1
|
Zhang G, Xiang M, Gu L, Zhou J, Zhang B, Tian W, Deng D. The essential role of TTC28 in maintaining chromosomal stability via HSPA8 chaperone-mediated autophagy. Proc Natl Acad Sci U S A 2024; 121:e2409447121. [PMID: 39630868 DOI: 10.1073/pnas.2409447121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 10/18/2024] [Indexed: 12/07/2024] Open
Abstract
There are three distinct forms of autophagy, namely, macroautophagy, microautophagy, and HSPA8 chaperone-mediated autophagy (CMA). While macroautophagy is widely recognized as a regulator of chromosomal instability (CIN) through various pathways, the contributions of CMA and microautophagy to CIN remain uncertain. TTC28, a conserved gene in vertebrates, is frequently mutated and down-regulated in numerous human cancers. This study presents findings demonstrating the interaction between human tetratricopeptide repeat domain 28 (TTC28) and heat shock protein member 8 (HSPA8) and lysosomal-associated membrane protein 2A proteins. The tetratricopeptide repeat domains of TTC28 bind to the C-terminal motif (PTIEEVD) in HSPA8, resulting in the subsequent degradation of TTC28 via CMA/microautophagy. Notably, the baseline frequency of micronuclei (FMN) in human cancer cells with TTC28 knockout cells was three times greater than that in cells with wild-type TTC28 (7.7% vs. 2.3%, P = 4.86E-09). Furthermore, the overexpression of Ttc28 mitigated the impact of TTC28 knockout on FMN (11.9% vs. 4.8%, P = 2.83E-11). Our findings also demonstrate that CMA has a protective effect on genome stability and that TTC28 plays an essential role in the effect of CMA. These results were further supported by the quantification of γH2AX and comet analyses and the analysis of The Cancer Genome Atlas data via bioinformatics. Mechanistically, TTC28 regulates mitosis and cytokinesis, which are involved in the maintenance of genome integrity by CMA. In conclusion, our study demonstrated that TTC28 is not only an HSPA8-mediated CMA/microautophagy substrate but also essential for maintaining chromosomal stability via CMA. Comprehensive TTC28 downregulation may lead to CIN in cancer cells.
Collapse
Affiliation(s)
- Ge Zhang
- Division of Cancer Etiology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Meiyi Xiang
- Division of Cancer Etiology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Liankun Gu
- Division of Cancer Etiology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Jing Zhou
- Division of Cancer Etiology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Baozhen Zhang
- Division of Cancer Etiology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Wei Tian
- Division of Cancer Etiology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Dajun Deng
- Division of Cancer Etiology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing 100142, China
| |
Collapse
|
2
|
Zayed M, Kim YC, Jeong BH. Assessment of the therapeutic potential of Hsp70 activator against prion diseases using in vitro and in vivo models. Front Cell Dev Biol 2024; 12:1411529. [PMID: 39105172 PMCID: PMC11298377 DOI: 10.3389/fcell.2024.1411529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 07/04/2024] [Indexed: 08/07/2024] Open
Abstract
Introduction Prion diseases are deadly neurodegenerative disorders in both animals and humans, causing the destruction of neural tissue and inducing behavioral manifestations. Heat shock proteins (Hsps), act as molecular chaperones by supporting the appropriate folding of proteins and eliminating the misfolded proteins as well as playing a vital role in cell signaling transduction, cell cycle, and apoptosis control. SW02 is a potent activator of Hsp 70 kDa (Hsp70). Methods In the current study, the protective effects of SW02 against prion protein 106-126 (PrP106-126)-induced neurotoxicity in human neuroblastoma cells (SH-SY5Y) were investigated. In addition, the therapeutic effects of SW02 in ME7 scrapie-infected mice were evaluated. Results The results showed that SW02 treatment significantly increased Hsp70 mRNA expression levels and Hsp70 ATPase activity (p < 0.01). SW02 also significantly inhibited cytotoxicity and apoptosis induced by PrP106-126 (p < 0.01) and promoted neurite extension. In vivo, intraperitoneal administration of SW02 did not show a statistically significant difference in survival time (p = 0.16); however, the SW02-treated group exhibited a longer survival time of 223.6 ± 6.0 days compared with the untreated control group survival time of 217.6 ± 5.4 days. In addition, SW02 reduced the PrPSc accumulation in ME7 scrapie-infected mice at 5 months post-injection (p < 0.05). A significant difference was not observed in GFAP expression, an astrocyte marker, between the treated and untreated groups. Conclusion In conclusion, the potential therapeutic role of the Hsp70 activator SW02 was determined in the present study and may be a novel and effective drug to mitigate the pathologies of prion diseases and other neurodegenerative diseases. Further studies using a combination of two pharmacological activators of Hsp70 are required to maximize the effectiveness of each intervention.
