1
|
Wilhelmsen I, Combriat T, Dalmao-Fernandez A, Stokowiec J, Wang C, Olsen PA, Wik JA, Boichuk Y, Aizenshtadt A, Krauss S. The effects of TGF-β-induced activation and starvation of vitamin A and palmitic acid on human stem cell-derived hepatic stellate cells. Stem Cell Res Ther 2024; 15:223. [PMID: 39044210 PMCID: PMC11267759 DOI: 10.1186/s13287-024-03852-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/14/2024] [Indexed: 07/25/2024] Open
Abstract
BACKGROUND Hepatic stellate cells (HSC) have numerous critical roles in liver function and homeostasis, while they are also known for their importance during liver injury and fibrosis. There is therefore a need for relevant in vitro human HSC models to fill current knowledge gaps. In particular, the roles of vitamin A (VA), lipid droplets (LDs), and energy metabolism in human HSC activation are poorly understood. METHODS In this study, human pluripotent stem cell-derived HSCs (scHSCs), benchmarked to human primary HSC, were exposed to 48-hour starvation of retinol (ROL) and palmitic acid (PA) in the presence or absence of the potent HSC activator TGF-β. The interventions were studied by an extensive set of phenotypic and functional analyses, including transcriptomic analysis, measurement of activation-related proteins and cytokines, VA- and LD storage, and cell energy metabolism. RESULTS The results show that though the starvation of ROL and PA alone did not induce scHSC activation, the starvation amplified the TGF-β-induced activation-related transcriptome. However, TGF-β-induced activation alone did not lead to a reduction in VA or LD stores. Additionally, reduced glycolysis and increased mitochondrial fission were observed in response to TGF-β. CONCLUSIONS scHSCs are robust models for activation studies. The loss of VA and LDs is not sufficient for scHSC activation in vitro, but may amplify the TGF-β-induced activation response. Collectively, our work provides an extensive framework for studying human HSCs in healthy and diseased conditions.
Collapse
Affiliation(s)
- Ingrid Wilhelmsen
- Department of Immunology and Transfusion Medicine, Oslo University Hospital, P.O. Box 4950, Nydalen, Oslo, 0424, Norway.
- Hybrid Technology Hub - Centre of Excellence, Institute of Basic Medical Sciences, University of Oslo, P.O. Box 1110, Blindern, Oslo, 0317, Norway.
| | - Thomas Combriat
- Hybrid Technology Hub - Centre of Excellence, Institute of Basic Medical Sciences, University of Oslo, P.O. Box 1110, Blindern, Oslo, 0317, Norway
| | - Andrea Dalmao-Fernandez
- Department of Immunology and Transfusion Medicine, Oslo University Hospital, P.O. Box 4950, Nydalen, Oslo, 0424, Norway
- Hybrid Technology Hub - Centre of Excellence, Institute of Basic Medical Sciences, University of Oslo, P.O. Box 1110, Blindern, Oslo, 0317, Norway
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, P.O. Box 1068, Blindern, Oslo, 0316, Norway
| | - Justyna Stokowiec
- Hybrid Technology Hub - Centre of Excellence, Institute of Basic Medical Sciences, University of Oslo, P.O. Box 1110, Blindern, Oslo, 0317, Norway
| | - Chencheng Wang
- Hybrid Technology Hub - Centre of Excellence, Institute of Basic Medical Sciences, University of Oslo, P.O. Box 1110, Blindern, Oslo, 0317, Norway
- Department of Transplantation Medicine, Institute for Surgical Research, Oslo University Hospital, P.O. Box 4950, Nydalen, Oslo, 0424, Norway
| | - Petter Angell Olsen
- Department of Immunology and Transfusion Medicine, Oslo University Hospital, P.O. Box 4950, Nydalen, Oslo, 0424, Norway
- Hybrid Technology Hub - Centre of Excellence, Institute of Basic Medical Sciences, University of Oslo, P.O. Box 1110, Blindern, Oslo, 0317, Norway
| | - Jonas Aakre Wik
- Department of Immunology and Transfusion Medicine, Oslo University Hospital, P.O. Box 4950, Nydalen, Oslo, 0424, Norway
- Hybrid Technology Hub - Centre of Excellence, Institute of Basic Medical Sciences, University of Oslo, P.O. Box 1110, Blindern, Oslo, 0317, Norway
| | - Yuliia Boichuk
