment of PSiO2 microparticles through an opening in the skull using a pneumatic gene gun. The PSiO2 -implanted mice are monitored for a period of 8 weeks and no inflammation or adverse effects are observed. Subsequently, a successful biolistic delivery of these highly porous microparticles into a live-mouse brain is demonstrated for the first time. The bombarded microparticles are observed to penetrate the brain and reach a depth of 150 µm. These results pave the way for using degradable PSiO2 carriers as potential localized delivery systems for NGF to the brain.
Collapse
Affiliation(s)
- Neta Zilony-Hanin
- Faculty of Engineering, Bar-Ilan University, Ramat-Gan, 5290002, Israel
- Bar-Ilan Institute of Nanotechnologies and Advanced Materials, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Michal Rosenberg
- Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Michal Richman
- Department of Chemistry, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Ronen Yehuda
- Department of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Hadas Schori
- Faculty of Engineering, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Menachem Motiei
- Faculty of Engineering, Bar-Ilan University, Ramat-Gan, 5290002, Israel
- Bar-Ilan Institute of Nanotechnologies and Advanced Materials, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Shai Rahimipour
- Department of Chemistry, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Alexander Groisman
- Department of Physics, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Ester Segal
- Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
- Russell Berrie Nanotechnology Institute, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Orit Shefi
- Faculty of Engineering, Bar-Ilan University, Ramat-Gan, 5290002, Israel
- Bar-Ilan Institute of Nanotechnologies and Advanced Materials, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| |
Collapse
|
17
|
Sumanu VO, Aluwong T, Ayo JO, Ogbuagu NE. Evaluation of changes in tonic immobility, vigilance, malondialdehyde, and superoxide dismutase in broiler chickens administered fisetin and probiotic (Saccharomyces cerevisiae) and exposed to heat stress. J Vet Behav 2019. [DOI: 10.1016/j.jveb.2019.01.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
18
|
Zhang H, Zheng W, Feng X, Yang F, Qin H, Wu S, Hou DX, Chen J. Nrf2⁻ARE Signaling Acts as Master Pathway for the Cellular Antioxidant Activity of Fisetin. Molecules 2019; 24:molecules24040708. [PMID: 30781396 PMCID: PMC6413105 DOI: 10.3390/molecules24040708] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 02/12/2019] [Accepted: 02/12/2019] [Indexed: 12/22/2022] Open
Abstract
Fisetin, a dietary flavonoid, is reported to have cellular antioxidant activity with an unclear mechanism. In this study, we investigated the effect of fisetin on the nuclear factor, erythroid 2-like 2 (Nrf2) signaling pathway in HepG2 cells to explore the cellular antioxidant mechanism. Fisetin upregulated the mRNA expression of heme oxygenase-1 (HO-1), glutamate-cysteine ligase catalytic subunit (GCLC), glutamate-cysteine ligase modifier subunit (GCLM), and NAD(P)H quinone oxidoreductase-1 (NQO1), and induced the protein of HO-1 but had no significant effect on the protein of GCLC, GCLM and NQO1. Moreover, nuclear accumulation of Nrf2 was clearly observed by immunofluorescence analysis and western blotting after fisetin treatment, and an enhanced luciferase activity of antioxidant response element (ARE)-regulated transactivation was obtained by dual-luciferase reporter gene assays. In addition, fisetin upregulated the protein level of Nrf2 and downregulated the protein level of Kelch-like ECH-associated protein 1 (Keap1). However, fisetin had no significant effect on Nrf2 mRNA expression. When protein synthesis was inhibited with cycloheximide (CHX), fisetin prolonged the half-life of Nrf2 from 15 min to 45 min. When blocking Nrf2 degradation with proteasome inhibitor MG132, ubiquitinated proteins were enhanced, and fisetin reduced ubiquitination of Nrf2. Taken together, fisetin translocated Nrf2 into the nucleus and upregulated the expression of downstream HO-1 gene by inhibiting the degradation of Nrf2 at the post-transcriptional level. These data provide the molecular mechanism to understand the cellular antioxidant activity of fisetin.