Collapse
Affiliation(s)
- Mohammed Zayed
- Korea Zoonosis Research Institute, Jeonbuk National University, Iksan, Republic of Korea
- Department of Bioactive Material Sciences, Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju, Republic of Korea
- Department of Surgery, College of Veterinary Medicine, South Valley University, Qena, Egypt
| | - Yong-Chan Kim
- Department of Biological Sciences, Andong National University, Andong, Republic of Korea
| | - Byung-Hoon Jeong
- Korea Zoonosis Research Institute, Jeonbuk National University, Iksan, Republic of Korea
- Department of Bioactive Material Sciences, Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju, Republic of Korea
| |
Collapse
|
3
|
Luo JY, Shen SQ, Xu HJ, Yang JS, Ma WM. The transcription factor masculinizer in sexual differentiation and achieved full functional sex reversal in prawn. iScience 2023; 26:106968. [PMID: 37534170 PMCID: PMC10391606 DOI: 10.1016/j.isci.2023.106968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 04/08/2023] [Accepted: 05/23/2023] [Indexed: 08/04/2023] Open
Abstract
Some Zinc finger (ZnF) proteins are required for masculinization in silkworms. In the present study, a masculinizer gene (Mr-Masc) with multi-tissue expression is identified in the freshwater prawn Macrobrachium rosenbergii. The Mr-Masc is clustered into a separate branch with ZnF proteins from decapoda by phylogenetic tree analysis. Moreover, Mr-Masc silencing in male postlarvae prawn results in functional sex reversal females known as neo-females, which are applied to all-male monosex offspring breeding. This manipulation has been significant in sexually dimorphic cultured species. In addition, several significantly expressed transcripts are enriched and the effects of crucial signal pathways are focused through the comparative transcriptomic analysis in Mr-Masc gene knockdown. The significantly differentially expressed epidermal growth factor, upregulated low-density lipoprotein receptor, flotillin, and sex-lethal unigenes, downregulated heat shock proteins and forkhead box homologs are focused. The finding offers an innovative perspective on Masc proteins' evolution and physiological function.
Collapse
Affiliation(s)
- Jing-Yu Luo
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, Zhejiang 315100, People’s Republic of China
| | - Shuai-Qi Shen
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, Zhejiang 315100, People’s Republic of China
- College of Life Sciences, Zhejiang University, Zijingang Campus, Hangzhou, Zhejiang 310058, People’s Republic of China
| | - Hai-Jing Xu
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, Zhejiang 315100, People’s Republic of China
| | - Jin-Shu Yang
- College of Life Sciences, Zhejiang University, Zijingang Campus, Hangzhou, Zhejiang 310058, People’s Republic of China
| | - Wen-Ming Ma
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, Zhejiang 315100, People’s Republic of China
| |
Collapse
|
4
|
Heat Shock Protein Member 8 (HSPA8) Is Involved in Porcine Reproductive and Respiratory Syndrome Virus Attachment and Internalization. Microbiol Spectr 2022; 10:e0186021. [PMID: 35138165 PMCID: PMC8826899 DOI: 10.1128/spectrum.01860-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV), a porcine arterivirus, causes severe financial losses to global swine industry. Despite much research, the molecular mechanisms of PRRSV infection remains to be fully elucidated. In the current study, we uncovered the involvement of heat shock protein member 8 (HSPA8) in PRRSV attachment and internalization during infection for the first time. In detail, HSPA8 was identified to interact with PRRSV glycoprotein 4 (GP4), a major determinant for viral cellular tropism, dependent on its carboxy-terminal peptide-binding (PB) domain. Chemical inhibitors and specific small interference RNAs (siRNAs) targeting HSPA8 significantly suppressed PRRSV infection as indicated by decreased viral RNA abundance, infectivity, and titers. Especially, PRRSV attachment was inhibited by interference of its binding to HSPA8 with mouse anti-HSPA8 polyclonal antibodies (pAbs) and recombinant soluble HSPA8 protein. HSPA8 was further shown to participate in PRRSV internalization through clathrin-dependent endocytosis (CME). Collectively, these results demonstrate that HSPA8 is important for PRRSV attachment and internalization, which is a potential target to prevent and control the viral infection. IMPORTANCE PRRSV has caused huge economic losses to the pork industry around the world. Currently, safe and effective strategies are still urgently required to prevent and control PRRSV infection. As the first steps, PRRSV attachment and internalization are initiated by interactions between viral envelope proteins and host cell receptors/factors, which are not fully understood yet. Here, we identified the interaction between PRRSV GP4 and HSPA8, and demonstrated that HSPA8 was involved in PRRSV attachment and internalization. This work deepens our understanding of the molecular mechanisms involved in PRRSV infection, and provides novel insights for the development of antiviral drugs and vaccines against the virus.
