1
|
Li S, Yan B, Wu B, Su J, Lu J, Lam TW, Boheler KR, Poon ENY, Luo R. Integrated modeling framework reveals co-regulation of transcription factors, miRNAs and lncRNAs on cardiac developmental dynamics. Stem Cell Res Ther 2023; 14:247. [PMID: 37705079 PMCID: PMC10500942 DOI: 10.1186/s13287-023-03442-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 08/07/2023] [Indexed: 09/15/2023] Open
Abstract
AIMS Dissecting complex interactions among transcription factors (TFs), microRNAs (miRNAs) and long noncoding RNAs (lncRNAs) are central for understanding heart development and function. Although computational approaches and platforms have been described to infer relationships among regulatory factors and genes, current approaches do not adequately account for how highly diverse, interacting regulators that include noncoding RNAs (ncRNAs) control cardiac gene expression dynamics over time. METHODS To overcome this limitation, we devised an integrated framework, cardiac gene regulatory modeling (CGRM) that integrates LogicTRN and regulatory component analysis bioinformatics modeling platforms to infer complex regulatory mechanisms. We then used CGRM to identify and compare the TF-ncRNA gene regulatory networks that govern early- and late-stage cardiomyocytes (CMs) generated by in vitro differentiation of human pluripotent stem cells (hPSC) and ventricular and atrial CMs isolated during in vivo human cardiac development. RESULTS Comparisons of in vitro versus in vivo derived CMs revealed conserved regulatory networks among TFs and ncRNAs in early cells that significantly diverged in late staged cells. We report that cardiac genes ("heart targets") expressed in early-stage hPSC-CMs are primarily regulated by MESP1, miR-1, miR-23, lncRNAs NEAT1 and MALAT1, while GATA6, HAND2, miR-200c, NEAT1 and MALAT1 are critical for late hPSC-CMs. The inferred TF-miRNA-lncRNA networks regulating heart development and contraction were similar among early-stage CMs, among individual hPSC-CM datasets and between in vitro and in vivo samples. However, genes related to apoptosis, cell cycle and proliferation, and transmembrane transport showed a high degree of divergence between in vitro and in vivo derived late-stage CMs. Overall, late-, but not early-stage CMs diverged greatly in the expression of "heart target" transcripts and their regulatory mechanisms. CONCLUSIONS In conclusion, we find that hPSC-CMs are regulated in a cell autonomous manner during early development that diverges significantly as a function of time when compared to in vivo derived CMs. These findings demonstrate the feasibility of using CGRM to reveal dynamic and complex transcriptional and posttranscriptional regulatory interactions that underlie cell directed versus environment-dependent CM development. These results with in vitro versus in vivo derived CMs thus establish this approach for detailed analyses of heart disease and for the analysis of cell regulatory systems in other biomedical fields.
Collapse
Affiliation(s)
- Shumin Li
- Department of Computer Science, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Bin Yan
- Department of Computer Science, The University of Hong Kong, Pokfulam, Hong Kong, China
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Binbin Wu
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- Centre for Cardiovascular Genomics and Medicine, Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Junhao Su
- Department of Computer Science, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Jianliang Lu
- Department of Computer Science, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Tak-Wah Lam
- Department of Computer Science, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Kenneth R Boheler
- The Division of Cardiology, Department of Medicine and The Whiting School of Engineering, Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD, 21205, USA.
| | - Ellen Ngar-Yun Poon
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China.
- Centre for Cardiovascular Genomics and Medicine, Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China.
- Hong Kong Hub of Paediatric Excellence (HK HOPE), The Chinese University of Hong Kong, Kowloon Bay, Hong Kong, China.
| | - Ruibang Luo
- Department of Computer Science, The University of Hong Kong, Pokfulam, Hong Kong, China.
| |
Collapse
|
2
|
Tsoi C, Deng R, Kwok M, Yan B, Lee C, Li HS, Ma CHY, Luo R, Leung KT, Chan GCF, Chow LMC, Poon EN. Temporal Control of the WNT Signaling Pathway During Cardiac Differentiation Impacts Upon the Maturation State of Human Pluripotent Stem Cell Derived Cardiomyocytes. Front Mol Biosci 2022; 9:714008. [PMID: 35402504 PMCID: PMC8987729 DOI: 10.3389/fmolb.2022.714008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 02/25/2022] [Indexed: 11/18/2022] Open
Abstract
Inefficient differentiation and insufficient maturation are barriers to the application of human pluripotent stem cell (hPSC)-derived cardiomyocytes (CMs) for research and therapy. Great strides have been made to the former, and multiple groups have reported cardiac differentiation protocol that can generate hPSC-CMs at high efficiency. Although many such protocols are based on the modulation of the WNT signaling pathway, they differ in their timing and in the WNT inhibitors used. Little is currently known about whether and how conditions of differentiation affect cardiac maturation. Here we adapted multiple cardiac differentiation protocols to improve cost-effectiveness and consistency, and compared the properties of the hPSC-CMs generated. Our results showed that the schedule of differentiation, but not the choice of WNT inhibitors, was a critical determinant not only of differentiation efficiency, which was expected, but also CM maturation. Among cultures with comparable purity, hPSC-CMs generated with different differentiation schedules vary in the expression of genes which are important for developmental maturation, and in their structural, metabolic, calcium transient and proliferative properties. In summary, we demonstrated that simple changes in the schedule of cardiac differentiation could promote maturation. To this end, we have optimized a cardiac differentiation protocol that can simultaneously achieve high differentiation efficiency and enhanced developmental maturation. Our findings would advance the production of hPSC-CMs for research and therapy.