- Hybrid Technology Hub - Centre of Excellence, Institute of Basic Medical Sciences, University of Oslo, P.O. Box 1110, Blindern, Oslo, 0317, Norway
| | - Aleksandra Aizenshtadt
- Department of Immunology and Transfusion Medicine, Oslo University Hospital, P.O. Box 4950, Nydalen, Oslo, 0424, Norway
- Hybrid Technology Hub - Centre of Excellence, Institute of Basic Medical Sciences, University of Oslo, P.O. Box 1110, Blindern, Oslo, 0317, Norway
| | - Stefan Krauss
- Department of Immunology and Transfusion Medicine, Oslo University Hospital, P.O. Box 4950, Nydalen, Oslo, 0424, Norway
- Hybrid Technology Hub - Centre of Excellence, Institute of Basic Medical Sciences, University of Oslo, P.O. Box 1110, Blindern, Oslo, 0317, Norway
| |
Collapse
|
2
|
Rodewald M, Bae H, Huschke S, Meyer-Zedler T, Schmitt M, Press AT, Schubert S, Bauer M, Popp J. In vivo coherent anti-Stokes Raman scattering microscopy reveals vitamin A distribution in the liver. JOURNAL OF BIOPHOTONICS 2021; 14:e202100040. [PMID: 33720518 DOI: 10.1002/jbio.202100040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/10/2021] [Accepted: 03/10/2021] [Indexed: 06/12/2023]
Abstract
Here we present a microscope setup for coherent anti-Stokes Raman scattering (CARS) imaging, devised to specifically address the challenges of in vivo experiments. We exemplify its capabilities by demonstrating how CARS microscopy can be used to identify vitamin A (VA) accumulations in the liver of a living mouse, marking the positions of hepatic stellate cells (HSCs). HSCs are the main source of extracellular matrix protein after hepatic injury and are therefore the main target of novel nanomedical strategies in the development of a treatment for liver fibrosis. Their role in the VA metabolism makes them an ideal target for a CARS-based approach as they store most of the body's VA, a class of compounds sharing a retinyl group as a structural motive, a moiety that is well known for its exceptionally high Raman cross section of the C═C stretching vibration of the conjugated backbone.
Collapse
Affiliation(s)
- Marko Rodewald
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University, Jena, Germany
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Jena, Germany
| | - Hyeonsoo Bae
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Jena, Germany
| | - Sophie Huschke
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany
- Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| | - Tobias Meyer-Zedler
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University, Jena, Germany
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Jena, Germany
| | - Michael Schmitt
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University, Jena, Germany
| | - Adrian Tibor Press
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany
- Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
- Faculty of Medicine, Friedrich Schiller University, Jena, Germany
| | - Stephanie Schubert
- Institute of Pharmacy, Department of Pharmaceutical Technology and Biopharmacy, Friedrich Schiller University, Jena, Germany
| | - Michael Bauer
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany
- Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| | - Juergen Popp
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University, Jena, Germany
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Jena, Germany
| |
Collapse
|
3
|
Klemm P, Huschke S, Rodewald M, Ehteshamzad N, Behnke M, Wang X, Cinar G, Nischang I, Hoeppener S, Weber C, Press AT, Höppener C, Meyer T, Deckert V, Schmitt M, Popp J, Bauer M, Schubert S. Characterization of a library of vitamin A-functionalized polymethacrylate-based nanoparticles for siRNA delivery. Polym Chem 2021. [DOI: 10.1039/d0py01626h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A 60-membered library of vitamin A-functionalized P(MMA-stat-DMAEMA)-b-PPEGMA block copolymers was synthesized by RAFT polymerization. From these, nanoparticles containing genetic material were formulated and fully characterized.
