1
|
Aboutaleb MH, El-Gohary NS, Ghabbour HA, El-Kerdawy MM. Design, synthesis, and evaluation of new benzimidazole thiourea derivatives as antitumor agents. Arch Pharm (Weinheim) 2023; 356:e2300269. [PMID: 37602810 DOI: 10.1002/ardp.202300269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/18/2023] [Accepted: 07/27/2023] [Indexed: 08/22/2023]
Abstract
Novel benzimidazole thiourea derivatives were designed and synthesized based on sorafenib as a lead compound. The benzimidazole moiety was traded by the pyridine ring to enhance the hydrophobic interaction and retain hydrogen bonding in the hinge region, while lipophilic moieties with different bulkiness were employed in the deep hydrophobic pocket for better hydrophobic interactions. Thiourea as a urea bioisostere was also utilized. Substantial activity was demonstrated against a leukemia subpanel in an in vitro antitumor screening at the NCI. In the single-dose assay, compounds 7i, 7j, and 7l had a GI%) higher than sorafenib against most leukemia cell lines (GI% = 86.2%-137.1%), while in the five-dose assay, compound 7l outperformed sorafenib against the HL-60(TB) and SR leukemia cell lines in terms of GI50 , TGI, and LC50 . Compound 7l also caused cycle arrest at the G0-G1 and S phases in the HL-60(TB) leukemia cell line and induced apoptosis via elevating the Bax/Bcl-2 ratio and increasing caspases 3, 7, and 9 by 5.1-, 3.2-, and 5.2-fold, respectively. Compounds 7i, 7j, and 7l also inhibited the vascular endothelial growth factor receptor-2 (VEGFR-2), B-Raf(V600E) , and platelet-derived growth factor receptor beta (PDGFR-β) enzymes with an IC50 range of 0.063-0.44 μM. COMPARE analysis and a molecular docking study were also performed to predict the possible mechanism of action and binding mode, respectively.
Collapse
Affiliation(s)
- Mohamed H Aboutaleb
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Horus University, New Damietta, Egypt
| | - Nadia S El-Gohary
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Hazem A Ghabbour
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Mohamed M El-Kerdawy
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
2
|
Liu XJ, Zhao HC, Hou SJ, Zhang HJ, Cheng L, Yuan S, Zhang LR, Song J, Zhang SY, Chen SW. Recent development of multi-target VEGFR-2 inhibitors for the cancer therapy. Bioorg Chem 2023; 133:106425. [PMID: 36801788 DOI: 10.1016/j.bioorg.2023.106425] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/05/2023] [Accepted: 02/12/2023] [Indexed: 02/17/2023]
Abstract
Vascular epidermal growth factor receptor-2 (VEGFR-2), as an important tyrosine transmembrane protein, plays an important role in regulating endothelial cell proliferation and migration, regulating angiogenesis and other biological functions. VEGFR-2 is aberrantly expressed in many malignant tumors, and it is also related to the occurrence, development, and growth of tumors and drug resistance. Currently, there are nine VEGFR-2 targeted inhibitors approved by US.FDA for clinical use as anticancer drugs. Due to the limited clinical efficacy and potential toxicity of VEGFR inhibitors, it is necessary to develop new strategies to improve the clinical efficacy of VEGFR inhibitors. The development of multitarget therapy, especially dual-target therapy, has become a hot research field of cancer therapy, which may provide an effective strategy with higher therapeutic efficacy, pharmacokinetic advantages and low toxicity. Many groups have reported that the therapeutic effects could be improved by simultaneously inhibiting VEGFR-2 and other targets, such as EGFR, c-Met, BRAF, HDAC, etc. Therefore, VEGFR-2 inhibitors with multi-targeting capabilities have been considered to be promising and effective anticancer agents for cancer therapy. In this work, we reviewed the structure and biological functions of VEGFR-2, and summarized the drug discovery strategies, and inhibitory activities of VEGFR-2 inhibitors with multi-targeting capabilities reported in recent years. This work might provide the reference for the development of VEGFR-2 inhibitors with multi-targeting capabilities as novel anticancer agents.