Collapse
|
5
|
Siddiqui H, Yevstigneyev N, Madani G, McCormick S. Approaches to Visualising Endocytosis of LDL-Related Lipoproteins. Biomolecules 2022; 12:biom12020158. [PMID: 35204658 PMCID: PMC8961563 DOI: 10.3390/biom12020158] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/20/2021] [Accepted: 01/12/2022] [Indexed: 02/04/2023] Open
Abstract
Endocytosis is the process by which molecules are actively transported into cells. It can take on a variety of forms depending on the cellular machinery involved ranging from specific receptor-mediated endocytosis to the less selective and actin-driven macropinocytosis. The plasma lipoproteins, which deliver lipids and other cargo to cells, have been intensely studied with respect to their endocytic uptake. One of the first molecules to be visualised undergoing endocytosis via a receptor-mediated, clathrin-dependent pathway was low-density lipoprotein (LDL). The LDL molecule has subsequently been shown to be internalised through multiple endocytic pathways. Dissecting the pathways of lipoprotein endocytosis has been crucial to understanding the regulation of plasma lipid levels and how lipids enter cells in the arterial wall to promote atherosclerosis. It has also aided understanding of the dysregulation that occurs in plasma lipid levels when molecules involved in uptake are defective, as is the case in familial hypercholesterolemia (FH). The aim of this review is to outline the many endocytic pathways utilised for lipoprotein uptake. It explores the various experimental approaches that have been applied to visualise lipoprotein endocytosis with an emphasis on LDL and its more complex counterpart, lipoprotein(a) [Lp(a)]. Finally, we look at new developments in lipoprotein visualisation that hold promise for scrutinising endocytic pathways to finer detail in the future.
Collapse
Affiliation(s)
- Halima Siddiqui
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin 9016, New Zealand; (H.S.); (N.Y.); (G.M.)
- HeartOtago, School of Biomedical Sciences, University of Otago, Dunedin 9016, New Zealand
| | - Nikita Yevstigneyev
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin 9016, New Zealand; (H.S.); (N.Y.); (G.M.)
- HeartOtago, School of Biomedical Sciences, University of Otago, Dunedin 9016, New Zealand
| | - Golnoush Madani
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin 9016, New Zealand; (H.S.); (N.Y.); (G.M.)
- HeartOtago, School of Biomedical Sciences, University of Otago, Dunedin 9016, New Zealand
| | - Sally McCormick
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin 9016, New Zealand; (H.S.); (N.Y.); (G.M.)