Collapse
|
4
|
Kochan K, Kus E, Szafraniec E, Wislocka A, Chlopicki S, Baranska M. Changes induced by non-alcoholic fatty liver disease in liver sinusoidal endothelial cells and hepatocytes: spectroscopic imaging of single live cells at the subcellular level. Analyst 2018; 142:3948-3958. [PMID: 28944783 DOI: 10.1039/c7an00865a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Non-Alcoholic Fatty Liver Disease (NAFLD) is the most prevalent liver disorder worldwide, involving pathogenic mechanisms of liver sinusoidal endothelial cells (LSECs), hepatocytes and other liver cells. Here, we used a novel approach of label-free Raman confocal imaging to study primary LSECs and hepatocytes freshly isolated from the livers of mice with NAFLD induced by a high fat diet (HFD), in comparison to healthy controls. Our aim was to characterize changes in the biochemical composition in LSECs and hepatocytes that occur in a single cell at the subcellular level. LSECs from NAFLD livers displayed a significant increase in the intensity of marker bands of nuclear DNA that was not associated with changes in LSEC nucleus size. A number of changes in the cytoplasm of hepatocytes were identified. However, the most prominent change in hepatocytes was a substantial increase in the degree of unsaturation of LBs' (lipid bodies) lipids in NAFLD, suggesting an increase in the de novo lipogenesis of unsaturated lipids. The confocal Raman imaging of single live cells isolated from the liver provided a unique tool to better understand disease-induced cell-specific changes in the biochemical phenotype of primary liver cells.
Collapse
Affiliation(s)
- Kamila Kochan
- Centre for Biospectroscopy and School of Chemistry, Monash University, Clayton, 3800, Victoria, Australia
| | | | | | | | | | | |
Collapse
|
5
|
Jiang Y, Zhao Y, He F, Wang H. Artificial MicroRNA-Mediated Tgfbr2 and Pdgfrb Co-Silencing Ameliorates Carbon Tetrachloride-Induced Hepatic Fibrosis in Mice. Hum Gene Ther 2018; 30:179-196. [PMID: 30024280 DOI: 10.1089/hum.2018.047] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Hepatic stellate cells (HSCs) are the primary cell type responsible for liver fibrogenesis. Transforming growth factor beta 1 (TGF-β1) and platelet-derived growth factor (PDGF) are key profibrotic cytokines that regulate HSC activation and proliferation with functional convergence. Dual RNA interference against their receptors may achieve therapeutic effects. A novel RNAi strategy based on HSC-specific GFAP promoter-driven and lentiviral-expressed artificial microRNAs (amiRNAs) was devised that consists of an microRNA-30a backbone and effective shRNAs against mouse Pdgfrβ and Tgfbr2. Then, its antifibrotic efficacy was tested in primary and cultured HSCs and in mice affected with carbon tetrachloride-induced hepatic fibrosis. The study shows that amiRNA-mediated Pdgfrβ and Tgfbr2 co-silencing inhibits HSC activation and proliferation. After recombinant lentiviral particles were delivered into the liver via tail-vein injection, therapeutic amiRNAs were preferentially expressed in HSCs and efficiently co-knocked down in situ Tgfbr2 and Pdgfrβ expression, which correlates with downregulated expression of target or effector genes of their signaling, which include Pai-1, P70S6K, and D-cyclins. amiRNA-based HSC-specific co-silencing of Tgfbr2 and Pdgfrβ significantly suppressed hepatic expression of fibrotic markers α-Sma and Col1a1, extracellular matrix regulators Mmps and Timp1, and phenotypically ameliorated liver fibrosis, as indicated by reductions in serum alanine aminotransferase activity, collagen deposition, and α-Sma-positive staining. The findings provide proof of concept for the use of amiRNA-mediated co-silencing of two profibrogenic pathways in liver fibrosis treatment and highlight the therapeutic potential of concatenated amiRNAs for gene therapy.