Collapse
Affiliation(s)
- Xiu-Juan Liu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Hong-Cheng Zhao
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, Medical College of China Three Gorges University, Yichang 443003, China
| | - Su-Juan Hou
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Hao-Jie Zhang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Lei Cheng
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Shuo Yuan
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou 450018, China
| | - Li-Rong Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Jian Song
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Sai-Yang Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Shi-Wu Chen
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
3
|
Docking, synthesis and biological evaluation of pyridine ring containing Diaryl urea derivatives as anticancer agents. Int J Health Sci (Qassim) 2022. [DOI: 10.53730/ijhs.v6ns3.6200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel series of pyridine ring containing diaryl urea derivatives (R1-R9) were synthesized in four chemical steps using pyridine-2-carboxylic acid as starting material. The synthesized compounds were design by using Autodock vina in the crystal structure of the Kinase domain of Human B-raf (PDB ID: 4DBN) to get insights into structural requirements for anticancer activity. In vitro anticancer activity against cell line (MCF-7) showed that compounds R3, R6 and R9 were found to be the most potent (Docking score: > -12, IC50 = 17.39 µM) among the synthesized molecules.
Collapse
|
4
|
Bahkali A, Wei JX, Deng Y. Structural comparison of ethylenediamine platinum(II) complexes containing thiourea and its di- and tetramethyl substituted derivatives. J COORD CHEM 2021. [DOI: 10.1080/00958972.2021.1923015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Ashwaq Bahkali
- Department of Chemistry, Texas Southern University, Houston, TX, USA
| | - Jacob Xin Wei
- Department of Chemistry, Texas Southern University, Houston, TX, USA
| | - Yuanjian Deng
- Department of Chemistry, Texas Southern University, Houston, TX, USA
| |
Collapse
|
5
|
Synthesis and characterization of ethylenediamine platinum(II) complexes containing thiourea derivatives. X-ray crystal structures of [Pt(en)(2-imidazolidinethione)2](NO3)2 and [Pt(en)(1-phenyl-2-thiourea)2](NO3)2. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2021.120302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
6
|
Sharaky M, Kamel M, Aziz MA, Omran M, Rageh MM, Abouzid KAM, Shouman SA. Design, synthesis and biological evaluation of a new thieno[2,3- d]pyrimidine-based urea derivative with potential antitumor activity against tamoxifen sensitive and resistant breast cancer cell lines. J Enzyme Inhib Med Chem 2021; 35:1641-1656. [PMID: 32781854 PMCID: PMC7470147 DOI: 10.1080/14756366.2020.1804383] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Breast cancer (BC) and endocrine resistance to chemotherapy are challenging problems where angiogenesis plays fundamental roles. Thus, targeting of VEGFR-2 signalling pathway has been an attractive approach. In this study, we synthesised a new sorafenib analogue, thieno[2,3-d]pyrimidine based urea derivative, KM6. It showed 65% inhibition of VEGF2 tyrosine kinase activity and demonstrated a potential antitumor activity in TAM-resistant, LCC2, and its parental MCF7 BC cells. KM6 retained the sensitivity of LCC2 through upregulation of key enzymes of apoptosis and proteins of cell death including caspases 3, 8, 9, P53, BAX/BCL-2 ratio and LDH in media. It downregulated mRNA expression of Ki-67, survivin, Akt, and reduced levels of ROS and glucose uptake. Moreover, KM6 reduced the levels of inflammation markers PGE2, COX2, IL-1β and IL6 and metastasis markers MMP-2 and MMP-9. In conclusion, KM6 is a promising compound for ER + and TAM-resistant BC with many potential antitumor and polypharmacological mechanisms.
