1
|
Bowleg JL, Mikek CG, Gwaltney SR. Computed interactions of berenil with restricted foldamers of c-MYC DNA G-quadruplexes. J Biomol Struct Dyn 2024; 42:2162-2169. [PMID: 37286380 DOI: 10.1080/07391102.2023.2217913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 04/16/2023] [Indexed: 06/09/2023]
Abstract
G-quadruplexes (G4s) are secondary four-stranded DNA helical structures made up of guanine-rich nucleic acids that can assemble in the promoter regions of multiple genes under the appropriate conditions. Stabilization of G4 structures by small molecules can regulate transcription in non-telomeric regions, including in proto-oncogenes and promoter regions, contributing to anti-proliferative and anti-tumor activities. Because G4s are detectable in cancer cells but not in normal cells, they make excellent drug discovery targets. Diminazene, DMZ (or berenil), has been shown to be an efficient G-quadruplex binder. Due to the stability of the folding topology, G-quadruplex structures are frequently found in the promotor regions of oncogenes and may play a regulatory role in gene activation. Using molecular docking and molecular dynamics simulations on several different binding poses, we have studied DMZ binding toward multiple G4 topologies of the c-MYC G-quadruplex. DMZ binds preferentially to G4s that have extended loops and flanking bases. This preference arises from its interactions with the loops and the flanking nucleotides, which were not found in the structure lacking extended regions. The binding to the G4s with no extended regions instead occurred mostly through end stacking. All binding sites for DMZ were confirmed by 100 ns molecular dynamics simulations and through binding enthalpies calculated using the MM-PBSA method. The primary driving forces were electrostatic, as the cationic DMZ interacts with the anionic phosphate backbone, and through van der Waals interactions, which primarily contributed in end stacking interactions.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Jerrano L Bowleg
- Department of Chemistry, Mississippi State University, College Town, MS, USA
| | - Clinton G Mikek
- Department of Chemistry, Mississippi State University, College Town, MS, USA
| | - Steven R Gwaltney
- Department of Chemistry, Mississippi State University, College Town, MS, USA
| |
Collapse
|
2
|
Gharbaran R, Sayibou Z, Atamturktur S, Ofosu-Mensah JJ, Soto J, Boodhan N, Kolya S, Onwumere O, Chang L, Somenarain L, Redenti S. Diminazene aceturate-induced cytotoxicity is associated with the deregulation of cell cycle signaling and downregulation of oncogenes Furin, c-MYC, and FOXM1 in human cervical carcinoma Hela cells. J Biochem Mol Toxicol 2024; 38:e23527. [PMID: 37681557 DOI: 10.1002/jbt.23527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 07/21/2023] [Accepted: 08/24/2023] [Indexed: 09/09/2023]
Abstract
Diminazene aceturate (DIZE) is an FDA-listed small molecule known for the treatment of African sleeping sickness. In vivo studies showed that DIZE may be beneficial for a range of human ailments. However, there is very limited information on the effects of DIZE on human cancer cells. The current study aimed to investigate the cytotoxic responses of DIZE, using the human carcinoma Hela cell line. WST-1 cell proliferation assay showed that DIZE inhibited the viability of Hela cells in a dose-dependent manner and the observed response was associated with the downregulation of Ki67 and PCNA cell proliferation markers. DIZE-treated cells stained with acridine orange-ethidium and JC-10 dye revealed cell death and loss of mitochondrial membrane potential (Ψm), compared with DMSO (vehicle) control, respectively. Cellular immunofluorescence staining of DIZE-treated cells showed upregulation of caspase 3 activities. DIZE-treated cells showed downregulation of mRNA for G1/S genes CCNA2 and CDC25A, S-phase genes MCM3 and PLK4, and G2/S phase transition/mitosis genes Aurka and PLK1. These effects were associated with decreased mRNA expression of Furin, c-Myc, and FOXM1 oncogenes. These results suggested that DIZE may be considered for its effects on other cancer types. To the best of our knowledge, this is the first study to evaluate the effect of DIZE on human cervical cancer cells.
Collapse
Affiliation(s)
- Rajendra Gharbaran
- Department of Biological Sciences, Bronx Community College/City University of New York, Bronx, New York, USA
- Department of Biological Sciences, Lehman College/City University of New York, Bronx, New York, USA
| | - Zouberou Sayibou
- Department of Biological Sciences, Bronx Community College/City University of New York, Bronx, New York, USA
- Department of Computer Science, Stanford University, Stanford, California, USA
| | - Seher Atamturktur
- Department of Biological Sciences, Bronx Community College/City University of New York, Bronx, New York, USA
| | - Jeithy Jason Ofosu-Mensah
- Department of Biological Sciences, Bronx Community College/City University of New York, Bronx, New York, USA
| | - John Soto
- Department of Biological Sciences, Lehman College/City University of New York, Bronx, New York, USA
| | - Nicholas Boodhan
- Department of Biological Sciences, Lehman College/City University of New York, Bronx, New York, USA
| | - Saaimah Kolya
- Department of Biological Sciences, Lehman College/City University of New York, Bronx, New York, USA
| | - Onyekwere Onwumere
- Department of Biological Sciences, Lehman College/City University of New York, Bronx, New York, USA
- Biology Doctoral Program, The Graduate School and University Center, City University of New York, New York, New York, USA
| | - Lynne Chang
- Department of Biological Sciences, Lehman College/City University of New York, Bronx, New York, USA
| | - Latchman Somenarain
- Department of Biological Sciences, Bronx Community College/City University of New York, Bronx, New York, USA
| | - Stephen Redenti
- Department of Biological Sciences, Lehman College/City University of New York, Bronx, New York, USA
- Biology Doctoral Program, The Graduate School and University Center, City University of New York, New York, New York, USA
| |
Collapse
|
3
|
Monti L, Di Antonio M. G-Quadruplexes as Key Transcriptional Regulators in Neglected Trypanosomatid Parasites. Chembiochem 2023; 24:e202300265. [PMID: 37146230 PMCID: PMC10946822 DOI: 10.1002/cbic.202300265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 05/07/2023]
Abstract
G-quadruplexes (G4s) are nucleic acid secondary structures that have been linked to the functional regulation of eukaryotic organisms. G4s have been extensively characterised in humans and emerging evidence suggests that they might also be biologically relevant for human pathogens. This indicates that G4s might represent a novel class of therapeutic targets for tackling infectious diseases. Bioinformatic studies revealed a high prevalence of putative quadruplex-forming sequences (PQSs) in the genome of protozoans, which highlights their potential roles in regulating vital processes of these parasites, including DNA transcription and replication. In this work, we focus on the neglected trypanosomatid parasites, Trypanosoma and Leishmania spp., which cause debilitating and deadly diseases across the poorest populations worldwide. We review three examples where G4-formation might be key to modulate transcriptional activity in trypanosomatids, providing an overview of experimental approaches that can be used to exploit the regulatory roles and relevance of these structures to fight parasitic infections.