Collapse
Affiliation(s)
- Chantelle Tsoi
- Centre for Cardiovascular Genomics and Medicine, Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong (CUHK), Shatin, Hong Kong SAR, China
- Hong Kong Hub of Paediatric Excellence (HK HOPE), CUHK, Shatin, Hong Kong SAR, China
| | - Ruixia Deng
- Centre for Cardiovascular Genomics and Medicine, Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong (CUHK), Shatin, Hong Kong SAR, China
- Hong Kong Hub of Paediatric Excellence (HK HOPE), CUHK, Shatin, Hong Kong SAR, China
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| | - Maxwell Kwok
- Hong Kong Hub of Paediatric Excellence (HK HOPE), CUHK, Shatin, Hong Kong SAR, China
- Department of Medicine and Therapeutics, CUHK, Shatin, Hong Kong SAR, China
| | - Bin Yan
- Department of Computer Science, Faculty of Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Carrie Lee
- Centre for Cardiovascular Genomics and Medicine, Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong (CUHK), Shatin, Hong Kong SAR, China
- Hong Kong Hub of Paediatric Excellence (HK HOPE), CUHK, Shatin, Hong Kong SAR, China
| | - Hung Sing Li
- Centre for Cardiovascular Genomics and Medicine, Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong (CUHK), Shatin, Hong Kong SAR, China
- Hong Kong Hub of Paediatric Excellence (HK HOPE), CUHK, Shatin, Hong Kong SAR, China
- Department of Paediatrics, CUHK, Shatin, Hong Kong SAR, China
| | - Chloe Ho Yi Ma
- Hong Kong Hub of Paediatric Excellence (HK HOPE), CUHK, Shatin, Hong Kong SAR, China
- The School of Biomedical Sciences, CUHK, Shatin, Hong Kong SAR, China
| | - Ruibang Luo
- Department of Computer Science, Faculty of Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Kam Tong Leung
- Hong Kong Hub of Paediatric Excellence (HK HOPE), CUHK, Shatin, Hong Kong SAR, China
- Department of Paediatrics, CUHK, Shatin, Hong Kong SAR, China
| | - Godfrey Chi-Fung Chan
- Department of Pediatrics and Adolescent Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Larry Ming-cheung Chow
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| | - Ellen N. Poon
- Centre for Cardiovascular Genomics and Medicine, Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong (CUHK), Shatin, Hong Kong SAR, China
- Hong Kong Hub of Paediatric Excellence (HK HOPE), CUHK, Shatin, Hong Kong SAR, China
- Department of Medicine and Therapeutics, CUHK, Shatin, Hong Kong SAR, China
- The School of Biomedical Sciences, CUHK, Shatin, Hong Kong SAR, China
- *Correspondence: Ellen N. Poon,
| |
Collapse
|
3
|
An integrative method to decode regulatory logics in gene transcription. Nat Commun 2017; 8:1044. [PMID: 29051499 PMCID: PMC5715098 DOI: 10.1038/s41467-017-01193-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 08/25/2017] [Indexed: 12/27/2022] Open
Abstract
Modeling of transcriptional regulatory networks (TRNs) has been increasingly used to dissect the nature of gene regulation. Inference of regulatory relationships among transcription factors (TFs) and genes, especially among multiple TFs, is still challenging. In this study, we introduced an integrative method, LogicTRN, to decode TF–TF interactions that form TF logics in regulating target genes. By combining cis-regulatory logics and transcriptional kinetics into one single model framework, LogicTRN can naturally integrate dynamic gene expression data and TF-DNA-binding signals in order to identify the TF logics and to reconstruct the underlying TRNs. We evaluated the newly developed methodology using simulation, comparison and application studies, and the results not only show their consistence with existing knowledge, but also demonstrate its ability to accurately reconstruct TRNs in biological complex systems. Existing transcriptional regulatory networks models fall short of deciphering the cooperation between multiple transcription factors on dynamic gene expression. Here the authors develop an integrative method that combines gene expression and transcription factor-DNA binding data to decode transcription regulatory logics.
Collapse
|