Collapse
Affiliation(s)
- Marwa Sharaky
- Department of Cancer Biology, Pharmacology Unit, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Marwa Kamel
- Department of Cancer Biology, Pharmacology Unit, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Marwa A Aziz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo, Egypt
| | - Mervat Omran
- Department of Cancer Biology, Pharmacology Unit, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Monira M Rageh
- Department of Biophysics, Faculty of Science, Cairo University, Giza, Egypt
| | - Khaled A M Abouzid
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo, Egypt.,Department of Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Sadat City, Menoufia, Egypt
| | - Samia A Shouman
- Department of Cancer Biology, Pharmacology Unit, National Cancer Institute, Cairo University, Cairo, Egypt
| |
Collapse
|
7
|
Khan E, Khan S, Gul Z, Muhammad M. Medicinal Importance, Coordination Chemistry with Selected Metals (Cu, Ag, Au) and Chemosensing of Thiourea Derivatives. A Review. Crit Rev Anal Chem 2020; 51:812-834. [DOI: 10.1080/10408347.2020.1777523] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Ezzat Khan
- Department of Chemistry, University of Malakand, Chakdara, Khyber Pakhtunkhwa, Pakistan
| | - Sikandar Khan
- Department of Chemistry, University of Malakand, Chakdara, Khyber Pakhtunkhwa, Pakistan
| | - Zarif Gul
- Department of Chemistry, University of Malakand, Chakdara, Khyber Pakhtunkhwa, Pakistan
| | - Mian Muhammad
- Department of Chemistry, University of Malakand, Chakdara, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
8
|
Weng WZ, Guo JS, Liu KX, Shao TQ, Song LQ, Zhu YP, Sun YY, Meng QG. Metal-free oxidative C(sp3)–H functionalization: a facile route to quinoline formaldehydes from methyl-azaheteroarenes. CAN J CHEM 2020. [DOI: 10.1139/cjc-2019-0456] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A facile protocol for the synthesis of quinoline formaldehydes via direct oxidative C–H bonds functionalization of methyl-azaheteroarenes in the presence of I2–DMSO has been described. This method is metal-free and easy to operate. This reaction provided a convenient route for the preparation of a range of important quinoline formaldehydes.
Collapse
Affiliation(s)
- Wei-Zhao Weng
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Shandong, Yantai 264005, P.R. China
| | - Jiang-Shan Guo
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Shandong, Yantai 264005, P.R. China
| | - Kai-Xuan Liu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Shandong, Yantai 264005, P.R. China
| | - Tian-Qi Shao
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Shandong, Yantai 264005, P.R. China
| | - Li-Qun Song
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Shandong, Yantai 264005, P.R. China
| | - Yan-Ping Zhu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Shandong, Yantai 264005, P.R. China
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Shandong, Yantai 264005, P.R. China
| | - Yuan-Yuan Sun
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Shandong, Yantai 264005, P.R. China
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Shandong, Yantai 264005, P.R. China
| | - Qing-Guo Meng
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Shandong, Yantai 264005, P.R. China
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Shandong, Yantai 264005, P.R. China
| |
Collapse
|
9
|
Facile synthesis of 1,3,4-oxadiazoles via iodine promoted oxidative annulation of methyl-azaheteroarenes and hydrazides. Tetrahedron 2020. [DOI: 10.1016/j.tet.2019.130887] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
10
|
Jiang SS, Xiao YT, Wu YC, Luo SZ, Song RJ, Li JH. Manganese(iii)-promoted tandem phosphinoylation/cyclization of 2-arylindoles/2-arylbenzimidazoles with disubstituted phosphine oxides. Org Biomol Chem 2020; 18:4843-4847. [PMID: 32608447 DOI: 10.1039/d0ob00877j] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A simple and practical method for the synthesis of phosphoryl-substituted indolo[2,1-a]isoquinolin-6(5H)-ones and benzimidazo[2,1-a]isoquinolin-6(5H)-ones through manganese(iii)-promoted tandem phosphinoylation/cyclization of 2-arylindoles or 2-arylbenzimidazoles with disubstituted phosphine oxides was developed. In this transformation, new C-P bond and C-C bond were constructed simultaneously under silver-free conditions, exhibiting a broad substrate scope. It was noted that not only diarylphosphine oxides but also dialkyl and arylalkyl-phosphine oxides were compatible with the conditions.
Collapse
Affiliation(s)
- Shuai-Shuai Jiang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Yu-Ting Xiao
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Yan-Chen Wu
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Shu-Zheng Luo
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Ren-Jie Song
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Jin-Heng Li
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China and State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China.
| |
Collapse
|
11
|
Moazzam A, Jafarpour F. Chlorophyll-catalyzed photochemical regioselective coumarin C–H arylation with diazonium salts. NEW J CHEM 2020. [DOI: 10.1039/d0nj02012e] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A metal-free, direct C–H arylation of coumarins with aryl diazonium salts at room temperature using chlorophyll as a green photosensitizer is devised.