- HeartOtago, School of Biomedical Sciences, University of Otago, Dunedin 9016, New Zealand
- Correspondence:
| |
Collapse
|
6
|
Xu D, Zhao H, Jin M, Zhu H, Shan B, Geng J, Dziedzic SA, Amin P, Mifflin L, Naito MG, Najafov A, Xing J, Yan L, Liu J, Qin Y, Hu X, Wang H, Zhang M, Manuel VJ, Tan L, He Z, Sun ZJ, Lee VMY, Wagner G, Yuan J. Modulating TRADD to restore cellular homeostasis and inhibit apoptosis. Nature 2020; 587:133-138. [PMID: 32968279 DOI: 10.1038/s41586-020-2757-z] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 07/01/2020] [Indexed: 01/26/2023]
Abstract
Cell death in human diseases is often a consequence of disrupted cellular homeostasis. If cell death is prevented without restoring cellular homeostasis, it may lead to a persistent dysfunctional and pathological state. Although mechanisms of cell death have been thoroughly investigated1-3, it remains unclear how homeostasis can be restored after inhibition of cell death. Here we identify TRADD4-6, an adaptor protein, as a direct regulator of both cellular homeostasis and apoptosis. TRADD modulates cellular homeostasis by inhibiting K63-linked ubiquitination of beclin 1 mediated by TRAF2, cIAP1 and cIAP2, thereby reducing autophagy. TRADD deficiency inhibits RIPK1-dependent extrinsic apoptosis and proteasomal stress-induced intrinsic apoptosis. We also show that the small molecules ICCB-19 and Apt-1 bind to a pocket on the N-terminal TRAF2-binding domain of TRADD (TRADD-N), which interacts with the C-terminal domain (TRADD-C) and TRAF2 to modulate the ubiquitination of RIPK1 and beclin 1. Inhibition of TRADD by ICCB-19 or Apt-1 blocks apoptosis and restores cellular homeostasis by activating autophagy in cells with accumulated mutant tau, α-synuclein, or huntingtin. Treatment with Apt-1 restored proteostasis and inhibited cell death in a mouse model of proteinopathy induced by mutant tau(P301S). We conclude that pharmacological targeting of TRADD may represent a promising strategy for inhibiting cell death and restoring homeostasis to treat human diseases.
Collapse
Affiliation(s)
- Daichao Xu
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA.,Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Heng Zhao
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Minzhi Jin
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Hong Zhu
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Bing Shan
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Jiefei Geng
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | | | - Palak Amin
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Lauren Mifflin
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | | | - Ayaz Najafov
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Jing Xing
- Department of Pediatrics and Human Development, Michigan State University, Grand Rapids, MI, USA
| | - Lingjie Yan
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Jianping Liu
- State Key Laboratory of Bio-organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Ying Qin
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Xinqian Hu
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Huibing Wang
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Mengmeng Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Vica Jean Manuel
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Li Tan
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Zhuohao He
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China.,Center for Neurodegenerative Disease Research, Institute on Aging, Department of Pathology and Laboratory, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Zhenyu J Sun
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, MA, USA
| | - Virginia M Y Lee
- Center for Neurodegenerative Disease Research, Institute on Aging, Department of Pathology and Laboratory, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Gerhard Wagner
- Department of Biochemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Junying Yuan
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
7
|
Zhang W, Jia K, Jia P, Xiang Y, Lu X, Liu W, Yi M. Marine medaka heat shock protein 90ab1 is a receptor for red-spotted grouper nervous necrosis virus and promotes virus internalization through clathrin-mediated endocytosis. PLoS Pathog 2020; 16:e1008668. [PMID: 32639977 PMCID: PMC7371229 DOI: 10.1371/journal.ppat.1008668] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 07/20/2020] [Accepted: 05/29/2020] [Indexed: 12/19/2022] Open
Abstract
Nervous necrosis virus (NNV) can infect many species of fish and causes serious acute or persistent infection. However, its pathogenic mechanism is still far from clear. Specific cellular surface receptors are crucial determinants of the species tropism of a virus and its pathogenesis. Here, the heat shock protein 90ab1 of marine model fish species marine medaka (MmHSP90ab1) was identified as a novel receptor of red-spotted grouper NNV (RGNNV). MmHSP90ab1 interacted directly with RGNNV capsid protein (CP). Specifically, MmHSP90ab1 bound to the linker region (LR) of CP through its NM domain. Inhibition of MmHSP90ab1 by HSP90-specific inhibitors or MmHSP90ab1 siRNA caused significant inhibition of viral binding and entry, whereas its overexpression led to the opposite effect. The binding of RGNNV to cultured marine medaka hMMES1 cells was inhibited by blocking cell surface-localized MmHSP90ab1 with anti-HSP90β antibodies or pretreating virus with recombinant MmHSP90ab1 or MmHSP90ab1-NM protein, indicating MmHSP90ab1 was an attachment receptor for RGNNV. Furthermore, we found that MmHSP90ab1 formed a complex with CP and marine medaka heat shock cognate 70, a known NNV receptor. Exogenous expression of MmHSP90ab1 independently facilitated the internalization of RGNNV into RGNNV impenetrable cells (HEK293T), which was blocked by chlorpromazine, an inhibitor of clathrin-dependent endocytosis. Further study revealed that MmHSP90ab1 interacted with the marine medaka clathrin heavy chain. Collectively, these data suggest that MmHSP90ab1 is a functional part of the RGNNV receptor complex and involved in the internalization of RGNNV via the clathrin endocytosis pathway.