Collapse
Affiliation(s)
- Huihui Zhang
- Xiangya School of Public Health, Central South University, Changsha 410128, China.
| | - Wan Zheng
- Xiangya School of Public Health, Central South University, Changsha 410128, China.
| | - Xiangling Feng
- Xiangya School of Public Health, Central South University, Changsha 410128, China.
| | - Fei Yang
- Xiangya School of Public Health, Central South University, Changsha 410128, China.
| | - Hong Qin
- Xiangya School of Public Health, Central South University, Changsha 410128, China.
| | - Shusong Wu
- 1515 Core Research Program, Hunan Co-Innovation Center for Utilization of Botanical Functional Ingredients, Changsha 410128, China.
| | - De-Xing Hou
- 1515 Core Research Program, Hunan Co-Innovation Center for Utilization of Botanical Functional Ingredients, Changsha 410128, China.
- Course of Biological Science and Technology, The United Graduate School of Agricultural Sciences, Department of Food Science and Biotechnology, Faculty of Agriculture, Kagoshima University, Korimoto 1-21-24, Kagoshima 890-0065, Japan.
| | - Jihua Chen
- Xiangya School of Public Health, Central South University, Changsha 410128, China.
- 1515 Core Research Program, Hunan Co-Innovation Center for Utilization of Botanical Functional Ingredients, Changsha 410128, China.
| |
Collapse
|
19
|
Watanabe R, Kurose T, Morishige Y, Fujimori K. Protective Effects of Fisetin Against 6-OHDA-Induced Apoptosis by Activation of PI3K-Akt Signaling in Human Neuroblastoma SH-SY5Y Cells. Neurochem Res 2017; 43:488-499. [PMID: 29204750 DOI: 10.1007/s11064-017-2445-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 11/23/2017] [Accepted: 11/30/2017] [Indexed: 01/26/2023]
Abstract
6-Hydroxydopamine (6-OHDA) induces the production of reactive oxygen species (ROS) that are associated with various neurodegenerative diseases such as Parkinson's disease. 3,3',4',7-Tetrahydroxyflavone (fisetin), a plant flavonoid has a variety of physiological effects such as antioxidant activity. In this study, we investigated the molecular mechanism of the neuroprotective effects of fisetin against 6-OHDA-induced cell death in human neuroblastoma SH-SY5Y cells. 6-OHDA-mediated cell toxicity was reduced in a fisetin concentration-dependent manner. 6-OHDA-mediated elevation of the expression of the oxidative stress-related genes such as hemeoxygenase-1, NAD(P)H dehydrogenase quinone 1, NF-E2-related factor 2, and γ-glutamate-cysteine ligase modifier was suppressed by fisetin. Fisetin also lowered the ratio of the proapoptotic Bax protein and the antiapoptotic Bcl-2 protein in SH-SY5Y cells. Moreover, fisetin effectively suppressed 6-OHDA-mediated activation of caspase-3 and caspase-9, which leads to the cell death, while, 6-OHDA-induced caspase-3/7 activity was lowered. Furthermore, fisetin activated the PI3K-Akt signaling, which inhibits the caspase cascade, and fisetin-mediated inhibition of 6-OHDA-induced cell death was negated by the co-treatment with an Akt inhibitor. These results indicate that fisetin protects 6-OHDA-induced cell death by activating PI3K-Akt signaling in human neuronal SH-SY5Y cells. This is the first report that the PI3K-Akt signaling is involved in the fisetin-protected ROS-mediated neuronal cell death.