Collapse
Affiliation(s)
- Ludovica Monti
- Chemistry Department, Imperial College LondonMolecular Sciences Research Hub82 Wood LaneW12 0BZLondonUK
| | - Marco Di Antonio
- Chemistry Department, Imperial College LondonMolecular Sciences Research Hub82 Wood LaneW12 0BZLondonUK
- The Francis Crick Institute1 Midland RoadNW1 1ATLondonUK
- The Institute of Chemical BiologyMolecular Sciences Research Hub82 Wood LaneW12 0BZLondonUK
| |
Collapse
|
4
|
Hulme J. COVID-19 and Diarylamidines: The Parasitic Connection. Int J Mol Sci 2023; 24:6583. [PMID: 37047556 PMCID: PMC10094973 DOI: 10.3390/ijms24076583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 03/28/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023] Open
Abstract
As emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants (Omicron) continue to outpace and negate combinatorial vaccines and monoclonal antibody therapies targeting the spike protein (S) receptor binding domain (RBD), the appetite for developing similar COVID-19 treatments has significantly diminished, with the attention of the scientific community switching to long COVID treatments. However, treatments that reduce the risk of "post-COVID-19 syndrome" and associated sequelae remain in their infancy, particularly as no established criteria for diagnosis currently exist. Thus, alternative therapies that reduce infection and prevent the broad range of symptoms associated with 'post-COVID-19 syndrome' require investigation. This review begins with an overview of the parasitic-diarylamidine connection, followed by the renin-angiotensin system (RAS) and associated angiotensin-converting enzyme 2 (ACE2) and transmembrane serine protease 2 (TMPRSSR2) involved in SARS-CoV-2 infection. Subsequently, the ability of diarylamidines to inhibit S-protein binding and various membrane serine proteases associated with SARS-CoV-2 and parasitic infections are discussed. Finally, the roles of diarylamidines (primarily DIZE) in vaccine efficacy, epigenetics, and the potential amelioration of long COVID sequelae are highlighted.
Collapse
Affiliation(s)
- John Hulme
- Department of Bionano Technology, Gachon Bionano Research Institute, Gachon University, 1342 Sungnam-daero, Sujung-gu, Seongnam-si 461-701, Republic of Korea
| |
Collapse
|
5
|
Bagnolini G, Luu TB, Hargrove AE. Recognizing the power of machine learning and other computational methods to accelerate progress in small molecule targeting of RNA. RNA (NEW YORK, N.Y.) 2023; 29:473-488. [PMID: 36693763 PMCID: PMC10019373 DOI: 10.1261/rna.079497.122] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
RNA structures regulate a wide range of processes in biology and disease, yet small molecule chemical probes or drugs that can modulate these functions are rare. Machine learning and other computational methods are well poised to fill gaps in knowledge and overcome the inherent challenges in RNA targeting, such as the dynamic nature of RNA and the difficulty of obtaining RNA high-resolution structures. Successful tools to date include principal component analysis, linear discriminate analysis, k-nearest neighbor, artificial neural networks, multiple linear regression, and many others. Employment of these tools has revealed critical factors for selective recognition in RNA:small molecule complexes, predictable differences in RNA- and protein-binding ligands, and quantitative structure activity relationships that allow the rational design of small molecules for a given RNA target. Herein we present our perspective on the value of using machine learning and other computation methods to advance RNA:small molecule targeting, including select examples and their validation as well as necessary and promising future directions that will be key to accelerate discoveries in this important field.
Collapse
Affiliation(s)
- Greta Bagnolini
- Department of Chemistry, Duke University, Durham, North Carolina 27708, USA
| | - TinTin B Luu
- Department of Chemistry, Duke University, Durham, North Carolina 27708, USA
| | - Amanda E Hargrove
- Department of Chemistry, Duke University, Durham, North Carolina 27708, USA
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina 27710, USA
| |
Collapse
|
6
|
Fabijanić I, Kurutos A, Tomašić Paić A, Tadić V, Kamounah FS, Horvat L, Brozovic A, Crnolatac I, Radić Stojković M. Selenium-Substituted Monomethine Cyanine Dyes as Selective G-Quadruplex Spectroscopic Probes with Theranostic Potential. Biomolecules 2023; 13:biom13010128. [PMID: 36671513 PMCID: PMC9856044 DOI: 10.3390/biom13010128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/31/2022] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
The binding interactions of six ligands, neutral and monocationic asymmetric monomethine cyanine dyes comprising benzoselenazolyl moiety with duplex DNA and RNA and G-quadruplex structures were evaluated using fluorescence, UV/Vis (thermal melting) and circular dichroism (CD) spectroscopy. The main objective was to assess the impact of different substituents (methyl vs. sulfopropyl vs. thiopropyl/thioethyl) on the nitrogen atom of the benzothiazolyl chromophore on various nucleic acid structures. The monomethine cyanine dyes with methyl substituents showed a 100-fold selectivity for G-quadruplex versus duplex DNA. Study results indicate that cyanines bind with G-quadruplex via end π-π stacking interactions and possible additional interactions with nucleobases/phosphate backbone of grooves or loop bases. Cyanine with thioethyl substituent distinguishes duplex DNA and RNA and G-quadruplex structures by distinctly varying ICD signals. Furthermore, cell viability assay reveals the submicromolar activity of cyanines with methyl substituents against all tested human cancer cell lines. Confocal microscopy analysis shows preferential accumulation of cyanines with sulfopropyl and thioethyl substituents in mitochondria and indicates localization of cyanines with methyl in nucleus, particularly nucleolus. This confirms the potential of examined cyanines as theranostic agents, possessing both fluorescent properties and cell viability inhibitory effect.