Collapse
Affiliation(s)
- Wanwan Zhang
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, Guangdong, China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangdong, China
| | - Kuntong Jia
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, Guangdong, China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangdong, China
- * E-mail: (KJ); (MY)
| | - Peng Jia
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, Guangdong, China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangdong, China
| | - Yangxi Xiang
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, Guangdong, China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangdong, China
| | - Xiaobing Lu
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, Guangdong, China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangdong, China
| | - Wei Liu
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, Guangdong, China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangdong, China
| | - Meisheng Yi
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, Guangdong, China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangdong, China
- * E-mail: (KJ); (MY)
| |
Collapse
|
8
|
HSC70 regulates cold-induced caspase-1 hyperactivation by an autoinflammation-causing mutant of cytoplasmic immune receptor NLRC4. Proc Natl Acad Sci U S A 2019; 116:21694-21703. [PMID: 31597739 DOI: 10.1073/pnas.1905261116] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
NLRC4 [nucleotide-binding domain and leucine-rich repeat (NLR) family, caspase recruitment domain (CARD) containing 4] is an innate immune receptor, which, upon detection of certain pathogens or internal distress signals, initiates caspase-1-mediated interleukin-1β maturation and an inflammatory response. A gain-of-function mutation, H443P in NLRC4, causes familial cold autoinflammatory syndrome (FCAS) characterized by cold-induced hyperactivation of caspase-1, enhanced interleukin-1β maturation, and inflammation. Although the H443P mutant shows constitutive activity, the mechanism involved in hyperactivation of caspase-1 by NLRC4-H443P upon exposure of cells to lower temperature is not known. Here, we show that heat shock cognate protein 70 (HSC70) complexes with NLRC4 and negatively regulates caspase-1 activation by NLRC4-H443P in human cells. Compared with NLRC4, the structurally altered NLRC4-H443P shows enhanced interaction with HSC70. Nucleotide binding- and leucine-rich repeat domains of NLRC4, but not its CARD, can engage in complex formation with HSC70. Knockdown of HSC70 enhances apoptosis-associated speck-like protein containing a CARD (ASC)-speck formation and caspase-1 activation by NLRC4-H443P. Exposure to subnormal temperature results in reduced interaction of NLRC4-H443P with HSC70, and an increase in its ability to form ASC specks and activate caspase-1. Unlike the NLRC4-H443P mutant, another constitutively active mutant (NLRC4-V341A) associated with autoinflammatory diseases, but not FCAS, showed neither enhanced interaction with HSC70 nor an increase in inflammasome formation upon exposure to subnormal temperature. Our results identify HSC70 as a negative regulator of caspase-1 activation by the temperature-sensitive NLRC4-H443P mutant. We also show that low-temperature-induced hyperactivation of caspase-1 by NLRC4-H443P is due to loss of inhibition by HSC70.
Collapse
|
9
|
Bonam SR, Ruff M, Muller S. HSPA8/HSC70 in Immune Disorders: A Molecular Rheostat that Adjusts Chaperone-Mediated Autophagy Substrates. Cells 2019; 8:E849. [PMID: 31394830 PMCID: PMC6721745 DOI: 10.3390/cells8080849] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/02/2019] [Accepted: 08/05/2019] [Indexed: 12/24/2022] Open
Abstract
HSPA8/HSC70 is a molecular chaperone involved in a wide variety of cellular processes. It plays a crucial role in protein quality control, ensuring the correct folding and re-folding of selected proteins, and controlling the elimination of abnormally-folded conformers and of proteins daily produced in excess in our cells. HSPA8 is a crucial molecular regulator of chaperone-mediated autophagy, as a detector of substrates that will be processed by this specialized autophagy pathway. In this review, we shortly summarize its structure and overall functions, dissect its implication in immune disorders, and list the known pharmacological tools that modulate its functions. We also exemplify the interest of targeting HSPA8 to regulate pathological immune dysfunctions.