Collapse
Affiliation(s)
- Yan Jiang
- 1 The Fifth People's Hospital of Shanghai, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences of Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Yuanyuan Zhao
- 1 The Fifth People's Hospital of Shanghai, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences of Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Fuchu He
- 1 The Fifth People's Hospital of Shanghai, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences of Shanghai Medical College, Fudan University, Shanghai, P.R. China.,2 State Key Laboratory of Proteomics, Beijing Institute of Radiation Medicine, Beijing, P.R. China
| | - Haijian Wang
- 1 The Fifth People's Hospital of Shanghai, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences of Shanghai Medical College, Fudan University, Shanghai, P.R. China
| |
Collapse
|
6
|
Gold-nanofève surface-enhanced Raman spectroscopy visualizes hypotaurine as a robust anti-oxidant consumed in cancer survival. Nat Commun 2018; 9:1561. [PMID: 29674746 PMCID: PMC5908798 DOI: 10.1038/s41467-018-03899-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Accepted: 03/20/2018] [Indexed: 01/24/2023] Open
Abstract
Gold deposition with diagonal angle towards boehmite-based nanostructure creates random arrays of horse-bean-shaped nanostructures named gold-nanofève (GNF). GNF generates many electromagnetic hotspots as surface-enhanced Raman spectroscopy (SERS) excitation sources, and enables large-area visualization of molecular vibration fingerprints of metabolites in human cancer xenografts in livers of immunodeficient mice with sufficient sensitivity and uniformity. Differential screening of GNF-SERS signals in tumours and those in parenchyma demarcated tumour boundaries in liver tissues. Furthermore, GNF-SERS combined with quantum chemical calculation identified cysteine-derived glutathione and hypotaurine (HT) as tumour-dominant and parenchyma-dominant metabolites, respectively. CD44 knockdown in cancer diminished glutathione, but not HT in tumours. Mechanisms whereby tumours sustained HT under CD44-knockdown conditions include upregulation of PHGDH, PSAT1 and PSPH that drove glycolysis-dependent activation of serine/glycine-cleavage systems to provide one-methyl group for HT synthesis. HT was rapidly converted into taurine in cancer cells, suggesting that HT is a robust anti-oxidant for their survival under glutathione-suppressed conditions. Surface-enhanced Raman spectroscopy (SERS) visualizes fingerprints of intermolecular vibrations of many metabolites. Here the authors report a SERS imaging technique that enables the visualization of metabolites distribution and automated extraction of tumour boundaries in frozen tissues.
Collapse
|
7
|
|
8
|
Tannert A, Ramoji A, Neugebauer U, Popp J. Photonic monitoring of treatment during infection and sepsis: development of new detection strategies and potential clinical applications. Anal Bioanal Chem 2017; 410:773-790. [PMID: 29214536 DOI: 10.1007/s00216-017-0713-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Revised: 10/06/2017] [Accepted: 10/17/2017] [Indexed: 01/02/2023]
Abstract
Despite the strong decline in the infection-associated mortality since the development of the first antibiotics, infectious diseases are still a major cause of death in the world. With the rising number of antibiotic-resistant pathogens, the incidence of deaths caused by infections may increase strongly in the future. Survival rates in sepsis, which occurs when body response to infections becomes uncontrolled, are still very poor if an adequate therapy is not initiated immediately. Therefore, approaches to monitor the treatment efficacy are crucially needed to adapt therapeutic strategies according to the patient's response. An increasing number of photonic technologies are being considered for diagnostic purpose and monitoring of therapeutic response; however many of these strategies have not been introduced into clinical routine, yet. Here, we review photonic strategies to monitor response to treatment in patients with infectious disease, sepsis, and septic shock. We also include some selected approaches for the development of new drugs in animal models as well as new monitoring strategies which might be applicable to evaluate treatment response in humans in the future. Figure Label-free probing of blood properties using photonics.
Collapse
Affiliation(s)
- Astrid Tannert
- Leibniz Institute of Photonic Technology, Albert-Einstein-Str. 9, 07745, Jena, Germany
- Jena Biophotonics and Imaging Laboratory, 07745, Jena, Germany
| | - Anuradha Ramoji
- Leibniz Institute of Photonic Technology, Albert-Einstein-Str. 9, 07745, Jena, Germany
- Center for Sepsis Control and Care, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
| | - Ute Neugebauer
- Leibniz Institute of Photonic Technology, Albert-Einstein-Str. 9, 07745, Jena, Germany.
- Jena Biophotonics and Imaging Laboratory, 07745, Jena, Germany.