Collapse
Affiliation(s)
- Ivana Fabijanić
- Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia
| | - Atanas Kurutos
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 9, 1113 Sofia, Bulgaria
| | - Ana Tomašić Paić
- Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia
| | - Vanja Tadić
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia
| | - Fadhil S. Kamounah
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark
| | - Lucija Horvat
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia
| | - Anamaria Brozovic
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia
| | - Ivo Crnolatac
- Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia
| | - Marijana Radić Stojković
- Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia
- Correspondence: ; Tel.: +385-14571220; Fax: +385-14680195
| |
Collapse
|
7
|
Cai Z, Zafferani M, Akande OM, Hargrove AE. Quantitative Structure-Activity Relationship (QSAR) Study Predicts Small-Molecule Binding to RNA Structure. J Med Chem 2022; 65:7262-7277. [PMID: 35522972 PMCID: PMC9150105 DOI: 10.1021/acs.jmedchem.2c00254] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The diversity of RNA structural elements and their documented role in human diseases make RNA an attractive therapeutic target. However, progress in drug discovery and development has been hindered by challenges in the determination of high-resolution RNA structures and a limited understanding of the parameters that drive RNA recognition by small molecules, including a lack of validated quantitative structure-activity relationships (QSARs). Herein, we develop QSAR models that quantitatively predict both thermodynamic- and kinetic-based binding parameters of small molecules and the HIV-1 transactivation response (TAR) RNA model system. Small molecules bearing diverse scaffolds were screened against TAR using surface plasmon resonance. Multiple linear regression (MLR) combined with feature selection afforded robust models that allowed direct interpretation of the properties critical for both binding strength and kinetic rate constants. These models were validated with new molecules, and their accurate performance was confirmed via comparison to ensemble tree methods, supporting the general applicability of this platform.
Collapse
Affiliation(s)
- Zhengguo Cai
- Department
of Chemistry, Duke University, 124 Science Drive, Durham, North Carolina 27708, United States
| | - Martina Zafferani
- Department
of Chemistry, Duke University, 124 Science Drive, Durham, North Carolina 27708, United States
| | - Olanrewaju M. Akande
- Social
Science Research Institute, 140 Science Drive, Durham, North Carolina 27708, United States
| | - Amanda E. Hargrove
- Department
of Chemistry, Duke University, 124 Science Drive, Durham, North Carolina 27708, United States,. Phone: 919-660-1521. Fax: 919-660-1605
| |
Collapse
|
8
|
Scott L, Chalikian TV. Stabilization of G-Quadruplex-Duplex Hybrid Structures Induced by Minor Groove-Binding Drugs. Life (Basel) 2022; 12:life12040597. [PMID: 35455088 PMCID: PMC9030760 DOI: 10.3390/life12040597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/09/2022] [Accepted: 04/13/2022] [Indexed: 11/16/2022] Open
Abstract
Once it had been realized that G-quadruplexes exist in the cell and are involved in regulation of genomic processes, the quest for ligands recognizing these noncanonical structures was underway. Many organic compounds that tightly associate with G-quadruplexes have been identified. However, the specificity of G-quadruplex-binding ligands towards individual structures remains problematic, as the common recognition element of these ligands is the G-tetrad. In this paper, we focus on G-quadruplex-duplex hybrids (QDH) containing a hairpin duplex incorporated as a stem-loop into the G-quadruplex core. The presence of a stem-loop renders QDH amenable to sequence-specific recognition by duplex-binding drugs. Should the thermodynamic crosstalk between the stem-loop and the tetraplex core be sufficiently strong, the drug binding to the loop would lead to the stabilization of the entire structure. We studied the stabilizing influence of the minor groove-binders netropsin and Hoechst 33258 on a family of QDH structures, as well as a G-quadruplex and a hairpin modeling the G-quadruplex core and the stem-loop of the QDH’s. We found that the binding of either drug results in an enhancement of the thermal stability of all DNA structures, as expressed by increases in the melting temperature, TM. Analysis of the hierarchical order of increases in TM revealed that the drug-induced stabilization arises from drug binding to the G-quadruplex domain of a QDH and the stem-loop, if the latter contains an all-AT binding site. This result attests to the thermodynamic crosstalk between the stem-loop and the tetraplex core of a QDH. Given the existing library of minor groove-binding drugs recognizing mixed A·T and G·C DNA sequences, our results point to an untapped avenue for sequence-specific recognition of QDH structures in vitro and, possibly, in vivo; thereby, opening the way for selective stabilization of four-stranded DNA structures at predetermined genomic loci, with implications for the control of genomic events.
Collapse
|
9
|
Xie Y, Ma L, Ling S, Ouyang H, Liang A, Jiang Z. Aptamer-Adjusted Carbon Dot Catalysis-Silver Nanosol SERS Spectrometry for Bisphenol A Detection. NANOMATERIALS 2022; 12:nano12081374. [PMID: 35458083 PMCID: PMC9032719 DOI: 10.3390/nano12081374] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/05/2022] [Accepted: 04/15/2022] [Indexed: 11/23/2022]
Abstract
Carbon dots (CDs) can be prepared from various organic (abundant) compounds that are rich in surfaces with –OH, –COOH, and –NH2 groups. Therefore, CDs exhibit good biocompatibility and electron transfer ability, allowing flexible surface modification and accelerated electron transfer during catalysis. Herein, CDs were prepared using a hydrothermal method with fructose, saccharose, and citric acid as C sources and urea as an N dopant. The as-prepared CDs were used to catalyze AgNO3–trisodium citrate (TSC) to produce Ag nanoparticles (AgNPs). The surface-enhanced Raman scattering (SERS) intensity increased with the increasing CDs concentration with Victoria blue B (VBB) as a signal molecule. The CDs exhibited a strong catalytic activity, with the highest activity shown by fructose-based CDs. After N doping, catalytic performance improved; with the passivation of a wrapped aptamer, the electron transfer was effectively disrupted (retarded). This resulted in the inhibition of the reaction and a decrease in the SERS intensity. When bisphenol A (BPA) was added, it specifically bound to the aptamer and CDs were released, recovering catalytical activity. The SERS intensity increased with BPA over the concentration range of 0.33–66.67 nmol/L. Thus, the aptamer-adjusted nanocatalytic SERS method can be applied for BPA detection.