Collapse
Affiliation(s)
- Srinivasa Reddy Bonam
- Neuroimmunology & peptide therapy, Biotechnology and cell signaling, CNRS-University of Strasbourg, Illkirch 67412, France/Laboratory of excellence Medalis, 67000 Strasbourg, France
| | - Marc Ruff
- Biologie Structurale Intégrative, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, 67404 Strasbourg, France
| | - Sylviane Muller
- Neuroimmunology & peptide therapy, Biotechnology and cell signaling, CNRS-University of Strasbourg, Illkirch 67412, France/Laboratory of excellence Medalis, 67000 Strasbourg, France.
- University of Strasbourg Institute for Advanced Study (USIAS), 67000 Strasbourg, France.
- Fédération Hospitalo-Universitaire (FHU) OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg University, 67000 Strasbourg, France.
| |
Collapse
|
10
|
Gao W, Shi P, Chen X, Zhang L, Liu J, Fan X, Luo X. Clathrin-mediated integrin αIIbβ3 trafficking controls platelet spreading. Platelets 2017; 29:610-621. [PMID: 28961039 DOI: 10.1080/09537104.2017.1353682] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Dynamic endocytic and exocytic trafficking of integrins is an important mechanism for cell migration, invasion, and cytokinesis. Endocytosis of integrin can be classified as clathrin dependent and clathrin independent manners. And rapid delivery of endocytic integrins back to the plasma membrane is key intracellular signals and is indispensable for cell movement. Integrin αIIbβ3 plays a critical role in thrombosis and hemostasis. Although previous studies have demonstrated that internalization of fibrinogen-bound αIIbβ3 may regulate platelet activation, the roles of endocytic and exocytic trafficking of integrin αIIbβ3 in platelet activation are unclear. In this study, we found that a selective inhibitor of clathrin-mediated endocytosis pitstop 2 inhibited human platelet spreading on immobilized fibrinogen (Fg). Mechanism studies revealed that pitstop 2 did not block the endocytosis of αIIbβ3 and Fg uptake, but inhibit the recycling of αIIbβ3 to plasma membrane during platelet or CHO cells bearing αIIbβ3 spreading on immobilized Fg. And pitstop 2 enhanced the association of αIIbβ3 with clathrin, and AP2 indicated that pitstop 2 inhibit platelet activation is probably due to disturbance of the dynamic dissociation of αIIbβ3 from clathrin and AP2. Further study demonstrated that Src/PLC/PKC was the key pathway to trigger the endocytosis of αIIbβ3 during platelet activation. Pitstop 2 also inhibited platelet aggregation and secretion. Our findings suggest integrin αIIbβ3 trafficking is clathrin dependent and plays a critical role in platelet spreading, and pitstop 2 may serve as an effective tool to address clathrin-mediated trafficking in platelets.
Collapse
Affiliation(s)
- Wen Gao
- a Department of Cardiology , Huashan Hospital, Fudan University , Shanghai , China
| | - Panlai Shi
- b Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation , Shanghai Jiao Tong University of Medscine , Shanghai , China
| | - Xue Chen
- b Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation , Shanghai Jiao Tong University of Medscine , Shanghai , China
| | - Lin Zhang
- b Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation , Shanghai Jiao Tong University of Medscine , Shanghai , China
| | - Junling Liu
- b Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation , Shanghai Jiao Tong University of Medscine , Shanghai , China
| | - Xuemei Fan
- b Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation , Shanghai Jiao Tong University of Medscine , Shanghai , China
| | - Xinping Luo
- a Department of Cardiology , Huashan Hospital, Fudan University , Shanghai , China
| |
Collapse
|
11
|
Hyun JY, Park CW, Liu Y, Kwon D, Park SH, Park S, Pai J, Shin I. Carbohydrate Analogue Microarrays for Identification of Lectin-Selective Ligands. Chembiochem 2017; 18:1077-1082. [PMID: 28422419 DOI: 10.1002/cbic.201700091] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Indexed: 01/15/2023]
Abstract
Fifty-five mono- and disaccharide analogues were prepared and used for the construction of microarrays to uncover lectin-selective ligands. The microarray study showed that two disaccharide analogues, 28' and 44', selectively bind to Solanum tuberosum lectin (STL) and wheat germ agglutinin (WGA), respectively. Cell studies indicated that 28' and 44' selectively block the binding of STL and WGA to mammalian cells, unlike the natural ligand LacNAc, which suppresses binding of both STL and WGA to cells.