Collapse
Affiliation(s)
- Ryoko Watanabe
- Laboratory of Pathobiochemistry, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan
| | - Takumi Kurose
- Laboratory of Pathobiochemistry, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan
| | - Yuta Morishige
- Laboratory of Biodefense and Regulation, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan.,Research Institute of Tuberculosis, 3-1-24 Matsuyama, Kiyose, Tokyo, 204-8533, Japan
| | - Ko Fujimori
- Laboratory of Pathobiochemistry, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan.
| |
Collapse
|
20
|
Antioxidant properties of the flavonoid fisetin: An updated review of in vivo and in vitro studies. Trends Food Sci Technol 2017. [DOI: 10.1016/j.tifs.2017.10.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
21
|
Liu L, Liu W, Wang L, Zhu T, Zhong J, Xie N. Hypoxia-inducible factor 1 mediates intermittent hypoxia-induced migration of human breast cancer MDA-MB-231 cells. Oncol Lett 2017; 14:7715-7722. [PMID: 29250173 PMCID: PMC5727604 DOI: 10.3892/ol.2017.7223] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 07/07/2017] [Indexed: 02/05/2023] Open
Abstract
Metastasis is the major cause of triple-negative breast cancer (TNBC)-associated mortality. Hypoxia promotes cancer cell migration and remote metastasis, which occur with hypoxia inducible factor 1α (HIF-1α) stabilization and vimentin upregulation. However, the evolutionary dynamics that link the changes in HIF-1α and vimentin levels under hypoxic conditions are not well understood. In the present study, the effects of intermittent hypoxia (IH), continuous hypoxia (CH) and normoxia on the migration and proliferation of human TNBC MDA-MB-231 cells were investigated. The results demonstrated that IH significantly increased the migration of MDA-MB-231 cells, and this effect was dependent on the number of cycles of hypoxia-reoxygenation. Unexpectedly, IH significantly inhibited cell proliferation, while CH only caused such an effect if hypoxia extended for ≥3 days. IH and CH induced HIF-1α protein accumulation and vimentin upregulation, with a greater effect observed in IH. Knockdown of HIF-1α with siRNA abolished IH-induced cell migration and vimentin upregulation. In summary, multiple cycles of hypoxia and reoxygenation have a more pronounced effect on the promotion of TNBC invasiveness than CH; HIF-1α activation and downstream vimentin upregulation may account for this phenotypic change.
Collapse
Affiliation(s)
- Litao Liu
- The Central Laboratory, Shenzhen Second People's Hospital, Shenzhen University First Affiliated Hospital, Shenzhen, Guangdong 518035, P.R. China
- Institute of Translation Medicine, Shenzhen Second People's Hospital, Shenzhen University First Affiliated Hospital, Shenzhen, Guangdong 518035, P.R. China
| | - Wenlan Liu
- The Central Laboratory, Shenzhen Second People's Hospital, Shenzhen University First Affiliated Hospital, Shenzhen, Guangdong 518035, P.R. China
| | - Lili Wang
- The Central Laboratory, Shenzhen Second People's Hospital, Shenzhen University First Affiliated Hospital, Shenzhen, Guangdong 518035, P.R. China
- Graduate School, Guangdong Medical College, Dongguan, Guangdong 523808, P.R. China
| | - Ting Zhu
- The Central Laboratory, Shenzhen Second People's Hospital, Shenzhen University First Affiliated Hospital, Shenzhen, Guangdong 518035, P.R. China
- Graduate School, Guangzhou Medical University, Guangzhou, Guangdong 511436, P.R. China
| | - Jianhua Zhong
- The Central Laboratory, Shenzhen Second People's Hospital, Shenzhen University First Affiliated Hospital, Shenzhen, Guangdong 518035, P.R. China
- Graduate School, Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | - Ni Xie