Collapse
Affiliation(s)
- Yuqi Xie
- Key Laboratory of Regional Ecological Environment Analysis and Pollution Control in Western Guangxi (Baise University), Education Department of Guangxi Zhuang Autonomous Region, College of Chemistry and Environment Engineering, Baise University, Baise 533000, China; (Y.X.); (L.M.); (S.L.)
| | - Lu Ma
- Key Laboratory of Regional Ecological Environment Analysis and Pollution Control in Western Guangxi (Baise University), Education Department of Guangxi Zhuang Autonomous Region, College of Chemistry and Environment Engineering, Baise University, Baise 533000, China; (Y.X.); (L.M.); (S.L.)
| | - Shaoming Ling
- Key Laboratory of Regional Ecological Environment Analysis and Pollution Control in Western Guangxi (Baise University), Education Department of Guangxi Zhuang Autonomous Region, College of Chemistry and Environment Engineering, Baise University, Baise 533000, China; (Y.X.); (L.M.); (S.L.)
| | - Huixiang Ouyang
- Key Laboratory of Regional Ecological Environment Analysis and Pollution Control in Western Guangxi (Baise University), Education Department of Guangxi Zhuang Autonomous Region, College of Chemistry and Environment Engineering, Baise University, Baise 533000, China; (Y.X.); (L.M.); (S.L.)
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guangxi Normal University, Guilin 541004, China;
- Correspondence: (H.O.); (Z.J.)
| | - Aihui Liang
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guangxi Normal University, Guilin 541004, China;
| | - Zhiliang Jiang
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guangxi Normal University, Guilin 541004, China;
- Correspondence: (H.O.); (Z.J.)
| |
Collapse
|
10
|
Bağda E, Bağda E, Kocak A, Durmuş M. Investigation of Binding behaviour of a water-soluble gallium (III) phthalocyanine with double-stranded and G-quadruplex DNA via experimental and computational methods. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130536] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
11
|
Verma S, Ravichandiran V, Ranjan N. Beyond amyloid proteins: Thioflavin T in nucleic acid recognition. Biochimie 2021; 190:111-123. [PMID: 34118329 DOI: 10.1016/j.biochi.2021.06.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 05/25/2021] [Accepted: 06/04/2021] [Indexed: 01/01/2023]
Abstract
Thioflavin T (ThT) is a commercially available fluorescent dye that is commonly used in biomedical research for over five decades. It was first reported as an extrinsic fluorescent probe for the detection of amyloid fibrils and related processes and it has also been used extensively for assessing protein binding in fluorescence-based assays. Although the nucleic acid binding of ThT was reported half of a century ago in the 1970s, it was not widely explored until the start of this decade. In recent years, Thioflavin T has become a major tool in the recognition of many types of non-canonical nucleic acid conformations including duplexes, triplexes, and G-quadruplexes. The propensity of ThT binding is more towards base aberrations, bulges, and mismatches highlighting its importance in serving as a diagnostic tool in a variety of ailments/disease conditions. In this review, we cover major advancements in nucleic acid detection/binding by ThT to a variety of nucleic acid structures.
Collapse
Affiliation(s)
- Smita Verma
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER)-Raebareli, New Transit Campus, Lucknow, Uttar Pradesh, 226002, India; Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER)-Kolkata, Maniktala Main Road, Kolkata, 700054, India
| | - Velayutham Ravichandiran
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER)-Kolkata, Maniktala Main Road, Kolkata, 700054, India
| | - Nihar Ranjan
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER)-Raebareli, New Transit Campus, Lucknow, Uttar Pradesh, 226002, India.
| |
Collapse
|
12
|
Rubim de Santana PI, Ferreira Neto DC, Goncalves ADS, Almeida JSFDD, França TCC, Figueroa-Villar JD. Complete chemical shift assignment and molecular modeling studies of two chromene derivatives as potential leads for new anticancer drugs. J Biomol Struct Dyn 2020; 39:5498-5508. [PMID: 32657645 DOI: 10.1080/07391102.2020.1790419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The compounds 7-chloro-9-(2-hydroxy-4,4-dimethyl-6-oxocyclohex-1-en-1-yl)-3,3-dimethyl-2,3,4,9-tetrahydro-1H-xanthen-1-one (5) and 5-[-7-chloro-2,4-dioxo-1H, 2H, 3H, 4H, 5H-chromeno[2,3-d]pyrimidin-5-yl)]-1,3-diazinane-2,4,6-trione (7), were synthesized from dimedone and barbituric acid and had their three-dimensional structures and precise chemical shifts assignments obtained by Nuclear Magnetic Resonance (NMR) from 1H, 13C, APT, COSY, HSQC, and HMBC spectra. Additional HOMO-LUMO DFT calculations corroborated the NMR results and pointed to the most stable stereoisomers of each compound. Besides, further docking and molecular dynamic studies suggest that the stereoisomers (9S)-7-chloro-9-(2-hydroxy-4,4-dimethyl-6-oxocyclohex-1-en-1-yl)-3,3-dimethyl-2,3,4,9-tetrahydro-1H-xanthen-1-one, and 5-[(5S)-7-chloro-2,4-dioxo-1H, 2H, 3H, 4H, 5H-chromeno[2,3-d]pyrimidin-5-yl)]-1,3-diazinane-2,4,6-trione of these compounds may act as DNA intercalators and qualify as potential leads for the development of new anticancer drugs.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Priscila Ivo Rubim de Santana
- Medicinal Chemistry Group, Chemical Engineering Department, Military Institute of Engineering, Rio de Janeiro, Brazil
| | - Denise Cristian Ferreira Neto
- Medicinal Chemistry Group, Chemical Engineering Department, Military Institute of Engineering, Rio de Janeiro, Brazil
| | - Arlan da Silva Goncalves
- Laboratory of Molecular Modeling Applied to the Chemical and Biological Defense (LMCBD), Military Institute of Engineering, Rio de Janeiro, Brazil.,Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | | | - Tanos Celmar Costa França
- Laboratory of Molecular Modeling Applied to the Chemical and Biological Defense (LMCBD), Military Institute of Engineering, Rio de Janeiro, Brazil.,Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - José Daniel Figueroa-Villar
- Medicinal Chemistry Group, Chemical Engineering Department, Military Institute of Engineering, Rio de Janeiro, Brazil
| |
Collapse
|
13
|
Francisco AP, Mendes E, Santos AR, Perry MJ. Anticancer Triazenes: from Bioprecursors to Hybrid Molecules. Curr Pharm Des 2020; 25:1623-1642. [PMID: 31244412 DOI: 10.2174/1381612825666190617155749] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 05/20/2019] [Indexed: 11/22/2022]
Abstract
Triazenes are a very useful and diverse class of compounds that have been studied for their potential in the treatment of many tumors including brain tumor, leukemia and melanoma. Novel compounds of this class continue to be developed as either anticancer compounds or even with other therapeutic applications. This review focused on several types of triazenes from the simplest ones like 1,3-dialkyl-3-acyltriazenes to the more complex ones like combi-triazenes with an emphasis on how triazenes have been developed as effective antitumor agents.