Collapse
Affiliation(s)
- Ji Young Hyun
- Department of Chemistry, Yonsei University, Seoul, 03722, Korea
| | - Cheol Wan Park
- Department of Chemistry, Yonsei University, Seoul, 03722, Korea
| | - Yanna Liu
- Department of Chemistry, Yonsei University, Seoul, 03722, Korea
| | - Daeun Kwon
- Department of Chemistry, Yonsei University, Seoul, 03722, Korea
| | - Seong-Hyun Park
- Department of Chemistry, Yonsei University, Seoul, 03722, Korea
| | - Sungjin Park
- Department of Chemistry, Yonsei University, Seoul, 03722, Korea
| | - Jaeyoung Pai
- Department of Chemistry, Yonsei University, Seoul, 03722, Korea
| | - Injae Shin
- Department of Chemistry, Yonsei University, Seoul, 03722, Korea
| |
Collapse
|
12
|
Anti-leukemia activity of a Hsp70 inhibitor and its hybrid molecules. Sci Rep 2017; 7:3537. [PMID: 28615625 PMCID: PMC5471252 DOI: 10.1038/s41598-017-03814-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 05/03/2017] [Indexed: 02/04/2023] Open
Abstract
In this study we examined the anti-leukemia activity of a small molecule inhibitor of Hsp70 proteins, apoptozole (Az), and hybrids in which it is linked to an inhibitor of either Hsp90 (geldanamycin) or Abl kinase (imatinib). The results of NMR studies revealed that Az associates with an ATPase domain of Hsc70 and thus blocks ATP binding to the protein. Observations made in the cell study indicated that Az treatment promotes leukemia cell death by activating caspase-dependent apoptosis without affecting the caspase-independent apoptotic pathway. Importantly, the hybrids composed of Az and geldanamycin, which have high inhibitory activities towards both Hsp70 and Hsp90, exhibit enhanced anti-leukemia activity relative to the individual inhibitors. However, the Az and imatinib hybrids have weak inhibitory activities towards Hsp70 and Abl, and display lower cytotoxicity against leukemia cells compared to those of the individual constituents. The results of a mechanistic study showed that the active hybrid molecules promote leukemia cell death through a caspase-dependent apoptotic pathway. Taken together, the findings suggest that Hsp70 inhibitors as well as their hybrids can serve as potential anti-leukemia agents.
Collapse
|
13
|
Patel A, Sharp SY, Hall K, Lewis W, Stevens MFG, Workman P, Moody CJ. Fused imidazoles as potential chemical scaffolds for inhibition of heat shock protein 70 and induction of apoptosis. Synthesis and biological evaluation of phenanthro[9,10-d]imidazoles and imidazo[4,5-f][1,10]phenanthrolines. Org Biomol Chem 2016; 14:3889-905. [DOI: 10.1039/c6ob00471g] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fused imidazoles inhibit growth of human cancer cell lines, and the Hsp70 pathway in cells, and induce apoptosis.
Collapse
Affiliation(s)
- Alpa Patel
- School of Chemistry
- University of Nottingham
- Nottingham
- UK
| | - Swee Y. Sharp
- Cancer Research UK Cancer Therapeutics Unit
- Division of Cancer Therapeutics
- The Institute of Cancer Research
- London
- UK
| | - Katelan Hall
- School of Chemistry
- University of Nottingham
- Nottingham
- UK
| | - William Lewis
- School of Chemistry
- University of Nottingham
- Nottingham
- UK
| | | | - Paul Workman
- Cancer Research UK Cancer Therapeutics Unit
- Division of Cancer Therapeutics
- The Institute of Cancer Research
- London
- UK
| | | |
Collapse
|
14
|
A small molecule inhibitor for ATPase activity of Hsp70 and Hsc70 enhances the immune response to protein antigens. Sci Rep 2015; 5:17642. [PMID: 26631605 PMCID: PMC4668564 DOI: 10.1038/srep17642] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 11/03/2015] [Indexed: 02/05/2023] Open
Abstract
The ATPase activities of Hsp70 and Hsc70 are known to be responsible for regulation of various biological processes. However, little is known about the roles of Hsp70 and Hsc70 in modulation of immune responses to antigens. In the present study, we investigated the effect of apoptozole (Az), a small molecule inhibitor of Hsp70 and Hsc70, on immune responses to protein antigens. The results show that mice administered with both protein antigen and Az produce more antibodies than those treated with antigen alone, showing that Az enhances immune responses to administered antigens. Treatment of mice with Az elicits production of antibodies with a high IgG2c/IgG1 ratio and stimulates the release of Th1 and Th2-type cytokines, suggesting that Az activates the Th1 and Th2 immune responses. The observations made in the present study suggest that inhibition of Hsp70 and Hsc70 activities could be a novel strategy designing small molecule-based adjuvants in protein vaccines.