- The Central Laboratory, Shenzhen Second People's Hospital, Shenzhen University First Affiliated Hospital, Shenzhen, Guangdong 518035, P.R. China
- Institute of Translation Medicine, Shenzhen Second People's Hospital, Shenzhen University First Affiliated Hospital, Shenzhen, Guangdong 518035, P.R. China
- Correspondence to: Dr Ni Xie, Institute of Translation Medicine, Shenzhen Second People's Hospital, Shenzhen University First Affiliated Hospital, Shenzhen, Guangdong 518035, P.R. China, E-mail:
| |
Collapse
|
22
|
Yen JH, Wu PS, Chen SF, Wu MJ. Fisetin Protects PC12 Cells from Tunicamycin-Mediated Cell Death via Reactive Oxygen Species Scavenging and Modulation of Nrf2-Driven Gene Expression, SIRT1 and MAPK Signaling in PC12 Cells. Int J Mol Sci 2017; 18:ijms18040852. [PMID: 28420170 PMCID: PMC5412436 DOI: 10.3390/ijms18040852] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Revised: 03/26/2017] [Accepted: 04/12/2017] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Fisetin (3,7,3',4'-tetrahydroxyflavone) is a dietary flavonol and exhibits antioxidant, anti-inflammatory, and neuroprotective activities. However, high concentration of fisetin is reported to produce reactive oxygen species (ROS), induce endoplasmic reticulum (ER) stress and cause cytotoxicity in cancer cells. The aim of this study is to investigate the cytoprotective effects of low concentration of fisetin against tunicamycin (Tm)-mediated cytotoxicity in neuronal-like catecholaminergic PC12 cells. METHODS Cell viability was assayed by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) and apoptotic and autophagic markers were analyzed by Western blot. Gene expression of unfolded protein response (UPR) and Phase II enzymes was further investigated using RT-Q-PCR or Western blotting. Intracellular ROS level was measured using 2',7'-dichlorodihydrofluorescein diacetate (H₂DCFDA) by a fluorometer. The effects of fisetin on mitogen activated protein kinases (MAPKs) and SIRT1 (Sirtuin 1) signaling pathways were examined using Western blotting and specific inhibitors. RESULTS Fisetin (<20 µM) restored cell viability and repressed apoptosis, autophagy and ROS production in Tm-treated cells. Fisetin attenuated Tm-mediated expression of ER stress genes, such as glucose-regulated proteins 78 (GRP78), C/EBP homologous protein (CHOP also known as GADD153) and Tribbles homolog 3 (TRB3), but induced the expression of nuclear E2 related factor (Nrf)2-targeted heme oxygenase (HO)-1, glutamate cysteine ligase (GCL) and cystine/glutamate transporter (xCT/SLC7A11), in both the presence and absence of Tm. Moreover, fisetin enhanced phosphorylation of ERK (extracellular signal-regulated kinase), JNK (c-JUN NH₂-terminal protein kinase), and p38 MAPK. Addition of JNK and p38 MAPK inhibitor significantly antagonized its cytoprotective activity and modulatory effects on UPR. Fisetin also restored Tm-inhibited SIRT1 expression and addition of sirtinol (SIRT1 activation inhibitor) significantly blocked fisetin-mediated cytoprotection. In conclusion, this result shows that fisetin activates Nrf2, MAPK and SIRT1, which may elicit adaptive cellular stress response pathways so as to protect cells from Tm-induced cytotoxicity.
Collapse
Affiliation(s)
- Jui-Hung Yen
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 970, Taiwan.
| | - Pei-Shan Wu
- Department of Biotechnology, Chia Nan University of Pharmacy and Science, Tainan 717, Taiwan.
| | - Shu-Fen Chen
- Department of Health and Nutrition, Chia Nan University of Pharmacy and Science, Tainan 717, Taiwan.
| | - Ming-Jiuan Wu
- Department of Biotechnology, Chia Nan University of Pharmacy and Science, Tainan 717, Taiwan.