Collapse
Affiliation(s)
- Ana P Francisco
- iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Eduarda Mendes
- iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Ana R Santos
- iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Maria J Perry
- iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
14
|
Qaradakhi T, Gadanec LK, McSweeney KR, Tacey A, Apostolopoulos V, Levinger I, Rimarova K, Egom EE, Rodrigo L, Kruzliak P, Kubatka P, Zulli A. The potential actions of angiotensin-converting enzyme II (ACE2) activator diminazene aceturate (DIZE) in various diseases. Clin Exp Pharmacol Physiol 2020; 47:751-758. [PMID: 31901211 DOI: 10.1111/1440-1681.13251] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 01/01/2020] [Accepted: 01/03/2020] [Indexed: 01/28/2023]
Abstract
The renin angiotensin system (RAS) regulates fluid balance, blood pressure and maintains vascular tone. The potent vasoconstrictor angiotensin II (Ang II) produced by angiotensin-converting enzyme (ACE) comprises the classical RAS. The non-classical RAS involves the conversion of Ang II via ACE2 into the vasodilator Ang (1-7) to counterbalance the effects of Ang II. Furthermore, ACE2 converts AngA into another vasodilator named alamandine. The over activation of the classical RAS (increased vasoconstriction) and depletion of the non-classical RAS (decreased vasodilation) results in vascular dysfunction. Vascular dysfunction is the leading cause of atherosclerosis and cardiovascular disease (CVD). Additionally, local RAS is expressed in various tissues and regulates cellular functions. RAS dysregulation is involved in other several diseases such as inflammation, renal dysfunction and even cancer growth. An approach in restoring vascular dysfunction and other pathological diseases is to either increase the activity of ACE2 or reduce the effect of the classical RAS by counterbalancing Ang II effects. The antitrypanosomal agent, diminazene aceturate (DIZE), is one approach in activating ACE2. DIZE has been shown to exert beneficial effects in CVD experimental models of hypertension, myocardial infarction, type 1 diabetes and atherosclerosis. Thus, this review focuses on DIZE and its effect in several tissues such as blood vessels, cardiac, renal, immune and cancer cells.
Collapse
Affiliation(s)
- Tawar Qaradakhi
- Institute for Health and Sport, Victoria University, Melbourne, Australia
| | - Laura Kate Gadanec
- Institute for Health and Sport, Victoria University, Melbourne, Australia
| | | | - Alexander Tacey
- Institute for Health and Sport, Victoria University, Melbourne, Australia.,Australian Institute for Musculoskeletal Science (AIMSS), University of Melbourne and Western Health, St Albans, Australia
| | | | - Itamar Levinger
- Institute for Health and Sport, Victoria University, Melbourne, Australia.,Australian Institute for Musculoskeletal Science (AIMSS), University of Melbourne and Western Health, St Albans, Australia
| | - Kvetoslava Rimarova
- Department of Public Health and Hygiene, Faculty of Medicine, Pavol Jozef Safarik University, Kosice, Slovakia
| | - Emmanuel E Egom
- Egom Clinical & Translational Research Services Ltd, Dartmouth, NS, Canada.,Jewish General Hospital and Lady Davis Research Institute, Montreal, QC, Canada
| | - Luis Rodrigo
- Faculty of Medicine, University of Oviedo and Central University Hospital of Asturias (HUCA), Oviedo, Spain
| | - Peter Kruzliak
- Department of Internal Medicine, Borthers of Mercy Hospital, Brno, Czech Republic.,2nd Department of Surgery, Faculty of Medicine, Masaryk University and St. Anne's University Hospital, Brno, Czech Republic
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia.,Division of Oncology, Biomedical Center Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Anthony Zulli
- Institute for Health and Sport, Victoria University, Melbourne, Australia
| |
Collapse
|
15
|
Ligand-Based Stability Changes in Duplex DNA Measured with a Microscale Electrochemical Platform. BIOSENSORS-BASEL 2019; 9:bios9020054. [PMID: 31013753 PMCID: PMC6628196 DOI: 10.3390/bios9020054] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/03/2019] [Accepted: 04/09/2019] [Indexed: 01/20/2023]
Abstract
Development of technologies for rapid screening of DNA secondary structure thermal stability and the effects on stability for binding of small molecule drugs is important to the drug discovery process. In this report, we describe the capabilities of an electrochemical, microdevice-based approach for determining the melting temperatures (Tm) of electrode-bound duplex DNA structures. We also highlight new features of the technology that are compatible with array development and adaptation for high-throughput screening. As a foundational study to exhibit device performance and capabilities, melting-curve analyses were performed on 12-mer DNA duplexes in the presence/absence of two binding ligands: diminazene aceturate (DMZ) and proflavine. By measuring electrochemical current as a function of temperature, our measurement platform has the ability to determine the effect of binding ligands on Tm values with high signal-to-noise ratios and good reproducibility. We also demonstrate that heating our three-electrode cell with either an embedded microheater or a thermoelectric module produces similar results. The ΔTm values we report show the stabilizing ability of DMZ and proflavine when bound to duplex DNA structures. These initial proof-of-concept studies highlight the operating characteristics of the microdevice platform and the potential for future application toward other immobilized samples.