Collapse
|
15
|
Investigating Apoptozole as a Chemical Probe for HSP70 Inhibition. PLoS One 2015; 10:e0140006. [PMID: 26458144 PMCID: PMC4601772 DOI: 10.1371/journal.pone.0140006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 09/02/2015] [Indexed: 11/26/2022] Open
Abstract
The use of chemical tools to validate clinical targets has gained in popularity over recent years and the importance of understanding the activity, selectivity and mechanism of action of these compounds is well recognized. Dysregulation of the HSP70 protein family has been linked to multiple cancer types and drug resistance, highlighting their importance as popular targets for anti-cancer drug development. Apoptozole is a recently identified small molecule, which has been reported to possess strong affinity for the HSP70 isoforms HSP72 and HSC70. We investigated apoptozole as a potential chemical tool for HSP70 inhibition. Unfortunately, using both biochemical and biophysical techniques, we were unable to find any experimental evidence that apoptozole binds to HSP70 in a specific and developable way. Instead, we provide experimental evidence that apoptozole forms aggregates under aqueous conditions that could interact with HSP70 proteins in a non-specific manner.
Collapse
|
16
|
Ko SK, Kim J, Na DC, Park S, Park SH, Hyun JY, Baek KH, Kim ND, Kim NK, Park YN, Song K, Shin I. A small molecule inhibitor of ATPase activity of HSP70 induces apoptosis and has antitumor activities. ACTA ACUST UNITED AC 2015; 22:391-403. [PMID: 25772468 DOI: 10.1016/j.chembiol.2015.02.004] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 01/20/2015] [Accepted: 02/05/2015] [Indexed: 01/13/2023]
Abstract
The heat shock protein HSP70 plays antiapoptotic and oncogenic roles, and thus its inhibition has been recognized as a potential avenue for anticancer therapy. Here we describe the small molecule, apoptozole (Az), which inhibits the ATPase activity of HSP70 by binding to its ATPase domain and, as a result, induces an array of apoptotic phenotypes in cancer cells. Affinity chromatography provides evidence that Az binds HSP70 but not other types of heat shock proteins including HSP40, HSP60, and HSP90. We also demonstrate that Az induces cancer cell death via caspase-dependent apoptosis by disrupting the interaction of HSP70 with APAF-1. Animal studies indicate that Az treatment retards tumor growth in a xenograft mouse model without affecting mouse viability. These studies suggest that Az will aid the development of new cancer therapies and serve as a chemical probe to gain a better understanding of the diverse functions of HSP70.
Collapse
Affiliation(s)
- Sung-Kyun Ko
- Center for Biofunctional Molecules, Department of Chemistry, Yonsei University, Seoul 120-749, Korea
| | - Jiyeon Kim
- Department of Biochemistry, Yonsei University, Seoul 120-749, Korea
| | - Deuk Chae Na
- Department of Pathology, Yonsei University College of Medicine, Seoul 120-752, Korea
| | - Sookil Park
- Center for Biofunctional Molecules, Department of Chemistry, Yonsei University, Seoul 120-749, Korea
| | - Seong-Hyun Park
- Center for Biofunctional Molecules, Department of Chemistry, Yonsei University, Seoul 120-749, Korea
| | - Ji Young Hyun
- Center for Biofunctional Molecules, Department of Chemistry, Yonsei University, Seoul 120-749, Korea
| | - Kyung-Hwa Baek
- Center for Biofunctional Molecules, Department of Chemistry, Yonsei University, Seoul 120-749, Korea
| | - Nam Doo Kim
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 706-010, Korea
| | - Nak-Kyoon Kim
- Advanced Analysis Center, Korea Institute of Science and Technology, Seoul 136-791, Korea
| | - Young Nyun Park
- Department of Pathology, Yonsei University College of Medicine, Seoul 120-752, Korea
| | - Kiwon Song
- Department of Biochemistry, Yonsei University, Seoul 120-749, Korea
| | - Injae Shin
- Center for Biofunctional Molecules, Department of Chemistry, Yonsei University, Seoul 120-749, Korea.
| |
Collapse
|