Collapse
Affiliation(s)
- Ali Moazzam
- School of Chemistry
- College of Science
- University of Tehran
- 14155-6455 Tehran
- Iran
| | - Farnaz Jafarpour
- School of Chemistry
- College of Science
- University of Tehran
- 14155-6455 Tehran
- Iran
| |
Collapse
|
12
|
Ragab FAF, Abdel-Aziz SA, Kamel M, Ouf AMA, Allam HA. Design, synthesis and biological evaluation of some new 1,3,4-thiadiazine-thiourea derivatives as potential antitumor agents against non-small cell lung cancer cells. Bioorg Chem 2019; 93:103323. [PMID: 31586713 DOI: 10.1016/j.bioorg.2019.103323] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 09/19/2019] [Accepted: 09/26/2019] [Indexed: 12/24/2022]
Abstract
New 1,3,4-thiadiazine-thiourea derivatives have been synthesized. All the synthesized compounds were examined for in vitro cytotoxic activity against Non-Small Cell Lung Cancer (NSCLC) cell line A549, using MTT bioassay. Compounds 5d, 5i, 5j showed the highest cytotoxic activity with IC50 values of 0.27 ± 0.01, 0.30 ± 0.02, and 0.32 ± 0.012 μM respectively with sorafenib as reference (IC50 3.85 ± 0.27 μM). These compounds were chosen for further investigations against various biological targets known to play roles in NSCLC specifically: vascular endothelial growth factor receptor 2 (VEGFR2), B-RAF and matrix metalloproteinase 9 (MMP9). Encouraging results were exhibited by the three compounds against the selected targets. Compound 5j was specially promising as it exhibited inhibitory activity of VEGFR2 close to sorafenib (IC50 0.11 ± 0.01 μM), most potent B-RAF activity inhibition (IC50 0.178 ± 0.004 μM) and MMP9 inhibition (IC50 0.08 ± 0.004 μM). Moreover, cell cycle analysis of A549 cells treated with 5j exhibited cell cycle arrest at G2-M phase and pro-apoptotic activity as indicated by Annexin V-FITC staining. Also, it reflected antinvasive and antimigration properties to A549 cells. Additionally, docking study of 5j on VEGFR2, B-RAF and MMP9 revealed that it binds to the target enzymes in a similar way as the co-crystallized ligand. The three compounds exhibited significantly high selectivity to A549 cancer cells against the normal human fetal lung fibroblast cell line WI-38 with higher selectivity index compared to sorafenib (5d IC50 136.76 ± 2.38 μM, SI = 506.52; 5i IC50 89.20 ± 2.11 μM, SI = 297.33; 5j IC50 79.60 ± 3.8 μM, SI = 248.75; sorafenib IC50 30.32 ± 2.41 μM, SI = 7.88). In conclusion, compounds 5d, 5i and 5j, specially 5j are promising anticancer agents targeting important pathways in NSCLC and warrant further preclinical and clinical trials.
Collapse
Affiliation(s)
- Fatma A F Ragab
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo P.O. Box, 11562, Egypt
| | - Salah A Abdel-Aziz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt
| | - Marwa Kamel
- Department of Cancer Biology, Unit of Pharmacology, National Cancer Institute, Cairo University, Egypt
| | - Abdelsalam Mohamed A Ouf
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt
| | - Heba Abdelrasheed Allam
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo P.O. Box, 11562, Egypt.
| |
Collapse
|
13
|
Design and discovery of thioether and nicotinamide containing sorafenib analogues as multikinase inhibitors targeting B-Raf, B-RafV600E and VEGFR-2. Bioorg Med Chem 2018; 26:2381-2391. [DOI: 10.1016/j.bmc.2018.03.039] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/23/2018] [Accepted: 03/26/2018] [Indexed: 11/22/2022]
|
14
|
El-Hiti GA, Smith K, Hegazy AS, Alshammari MB, Kariuki BM. 1-(2-Bromo-4-methylphenyl)-3,3-dimethylthiourea. IUCRDATA 2018. [DOI: 10.1107/s2414314618000457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The bromomethylphenyl and dimethylthiourea groups of the molecule of the title compound, C10H13BrN2S, are inclined to one another at an interplanar angle of 55.13 (6)°. In the crystal, molecules are stacked along thebaxis and intermolecular N—H...S contacts form chains of molecules along [010].