- Center for Sepsis Control and Care, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany.
- Institute of Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, 07743, Jena, Germany.
- InfectoGnostics Research Campus Jena, Philosophenweg 7, Jena, Germany.
| | - Jürgen Popp
- Leibniz Institute of Photonic Technology, Albert-Einstein-Str. 9, 07745, Jena, Germany
- Jena Biophotonics and Imaging Laboratory, 07745, Jena, Germany
- Center for Sepsis Control and Care, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
- Institute of Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, 07743, Jena, Germany
- InfectoGnostics Research Campus Jena, Philosophenweg 7, Jena, Germany
| |
Collapse
|
9
|
Yildirim T, Matthäus C, Press AT, Schubert S, Bauer M, Popp J, Schubert US. Uptake of Retinoic Acid-Modified PMMA Nanoparticles in LX-2 and Liver Tissue by Raman Imaging and Intravital Microscopy. Macromol Biosci 2017; 17. [DOI: 10.1002/mabi.201700064] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 05/25/2017] [Indexed: 01/26/2023]
Affiliation(s)
- Turgay Yildirim
- Laboratory of Organic and Macromolecular Chemistry (IOMC); Friedrich Schiller University Jena; Humboldtstr. 10 07743 Jena Germany
- Jena Center for Soft Matter (JCSM); Friedrich Schiller University Jena; Philosophenweg 7 07743 Jena Germany
| | - Christian Matthäus
- Jena Center for Soft Matter (JCSM); Friedrich Schiller University Jena; Philosophenweg 7 07743 Jena Germany
- Leibniz Institute of Photonic Technology (IPHT); Albert-Einstein-Straße 9 07745 Jena Germany
- Institute of Physical Chemistry and Abbe Center of Photonics; Friedrich Schiller University Jena; Helmholtzweg 4 07743 Jena Germany
| | - Adrian T. Press
- Jena Center for Soft Matter (JCSM); Friedrich Schiller University Jena; Philosophenweg 7 07743 Jena Germany
- Jena University Hospital; Department of Anesthesiology and Intensive Care Medicine; Am Klinikum 1 07747 Jena Germany
| | - Stephanie Schubert
- Jena Center for Soft Matter (JCSM); Friedrich Schiller University Jena; Philosophenweg 7 07743 Jena Germany
- Department of Pharmaceutical Technology; Institute of Pharmacy; Friedrich Schiller University Jena; Otto-Schott-Str. 41 07745 Jena Germany
| | - Michael Bauer
- Jena Center for Soft Matter (JCSM); Friedrich Schiller University Jena; Philosophenweg 7 07743 Jena Germany
- Jena University Hospital; Department of Anesthesiology and Intensive Care Medicine; Am Klinikum 1 07747 Jena Germany
| | - Jürgen Popp
- Jena Center for Soft Matter (JCSM); Friedrich Schiller University Jena; Philosophenweg 7 07743 Jena Germany
- Leibniz Institute of Photonic Technology (IPHT); Albert-Einstein-Straße 9 07745 Jena Germany
- Institute of Physical Chemistry and Abbe Center of Photonics; Friedrich Schiller University Jena; Helmholtzweg 4 07743 Jena Germany
| | - Ulrich S. Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC); Friedrich Schiller University Jena; Humboldtstr. 10 07743 Jena Germany
- Jena Center for Soft Matter (JCSM); Friedrich Schiller University Jena; Philosophenweg 7 07743 Jena Germany
| |
Collapse
|
10
|
Legesse FB, Heuke S, Galler K, Hoffmann P, Schmitt M, Neugebauer U, Bauer M, Popp J. Hepatic Vitamin A Content Investigation Using CoherentAnti-Stokes Raman Scattering Microscopy. Chemphyschem 2016; 17:4043-4051. [DOI: 10.1002/cphc.201600929] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Indexed: 12/11/2022]
Affiliation(s)
- Fisseha Bekele Legesse
- Institute of Physical Chemistry and Abbe Center of Photonics; Friedrich Schiller University Jena; Helmholtzweg 4 07743 Jena Germany