| |
Collapse
|
23
|
Wang N, Yao F, Li K, Zhang L, Yin G, Du M, Wu B. Fisetin regulates astrocyte migration and proliferation in vitro. Int J Mol Med 2017; 39:783-790. [PMID: 28204814 PMCID: PMC5360439 DOI: 10.3892/ijmm.2017.2890] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 01/12/2017] [Indexed: 11/20/2022] Open
Abstract
Fisetin (3,3′,4′,7-tetrahydroxyflavone) is a plant flavonol found in fruits and vegetables that has been reported to inhibit migration and proliferation in several types of cancer. Reactive astrogliosis involves astrocyte migration and proliferation, and contributes to the formation of glial scars in central nervous system (CNS) disorders. However, the effect of fisetin on the migration and proliferation of astrocytes remains unclear. In this study, we found that fisetin inhibited astrocyte migration in a scratch-wound assay and diminished the phosphorylation of focal adhesion kinase (FAK; Tyr576/577 and paxillin (Tyr118). It also suppressed cell proliferation, as indicated by the decreased number of 5-ethynyl-2′-deoxyuridine (EdU)-positive cells, induced cell cycle arrest in the G1 phase, reduced the percentage of cells in the G2 and S phase (as measured by flow cytometry), and decreased cyclin D1 expression, but had no effect on apoptosis. Fisetin also decreased the phosphorylation levels of Akt and extracellular signal-regulated kinase (Erk)1/2, but had no effect on the phosphorylation of p38 mitogen-activated protein kinase (MAPK). These results indicate that fisetin inhibits aggressive cell phenotypes by suppressing cell migration and proliferation via the Akt/Erk signaling pathway. Fisetin may thus have potential for use as a therapeutic strategy targeting reactive astrocytes, which may lead to the inhibition of glial scar formation in vitro.
Collapse
Affiliation(s)
- Nan Wang
- Research Center of Clinical Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Fang Yao
- Research Center of Clinical Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Ke Li
- Research Center of Clinical Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Lanlan Zhang
- Research Center of Clinical Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Guo Yin
- Research Center of Clinical Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Mingjun Du
- Research Center of Clinical Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Bingyi Wu
- Research Center of Clinical Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| |
Collapse
|
24
|
Chu B, Chen C, Li J, Chen X, Li Y, Tang W, Jin L, Zhang Y. Effects of Tibetan turnip (Brassica rapa L.) on promoting hypoxia-tolerance in healthy humans. JOURNAL OF ETHNOPHARMACOLOGY 2017; 195:246-254. [PMID: 27856303 DOI: 10.1016/j.jep.2016.11.028] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Revised: 10/25/2016] [Accepted: 11/13/2016] [Indexed: 06/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Tibetan turnip (Brassica rapa L.), widely distributed in Tibet region, is an edible and medical plant with effects of "tonic and anti-hypoxia" "heat-clearing and detoxification" and "alleviating fatigue" according to traditional Tibetan medical books. AIM OF THE STUDY This research systematically studied the effects of Tibetan turnip on promoting hypoxia-tolerance in humans and the mechanisms. MATERIALS AND METHODS A 7-d, self-control and single-blind human feeding trial was conducted among 27 healthy subjects with 8 males and 10 females in feeding group fed with 7.5g turnip powder 2 times daily while 4 males and 5 females in control group fed with 7.5g radish powder twice a day. Subjects were required to undergo a hypoxia tolerance test (7.1% O2) and a cardiopulmonary function evaluation (Bruce treadmill protocol) before (1st day) and after (9th day) the trial. Simultaneously, the anti-oxidative activities (SOD, CAT, GSH-Px, MDA), routine and biochemical analyses of blood samples were evaluated. RESULTS The females' SpO2 increased significantly by 6.4% at the end of the hypoxia tolerance test after taking turnips (p<0.05), and the hypoxia symptoms in most of the subjects were alleviated as well. The anaerobic threshold, peak O2 pulse and peak VO2/kg were significantly improved after 7-d turnip consumption during the Bruce treadmill test (p<0.05). As for the blood analysis, anti-oxidative activities were boosted effectively after the 7-d treatments. Moreover, mean corpuscular hemoglobin concentration (MCHC) in the males of feeding group increased significantly (p<0.05). However, little changes of all variables were observed in the control group. CONCLUSIONS Consumption of Tibetan turnips for 7 days likely contributed to the hypoxia tolerance in healthy humans, which could be due to its abilities of improving oxygen uptake and delivery, enhancing body antioxidant capacity and increasing MCHC. However, further studies with larger samples and double-blind design are warranted, and future studies covering more diverse populations (unhealthy, athletic) would be also considered. Moreover, researches on identifying Tibetan turnip's active compounds are desired as well.