Collapse
|
16
|
Bencheva LI, De Matteo M, Ferrante L, Ferrara M, Prandi A, Randazzo P, Ronzoni S, Sinisi R, Seneci P, Summa V, Gallo M, Veneziano M, Cellucci A, Mazzocchi N, Menegon A, Di Fabio R. Identification of Isoform 2 Acid-Sensing Ion Channel Inhibitors as Tool Compounds for Target Validation Studies in CNS. ACS Med Chem Lett 2019; 10:627-632. [PMID: 30996808 DOI: 10.1021/acsmedchemlett.8b00591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 02/07/2019] [Indexed: 01/21/2023] Open
Abstract
Acid-sensing ion channels (ASICs) are a family of ion channels permeable to cations and largely responsible for the onset of acid-evoked ion currents both in neurons and in different types of cancer cells, thus representing a potential target for drug discovery. Owing to the limited attention ASIC2 has received so far, an exploratory program was initiated to identify ASIC2 inhibitors using diminazene, a known pan-ASIC inhibitor, as a chemical starting point for structural elaboration. The performed exploration enabled the identification of a novel series of ASIC2 inhibitors. In particular, compound 2u is a brain penetrant ASIC2 inhibitor endowed with an optimal pharmacokinetic profile. This compound may represent a useful tool to validate in animal models in vivo the role of ASIC2 in different neurodegenerative central nervous system pathologies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Pierfausto Seneci
- Promidis, Via Olgettina 60, 20132 Milan, Italy
- Chemistry Department, Università degli Studi di Milano, Via Golgi 19, I-20133 Milan, Italy
| | - Vincenzo Summa
- IRBM Science Park, Via Pontina Km 30.600, 00070 Pomezia, Rome, Italy
| | - Mariana Gallo
- IRBM Science Park, Via Pontina Km 30.600, 00070 Pomezia, Rome, Italy
| | - Maria Veneziano
- IRBM Science Park, Via Pontina Km 30.600, 00070 Pomezia, Rome, Italy
| | | | - Nausicaa Mazzocchi
- San Raffaele Scientific Institute, Experimental Imaging Center, ALEMBIC, Advanced Light and Electron Microscopy BioImaging Center, Via Olgettina 60, 20132 Milan, Italy
| | - Andrea Menegon
- San Raffaele Scientific Institute, Experimental Imaging Center, ALEMBIC, Advanced Light and Electron Microscopy BioImaging Center, Via Olgettina 60, 20132 Milan, Italy
| | - Romano Di Fabio
- Promidis, Via Olgettina 60, 20132 Milan, Italy
- IRBM Science Park, Via Pontina Km 30.600, 00070 Pomezia, Rome, Italy
| |
Collapse
|
17
|
Mikek C, West SJ, Gwin JC, Dayal N, Sintim HO, Lewis EA. Berenil Binds Tightly to Parallel and Mixed Parallel/Antiparallel G-Quadruplex Motifs with Varied Thermodynamic Signatures. ACS OMEGA 2018; 3:11582-11591. [PMID: 30320266 PMCID: PMC6173502 DOI: 10.1021/acsomega.8b01621] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 09/06/2018] [Indexed: 06/08/2023]
Abstract
Diminazene, DMZ, (or berenil) has been reported as a tight binder of G-quadruplexes. G-Quadruplex structures are often located in the promotor regions of oncogenes and may play a regulatory role in gene expression based on the stability of the folding topology. In this study, attempts have been made to characterize the specificity of DMZ binding toward multiple G-quadruplex topologies or foldamers. Mutant sequences of the G-quadruplex forming promotor regions of several oncogenes were designed to exhibit restricted loop lengths and folding topologies. Circular dichroism was used to confirm the quadruplex topology of mutant BCL2, KRAS, and c-MYC sequences, human telomere (Na+ and K+) G-quadruplexes and their complexes with DMZ and analogs thereof. Isothermal titration calorimetry was used to generate a complete thermodynamic profile (ΔG, ΔH, -TΔS) for the formation of DMZ and analog complexes with the target G-quadruplexes. DMZ binds to parallel and/or mixed parallel/antiparallel quadruplex DNA motifs with stoichiometries up to 8:1 and via three binding modes with varying affinities. In the case of the parallel G-quadruplexes, with the exception of the long-looped c-MYC mutant, the highest affinity binding event (mode 1) is driven by enthalpy. DMZ binding to the long-looped c-MYC mutant exhibits a very favorable entropy change in addition to a moderately favorable enthalpy change. Mode 1 binding to the antiparallel and mixed parallel/antiparallel hTel quadruplexes is also driven by favorable enthalpy changes. In all cases, the intermediate DMZ affinity binding (mode 2) is driven almost entirely by entropy, with small or unfavorable enthalpic contributions. The weakest binding event (mode 3) is also entropically driven with small or moderate enthalpic contributions.
Collapse
Affiliation(s)
- Clinton
G. Mikek
- Department
of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
- Center
for Drug Discovery, Purdue University, 720 Clinic Drive, West Lafayette, Indiana 47907, United States
| | - Savannah J. West
- Department
of Chemistry, Mississippi State University, 310 President’s Circle, Mississippi, Mississippi State 39762, United States
| | - J. Cole Gwin
- Department
of Chemistry, Mississippi State University, 310 President’s Circle, Mississippi, Mississippi State 39762, United States
| | - Neetu Dayal
- Department
of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
- Center
for Drug Discovery, Purdue University, 720 Clinic Drive, West Lafayette, Indiana 47907, United States
| | - Herman O. Sintim
- Department
of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
- Center
for Drug Discovery, Purdue University, 720 Clinic Drive, West Lafayette, Indiana 47907, United States
| | - Edwin A. Lewis
- Department
of Chemistry, Mississippi State University, 310 President’s Circle, Mississippi, Mississippi State 39762, United States
| |
Collapse
|
18
|
Paul S, Samanta A. Ground- and Excited-State Interactions of a Psoralen Derivative with Human Telomeric G-Quadruplex DNA. J Phys Chem B 2018; 122:2277-2286. [PMID: 29376354 DOI: 10.1021/acs.jpcb.7b12475] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
G-quadruplex DNA has been a recent target for anticancer agents, and its binding interactions with small molecules, often used as anticancer drugs, have become an important area of research. Considering that psoralens have long been studied in the context of duplex DNA but that very little is known about their potential as G-quadruplex binders and their excited-state interaction with the latter has not been explored, we have studied herein the binding of a planar water-soluble psoralen derivative, 4'-aminomethyl-4,5',8-trimethylpsoralen (AMT), with the 22-mer human telomeric G-quadruplex-forming sequence, AGGG(TTAGGG)3, labeled here as (hTel22), and investigated the consequences of photoexcitation of AMT by calorimetric and spectroscopic techniques. The results show an enthalpy-driven 1:1 binding of AMT with hTel22 via end-stacking mode. Fluorescence quenching experiments on 6-fluorescein amidite-labeled oligomers indicate that the binding site is nearer to the 3' end of hTel22 in the diagonal loop region. Femtosecond time-resolved transient absorption measurements indicate electron transfer from the guanine moiety of hTel22 to photoexcited AMT, leading to the formation of a radical pair species (AMT•-G•+), which survives for 30 ps and is favored by a parallel/quasi-parallel orientation between the two. The findings reveal psoralens as a prospective class of compounds for the development of anticancer therapeutics by targeting the G-quadruplex DNA.