Collapse
|
15
|
Design and Discovery of Quinazoline- and Thiourea-Containing Sorafenib Analogs as EGFR and VEGFR-2 Dual TK Inhibitors. Molecules 2017; 23:molecules23010024. [PMID: 29295519 PMCID: PMC5943947 DOI: 10.3390/molecules23010024] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 12/19/2017] [Accepted: 12/21/2017] [Indexed: 12/12/2022] Open
Abstract
Both EGFR and VEGFR-2 play a critical role in tumor growth, angiogenesis and metastasis, and targeting EGFR and VEGFR-2 simultaneously represents a promising approach to cancer treatment. In this work, a series of novel quinazoline- and thiourea-containing sorafenib analogs (10a–v) were designed and synthesized as EGFR and VEGFR-2 dual TK inhibitors. Their in vitro enzymatic inhibitory activities against EGFR and VEGFR-2, and antiproliferative activities against HCT-116, MCF-7 and B16 cell lines were evaluated and described. Most of the compounds showed potent activities against both cell lines and TK kinases. Compounds 10b and 10q which exhibited the most potent inhibitory activities against EGFR (IC50 = 0.02 µM and 0.01 µM, respectively), VEGFR-2 (IC50 = 0.05 µM and 0.08 µM, respectively), and good antiproliferative activities, also displayed competitive anti-tumor activities than sorafenib in vivo by B16 melanoma xenograft model test.
Collapse
|
16
|
El-Hiti GA, Smith K, Alshammari MB, Hegazy AS, Kariuki BM. Crystal structure of 3-(4-chlorophenyl)-1,1-dimethylthiourea, C 9H 11ClN 2S. Z KRIST-NEW CRYST ST 2017. [DOI: 10.1515/ncrs-2016-0171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
C9H11ClN2S, monoclinic, Pc (no. 7), a = 14.8440(4) Å, b = 7.2002(2) Å, c = 10.0920(2) Å, β = 99.733(2)°, V = 1063.10(5) Å3, Z = 4, R
gt(F) = 0.0399, wR
ref(F
2) = 0.1099, T = 296(2) K.
Collapse
Affiliation(s)
- Gamal A. El-Hiti
- Cornea Research Chair, Department of Optometry, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh 11433, Saudi Arabia
| | - Keith Smith
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, United Kingdom of Great Britain and Northern Ireland
| | - Mohammed B. Alshammari
- Chemistry Department, College of Sciences and Humanities, Prince Sattam bin Abdulaziz University, P.O. Box 83, Al-Kharij 11942, Saudi Arabia
| | - Amany S. Hegazy
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, United Kingdom of Great Britain and Northern Ireland
| | - Benson M. Kariuki
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, United Kingdom of Great Britain and Northern Ireland
| |
Collapse
|
17
|
Synthesis, activity and docking studies of phenylpyrimidine-carboxamide Sorafenib derivatives. Bioorg Med Chem 2016; 24:6166-6173. [PMID: 28340913 DOI: 10.1016/j.bmc.2016.09.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Revised: 09/07/2016] [Accepted: 09/09/2016] [Indexed: 11/24/2022]
Abstract
Two series of Sorafenib derivatives bearing phenylpyrimidine-carboxamide moiety (16a-g and 17a-p) were designed, synthesized and evaluated for the IC50 values against three cancer cell lines (A549, MCF-7 and PC-3). Two selected compounds (17f and 17n) were further evaluated for the activity against VEGFR2/KDR kinase. More than half of the synthesized compounds showed moderate to excellent activity against three cancer cell lines. Compound 17f showed equal activity to Sorafenib against MCF-7 cell line, with the IC50 values of 6.35±0.43μM. Meanwhile, compound 17n revealed more active than Sorafenib against A549 cell line, with the IC50 values of 3.39±0.37μM. Structure-activity relationships (SARs) and docking studies indicated that the second series (17a-p) showed more active than the first series (16a-g). What's more, the introduction of fluoro atom to the phenoxy part played no significant impact on activity. In addition, the presence of electron-donating on aryl group was benefit for the activity.
Collapse
|