- Leibniz Institute of Photonic Technology (IPHT) Jena e.V.; Albert-Einstein-Str. 9 07745 Jena Germany
| | - Sandro Heuke
- Institute of Physical Chemistry and Abbe Center of Photonics; Friedrich Schiller University Jena; Helmholtzweg 4 07743 Jena Germany
- Leibniz Institute of Photonic Technology (IPHT) Jena e.V.; Albert-Einstein-Str. 9 07745 Jena Germany
| | - Kerstin Galler
- Leibniz Institute of Photonic Technology (IPHT) Jena e.V.; Albert-Einstein-Str. 9 07745 Jena Germany
- Center for Sepsis Control and Care; Jena University Hospital; Erlanger Allee 101 07747 Jena Germany
| | - Patrick Hoffmann
- Leibniz Institute of Photonic Technology (IPHT) Jena e.V.; Albert-Einstein-Str. 9 07745 Jena Germany
- Center for Sepsis Control and Care; Jena University Hospital; Erlanger Allee 101 07747 Jena Germany
| | - Michael Schmitt
- Institute of Physical Chemistry and Abbe Center of Photonics; Friedrich Schiller University Jena; Helmholtzweg 4 07743 Jena Germany
| | - Ute Neugebauer
- Institute of Physical Chemistry and Abbe Center of Photonics; Friedrich Schiller University Jena; Helmholtzweg 4 07743 Jena Germany
- Leibniz Institute of Photonic Technology (IPHT) Jena e.V.; Albert-Einstein-Str. 9 07745 Jena Germany
- Center for Sepsis Control and Care; Jena University Hospital; Erlanger Allee 101 07747 Jena Germany
| | - Michael Bauer
- Center for Sepsis Control and Care; Jena University Hospital; Erlanger Allee 101 07747 Jena Germany
- Department of Anesthesiology and Intensive Care Medicine; Jena University Hospital; Am Klinikum 1 07747 Jena Germany
| | - Jürgen Popp
- Institute of Physical Chemistry and Abbe Center of Photonics; Friedrich Schiller University Jena; Helmholtzweg 4 07743 Jena Germany
- Leibniz Institute of Photonic Technology (IPHT) Jena e.V.; Albert-Einstein-Str. 9 07745 Jena Germany
- Center for Sepsis Control and Care; Jena University Hospital; Erlanger Allee 101 07747 Jena Germany
| |
Collapse
|
11
|
Hepatic cirrhosis and recovery as reflected by Raman spectroscopy: information revealed by statistical analysis might lead to a prognostic biomarker. Anal Bioanal Chem 2016; 408:8053-8063. [DOI: 10.1007/s00216-016-9905-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 08/09/2016] [Accepted: 08/24/2016] [Indexed: 12/11/2022]
|
12
|
Single cell analysis in native tissue: Quantification of the retinoid content of hepatic stellate cells. Sci Rep 2016; 6:24155. [PMID: 27063397 PMCID: PMC4827054 DOI: 10.1038/srep24155] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 03/18/2016] [Indexed: 01/13/2023] Open
Abstract
Hepatic stellate cells (HSCs) are retinoid storing cells in the liver: The retinoid content of those cells changes depending on nutrition and stress level. There are also differences with regard to a HSC’s anatomical position in the liver. Up to now, retinoid levels were only accessible from bulk measurements of tissue homogenates or cell extracts. Unfortunately, they do not account for the intercellular variability. Herein, Raman spectroscopy relying on excitation by the minimally destructive wavelength 785 nm is introduced for the assessment of the retinoid state of single HSCs in freshly isolated, unprocessed murine liver lobes. A quantitative estimation of the cellular retinoid content is derived. Implications of the retinoid content on hepatic health state are reported. The Raman-based results are integrated with histological assessments of the tissue samples. This spectroscopic approach enables single cell analysis regarding an important cellular feature in unharmed tissue.