Collapse
Affiliation(s)
- Sneha Paul
- School of Chemistry, University of Hyderabad , Hyderabad 500046, India
| | - Anunay Samanta
- School of Chemistry, University of Hyderabad , Hyderabad 500046, India
| |
Collapse
|
19
|
Redhead M, Satchell R, McCarthy C, Pollack S, Unitt J. Thermal Shift as an Entropy-Driven Effect. Biochemistry 2017; 56:6187-6199. [DOI: 10.1021/acs.biochem.7b00860] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Martin Redhead
- Bioscience
Department, Sygnature Discovery, Nottingham NG1 1GF, U.K
| | - Rupert Satchell
- Bioscience
Department, Sygnature Discovery, Nottingham NG1 1GF, U.K
| | - Ciara McCarthy
- Bioscience
Department, Sygnature Discovery, Nottingham NG1 1GF, U.K
| | - Scott Pollack
- Bioscience
Department, Sygnature Discovery, Nottingham NG1 1GF, U.K
| | - John Unitt
- Bioscience
Department, Sygnature Discovery, Nottingham NG1 1GF, U.K
| |
Collapse
|
20
|
Bağda E, Bağda E, Durmuş M. G-quadruplex and calf thymus DNA interaction of quaternized tetra and octa pyridyloxy substituted indium (III) phthalocyanines. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 175:9-19. [DOI: 10.1016/j.jphotobiol.2017.08.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 07/17/2017] [Accepted: 08/05/2017] [Indexed: 01/12/2023]
|
21
|
Grimmelsmann L, Marefat Khah A, Spies C, Hättig C, Nuernberger P. Ultrafast Dynamics of a Triazene: Excited-State Pathways and the Impact of Binding to the Minor Groove of DNA and Further Biomolecular Systems. J Phys Chem Lett 2017; 8:1986-1992. [PMID: 28426228 DOI: 10.1021/acs.jpclett.7b00472] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Many synthetic DNA minor groove binders exhibit a strong increase in fluorescence when bound to DNA. The pharmaceutical-relevant berenil (diminazene aceturate) is an exception with an extremely low fluorescence quantum yield (on the order of 10-4). We investigate the ultrafast excited-state dynamics of this triazene by femtosecond time-resolved fluorescence experiments in water, ethylene glycol, and buffer and bound to the enzyme β-trypsin, the minor groove of AT-rich DNA, and G-quadruplex DNA. Ab initio calculations provide additional mechanistic insight. The complementing studies unveil that the excited-state motion initiated by ππ* excitation occurs in two phases: a subpicosecond phase associated with the lengthening of the central N═N double bond, followed by a bicycle-pedal-type motion of the triazene bridge, which is almost volume-conserving and can proceed efficiently within only a few picoseconds even under spatially confined conditions. Our results elucidate the excited-state relaxation mechanism of aromatic triazenes and explain the modest sensitivity of the fluorescence quantum yield of berenil even when it is bound to various biomolecules.
Collapse
Affiliation(s)
- Lena Grimmelsmann
- Physikalische Chemie II and ‡Theoretische Chemie, Ruhr-Universität Bochum , 44780 Bochum, Germany
| | - Alireza Marefat Khah
- Physikalische Chemie II and ‡Theoretische Chemie, Ruhr-Universität Bochum , 44780 Bochum, Germany
| | - Christian Spies
- Physikalische Chemie II and ‡Theoretische Chemie, Ruhr-Universität Bochum , 44780 Bochum, Germany
| | - Christof Hättig
- Physikalische Chemie II and ‡Theoretische Chemie, Ruhr-Universität Bochum , 44780 Bochum, Germany
| | - Patrick Nuernberger
- Physikalische Chemie II and ‡Theoretische Chemie, Ruhr-Universität Bochum , 44780 Bochum, Germany
| |
Collapse
|
22
|
Scharf NT, Molodtsov V, Kontos A, Murakami KS, Garcia GA. Novel Chemical Scaffolds for Inhibition of Rifamycin-Resistant RNA Polymerase Discovered from High-Throughput Screening. SLAS DISCOVERY 2016; 22:287-297. [PMID: 28027449 DOI: 10.1177/2472555216679994] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Rifampin has been a cornerstone of tuberculosis (TB) treatment since its introduction. The rise of multidrug-resistant and extensively drug-resistant TB makes the development of novel therapeutics effective against these strains an urgent need. Site-specific mutations in the target enzyme of rifampin, RNA polymerase (RNAP) comprises the majority (~97%) of rifamycin-resistant (RifR) strains of Mycobacterium tuberculosis (MTB). To identify novel inhibitors of bacterial RNAP, an in vitro plasmid-based transcription assay that uses malachite green (MG) to detect transcribed RNA containing MG aptamers was developed. This assay was optimized in a 384-well plate format and used to screen 150,000 compounds against an Escherichia coli homolog of the most clinically relevant RifR RNAP (βS531L) containing a mutation (β'V408G) that compensates for the fitness defect of this RifR mutant. Following confirmation and concentration-response studies, 10 compounds were identified with similar in vitro inhibition values across a panel of wild-type and RifR E. coli and MTB RNAPs. Four compounds identified from the screen are active against MTB in culture at concentrations below 200 µM. Initial follow-up has resulted in the elimination of one scaffold due to potential pan-assay interference.