Collapse
Affiliation(s)
- Bingquan Chu
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Center for Food Technology and Equipment, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Chun Chen
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Center for Food Technology and Equipment, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Jiaojie Li
- Aviation Medicine Training Center of Hangzhou, Hangzhou 310013, Zhejiang, China
| | - Xiaojian Chen
- Aviation Medicine Training Center of Hangzhou, Hangzhou 310013, Zhejiang, China
| | - Yunhong Li
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Center for Food Technology and Equipment, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Weimin Tang
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Center for Food Technology and Equipment, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Lu Jin
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Center for Food Technology and Equipment, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Ying Zhang
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Center for Food Technology and Equipment, Zhejiang University, Hangzhou 310058, Zhejiang, China.
| |
Collapse
|
25
|
Huang SL, Chen PY, Wu MJ, Tai MH, Ho CT, Yen JH. Curcuminoids Modulate the PKCδ/NADPH Oxidase/Reactive Oxygen Species Signaling Pathway and Suppress Matrix Invasion during Monocyte-Macrophage Differentiation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:8838-8848. [PMID: 26414495 DOI: 10.1021/acs.jafc.5b04083] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Monocyte recruitment and invasion play critical roles in the initiation and progression of atherosclerosis. The reduction in monocyte adhesion and infiltration is thought to exert antiatherosclerotic effects. Curcumin, demethoxycurcumin (DMC), and bisdemethoxycurcumin (BDMC) are the major active components of curcuminoids and exhibit several biological activities, including anti-inflammatory, anticarcinogenic, and hypocholesterolemic activities. The aim of this study was to investigate the antiatherogenic effects and mechanisms of curcuminoids during monocyte to macrophage differentiation. The results showed that curcumin, DMC, and BDMC (20 μM) suppressed matrix invasion from 100.0 ± 5.0% to 24.8 ± 1.4%, 26.6 ± 2.9%, and 33.7 ± 1.7%, respectively, during PMA-induced THP-1 differentiation. We found that curcuminoids significantly reduced PMA-induced CD11b and MMP-9 expression by THP-1 cells. Production of reactive oxygen species (ROS) induced by PMA (126.7 ± 2.1%) was markedly attenuated by curcumin, DMC, and BDMC to 99.5 ± 7.8%, 87.8 ± 8.2%, and 89.8 ± 7.6%, respectively, resulting in the down-regulation of CD11b and MMP-9 expression. We demonstrated that curcuminoids inhibited NADPH oxidase through the down-regulation of NOX2 expression and the reduction of p47phox membrane translocation. Moreover, we found involvement of PKCδ in the PMA-induced NOX2, CD11b, and MMP-9 mRNA expression. Curcumin, DMC, and BDMC decreased the active form of PKCδ protein stimulated by PMA in THP-1 cells. Overall, our results reveal that curcuminoids suppress matrix invasion through the inhibition of the PKCδ/NADPH oxidase/ROS signaling pathway during monocyte-macrophage differentiation.
Collapse
Affiliation(s)
| | - Pei-Yi Chen
- Center of Medical Genetics, Buddhist Tzu Chi General Hospital , Hualien 970, Taiwan
| | - Ming-Jiuan Wu
- Department of Biotechnology, Chia-Nan University of Pharmacy and Science , Tainan 717, Taiwan
| | | | - Chi-Tang Ho
- Department of Food Science, Rutgers University , 65 Dudley Road, New Brunswick, New Jersey 08901-8520, United States
| | | |
Collapse
|
26
|
Dajas F, Abin-Carriquiry JA, Arredondo F, Blasina F, Echeverry C, Martínez M, Rivera F, Vaamonde L. Quercetin in brain diseases: Potential and limits. Neurochem Int 2015; 89:140-8. [DOI: 10.1016/j.neuint.2015.07.002] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Revised: 05/07/2015] [Accepted: 07/01/2015] [Indexed: 01/09/2023]
|