Collapse
|
13
|
Wu HH, Ho JH, Lee OK. Detection of hepatic maturation by Raman spectroscopy in mesenchymal stromal cells undergoing hepatic differentiation. Stem Cell Res Ther 2016; 7:6. [PMID: 26753763 PMCID: PMC4709909 DOI: 10.1186/s13287-015-0259-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 11/02/2015] [Accepted: 12/04/2015] [Indexed: 12/13/2022] Open
Abstract
Introduction Mesenchymal stromal cells (MSCs) are well known for their application potential in tissue engineering. We previously reported that MSCs are able to differentiate into hepatocytes in vitro. However, conventional methods for estimating the maturation of hepatic differentiation require relatively large amounts of cell samples. Raman spectroscopy (RS), a photonic tool for acquisition of cell spectra by inelastic scattering, has been recently used as a label-free single-cell detector for biological applications including phenotypic changes and differentiation of cells and diagnosis. In this study, RS is used to real-time monitor the maturation of hepatic differentiation in live MSCs. Methods The MSCs were cultured on the type I collagen pre-coating substrate and differentiated into hepatocytes in vitro using a two-step protocol. The Raman spectra at different time points are acquired in the range 400–3000 cm–1and analyzed by quantification methods and principle component analysis during hepatic differentiation from the MSCs. Results The intensity of the broad band in the range 2800–3000 cm–1 reflects the amount of glycogen within lipochrome in differentiated hepatocytes. A high correlation coefficient between the glycogen amount and hepatic maturation was exhibited. Moreover, principle component analysis of the Raman spectra from 400 to 3000 cm–1 indicated that MSC-derived hepatocytes were close to the primary hepatocytes and were distinct from the undifferentiated MSCs. Conclusions In summary, RS can serve as a rapid, non-invasive, real-time and label-free biosensor and reflects changes in live cell components during hepatic differentiation. The use of RS may thus facilitate the detection of hepatic differentiation and maturation in stem cells. Such an approach may substantially improve the feasibility as well as shorten the time required compared to the conventional molecular biology methods.
Collapse
Affiliation(s)
- Hao-Hsiang Wu
- Institute of Biophotonics, National Yang-Ming University, No. 155, Sec.2, Linong Street, Taipei, 112, Taiwan.
| | - Jennifer H Ho
- Center for Stem Cell Research, Wan Fang Hospital, Taipei Medical University, Taipei, 116, Taiwan. .,Graduate Institute of Clinical Medicine, Taipei Medical University, Taipei, Taiwan. .,Department of Ophthalmology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.
| | - Oscar K Lee
- Institute of Biophotonics, National Yang-Ming University, No. 155, Sec.2, Linong Street, Taipei, 112, Taiwan. .,Taipei City Hospital, No. 145, Zhengzhou Road, Datong District, Taipei, 10341, Taiwan. .,Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan. .,Stem Cell Research Center, National Yang-Ming University, Taipei, Taiwan. .,Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan. .,Department of Orthopaedics and Traumatology, Taipei Veterans General Hospital, Taipei, Taiwan.
| |
Collapse
|
14
|
Kochan K, Marzec KM, Maslak E, Chlopicki S, Baranska M. Raman spectroscopic studies of vitamin A content in the liver: a biomarker of healthy liver. Analyst 2015; 140:2074-9. [DOI: 10.1039/c4an01878h] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Confocal Raman microspectroscopy was used in this study to identify hepatic stellate cells (HSCs) from healthy mice and mice with untreated and treated liver steatosis.
Collapse
Affiliation(s)
- K. Kochan
- Jagiellonian Centre for Experimental Therapeutics (JCET)
- Jagiellonian University
- Krakow
- Poland
- Faculty of Chemistry
| | - K. M. Marzec
- Jagiellonian Centre for Experimental Therapeutics (JCET)
- Jagiellonian University
- Krakow
- Poland
| | - E. Maslak
- Jagiellonian Centre for Experimental Therapeutics (JCET)
- Jagiellonian University
- Krakow
- Poland
| | - S. Chlopicki
- Jagiellonian Centre for Experimental Therapeutics (JCET)
- Jagiellonian University
- Krakow
- Poland
- Department of Experimental Pharmacology
| | - M. Baranska
- Jagiellonian Centre for Experimental Therapeutics (JCET)
- Jagiellonian University
- Krakow
- Poland
- Faculty of Chemistry
| |
Collapse
|