Collapse
Affiliation(s)
- Nathan T Scharf
- 1 Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI, USA
| | - Vadim Molodtsov
- 2 Department of Biochemistry and Molecular Biology, The Center for RNA Molecular Biology, The Pennsylvania State University, University Park, PA, USA
| | - Arrin Kontos
- 1 Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI, USA
| | - Katsuhiko S Murakami
- 2 Department of Biochemistry and Molecular Biology, The Center for RNA Molecular Biology, The Pennsylvania State University, University Park, PA, USA
| | - George A Garcia
- 1 Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
23
|
Alkyne-substituted diminazene as G-quadruplex binders with anticancer activities. Eur J Med Chem 2016; 118:266-75. [DOI: 10.1016/j.ejmech.2016.04.030] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 04/11/2016] [Accepted: 04/11/2016] [Indexed: 01/18/2023]
|
24
|
Multiple G-quartet structures in pre-edited mRNAs suggest evolutionary driving force for RNA editing in trypanosomes. Sci Rep 2016; 6:29810. [PMID: 27436151 PMCID: PMC4951716 DOI: 10.1038/srep29810] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 06/24/2016] [Indexed: 01/13/2023] Open
Abstract
Mitochondrial transcript maturation in African trypanosomes requires a U-nucleotide specific RNA editing reaction. In its most extreme form hundreds of U's are inserted into and deleted from primary transcripts to generate functional mRNAs. Unfortunately, both origin and biological role of the process have remained enigmatic. Here we report a so far unrecognized structural feature of pre-edited mRNAs. We demonstrate that the cryptic pre-mRNAs contain numerous clustered G-nt, which fold into G-quadruplex (GQ) structures. We identified 27 GQ's in the different pre-mRNAs and demonstrate a positive correlation between the steady state abundance of guide (g)RNAs and the sequence position of GQ-elements. We postulate that the driving force for selecting G-rich sequences lies in the formation of DNA/RNA hybrid G-quadruplex (HQ) structures between the pre-edited transcripts and the non-template strands of mitochondrial DNA. HQ's are transcription termination/replication initiation sites and thus guarantee an unperturbed replication of the mt-genome. This is of special importance in the insect-stage of the parasite. In the transcription-on state, the identified GQ's require editing as a GQ-resolving activity indicating a link between replication, transcription and RNA editing. We propose that the different processes have coevolved and suggest the parasite life-cycle and the single mitochondrion as evolutionary driving forces.
Collapse
|
25
|
Diminazene aceturate—An antiparasitic drug of antiquity: Advances in pharmacology & therapeutics. Pharmacol Res 2015; 102:138-57. [DOI: 10.1016/j.phrs.2015.10.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 09/28/2015] [Accepted: 10/09/2015] [Indexed: 12/31/2022]
|
26
|
DuPont JI, Henderson KL, Metz A, Le VH, Emerson JP, Lewis EA. Calorimetric and spectroscopic investigations of the binding of metallated porphyrins to G-quadruplex DNA. Biochim Biophys Acta Gen Subj 2015; 1860:902-909. [PMID: 26363462 DOI: 10.1016/j.bbagen.2015.09.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 08/25/2015] [Accepted: 09/06/2015] [Indexed: 10/23/2022]
Abstract
BACKGROUND The human telomere contains tandem repeat of (TTAGG) capable of forming a higher order DNA structure known as G-quadruplex. Porphyrin molecules such as TMPyP4 bind and stabilize G-quadruplex structure. METHODS Isothermal titration calorimetry (ITC), circular dichroism (CD), and mass spectroscopy (ESI/MS), were used to investigate the interactions between TMPyP4 and the Co(III), Ni(II), Cu(II), and Zn(II) complexes of TMPyP4 (e.g. Co(III)-TMPyP4) and a model human telomere G-quadruplex (hTel22) at or near physiologic ionic strength ([Na(+)] or [K(+)]≈0.15M). RESULTS The apo-TMPyP4, Ni(II)-TMPyP4, and Cu(II)-TMPyP4 all formed complexes having a saturation stoichiometry of 4:1, moles of ligand per mole of DNA. Binding of apo-TMPyP4, Ni(II)-TMPyP4, and Cu(II)-TMPyP4 is described by a "four-independent-sites model". The two highest-affinity sites exhibit a K in the range of 10(8) to 10(10)M(-1) with the two lower-affinity sites exhibiting a K in the range of 10(4) to 10(5)M(-1). Binding of Co(III)-TMPyP4, and Zn(II)-TMPyP4, is best described by a "two-independent-sites model" in which only the end-stacking binding mode is observed with a K in the range of 10(4) to 10(5)M(-1). CONCLUSIONS In the case of apo-TMPyP4, Ni(II)-TMPyP4, and Cu(II)-TMPyP4, the thermodynamic signatures for the two binding modes are consistent with an "end stacking" mechanism for the higher affinity binding mode and an "intercalation" mechanism for the lower affinity binding mode. In the case of Co(III)-TMPyP4 and Zn(II)-TMPyP4, both the lower affinity for the "end-stacking" mode and the loss of the intercalative mode for forming the 2:1 complexes with hTel22 are attributed to the preferred metal coordination geometry and the presence of axial ligands. GENERAL SIGNIFICANCE The preferred coordination geometry around the metal center strongly influences the energetics of the interactions between the metallated-TMPyP4 and the model human telomeric G-quadruplex.
Collapse
Affiliation(s)
- Jesse I DuPont
- Department of Chemistry, Mississippi State University, Mississippi State, MS 39762, United States
| | - Kate L Henderson
- Department of Chemistry, Mississippi State University, Mississippi State, MS 39762, United States
| | - Amanda Metz
- Department of Chemistry, Mississippi State University, Mississippi State, MS 39762, United States
| | - Vu H Le
- Department of Chemistry, Mississippi State University, Mississippi State, MS 39762, United States
| | - Joseph P Emerson
- Department of Chemistry, Mississippi State University, Mississippi State, MS 39762, United States
| | - Edwin A Lewis
- Department of Chemistry, Mississippi State University, Mississippi State, MS 39762, United States
| |
Collapse
|
27
|
Zhao T, Wang YL, Zhu LN, Huo YF, Wang YJ, Kong DM. A water-soluble cationic porphyrin showing pH-dependent G-quadruplex recognition specificity and DNA photocleavage activity. RSC Adv 2015. [DOI: 10.1039/c5ra05970d] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
A new water-soluble cationic porphyrin was synthesized. It shows pH-dependent G-quadruplex recognition specificity against duplex DNA, pH-dependent photocleavage activity towards duplex DNA and pH-dependent phototoxicity to cells.
Collapse
Affiliation(s)
- Ting Zhao
- State Key Laboratory of Medicinal Chemical Biology
- College of Chemistry
- Nankai University
- Tianjin 300071
- China
| | - Ya-Ling Wang
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
- Tianjin 300071
- China
- Key Laboratory of Bioactive Materials (Ministry of Education)
- College of Life Sciences
| | - Li-Na Zhu
- Department of Chemistry
- Tianjin University
- Tianjin
- China
| | - Yan-Fang Huo
- State Key Laboratory of Medicinal Chemical Biology
- College of Chemistry
- Nankai University
- Tianjin 300071
- China
| | - Yong-Jian Wang
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
- Tianjin 300071
- China
- Key Laboratory of Bioactive Materials (Ministry of Education)
- College of Life Sciences
| | - De-Ming Kong
- State Key Laboratory of Medicinal Chemical Biology
- College of Chemistry
- Nankai University
- Tianjin 300071
- China
| |
Collapse
|