1
|
Brown CN, Shahzad B, Zaman M, Pan X, Green BD, Lowe NM, Lengyel I. Metabolomic changes in tear fluid following zinc biofortification in the BiZiFED nutritional study: a feasibility study. Front Mol Biosci 2024; 11:1421699. [PMID: 39318550 PMCID: PMC11420025 DOI: 10.3389/fmolb.2024.1421699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 08/28/2024] [Indexed: 09/26/2024] Open
Abstract
Background Biofortified Zinc Flour to Eliminate Deficiency in Pakistan (BiZiFED) is a nutritional research program that evaluates the impact of consuming zinc biofortified wheat flour on zinc status and associated health outcomes of vulnerable communities in northwest Pakistan. Measuring zinc status from blood samples is fraught with problems. This feasibility study evaluated whether metabolite changes in tear biofluids could be used to understand zinc status. Methods Zinc deficiency is particularly prevalent amongst the female population in Pakistan. Therefore, a crossover trial was developed in which 25 women of reproductive age received standard, wheat flour, and another 25 received zinc-biofortified wheat flour for 8 weeks. At the end of this period, the nutritional intervention was switched between the groups for another 8 weeks. Tear biofluid was collected using Schirmer strips at baseline and after 8 and 16 weeks. Metabolomic analysis was conducted using the MxP® Quant 500 kit on the tear biofluid from a subset of the study participants. Results Two metabolites had a significantly negative correlation with plasma zinc concentration: tiglylcarnitine and valine. Compared to baseline metabolite concentrations, acetylcarnitine, glutamine, two lysophosphatidylcholines (lysoPC a C16:0 and lysoPC a C18:1), and four sphingomyelins (SM (OH) C16:1, SM C16:0, SM C16:1, and SM C24:0) were all significantly decreased post-zinc intervention, whilst a ceramide (Cer(d18:1/18:0) was significantly increased. Conclusion These results highlight the potential of using tear biofluids as an alternative source for metabolomic biomarkers, both for the assessment of the zinc status of individuals enrolled in nutritional studies and for indicating physiological changes that arise from nutritional supplementation.
Collapse
Affiliation(s)
- Connor N. Brown
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Babar Shahzad
- Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan
| | - Mukhtiar Zaman
- Department of Pulmonology, Rehman Medical Institute, Peshawar, Pakistan
| | - Xiaobei Pan
- Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Brian D. Green
- Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Nicola M. Lowe
- Centre for Global Development, School of Sport and Health Sciences, University of Central Lancashire, Preston, United Kingdom
| | - Imre Lengyel
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Belfast, United Kingdom
| |
Collapse
|
2
|
Dong XX, Chen DL, Miao YF, Li DL, Kai JY, Hu DN, Zhang XF, Carla L, Andrzej G, Pan CW. The impact of 25-hydroxyvitamin D and calcium on risk of age-related macular degeneration: a Mendelian randomization study. Am J Clin Nutr 2024; 120:727-736. [PMID: 38964658 DOI: 10.1016/j.ajcnut.2024.06.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 06/20/2024] [Accepted: 06/28/2024] [Indexed: 07/06/2024] Open
Abstract
BACKGROUND The relationships between 25-hydroxyvitamin D [25(OH)D] and calcium and age-related macular degeneration (AMD) are unclear. OBJECTIVES This study aimed to investigate the causal role of 25(OH)D concentrations, calcium concentrations, and dietary supplements use of vitamin D and calcium on risk of AMD and its subtypes. METHODS Independent genetic variants associated with 25(OH)D and calcium concentrations were used as instrumental variables in published genome-wide association studies (GWASs) of European ancestry. The bidirectional 2-sample Mendelian randomization (MR) analyses were performed using summary-level data from the UK Biobank and FinnGen datasets. Sensitivity analyses were conducted to ensure the robustness of the MR results. The meta-analyses were conducted using both fixed-effect and random-effect models to provide comprehensive and reliable estimates. RESULTS A standard deviation increase in calcium concentrations was linked to a 14%, 17%, and 13% reduction in the likelihood of developing AMD (95% confidence interval [CI]: 0.77, 0.97), wet AMD (95% CI: 0.73, 0.95), and dry AMD (95% CI: 0.75, 1.00), respectively. No significant causal relationships were detected between genetically predicted 25(OH)D concentrations and AMD and its subtypes (all P > 0.05). The combined analyses showed that higher calcium concentrations were associated with a reduced risk of overall AMD, with an odds ratio of 0.89 (95% CI: 0.81, 0.98). CONCLUSIONS This study provides evidence supporting the causal relationship between calcium concentrations and risk of AMD and its subtypes, which may have important implications for the prevention, monitoring, and treatment of AMD.
Collapse
Affiliation(s)
- Xing-Xuan Dong
- School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China
| | - Dong-Ling Chen
- School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China
| | - Yi-Fan Miao
- School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China
| | - Dan-Lin Li
- School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China
| | - Jia-Yan Kai
- School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China
| | - Dan-Ning Hu
- New York Eye and Ear Infirmary of Mount Sinai, Icahn School of Medicine at Mount Sinai, New York City, NY, United States
| | - Xiao-Feng Zhang
- Department of Ophthalmology, The Fourth Affiliated Hospital of Soochow University, Suzhou, China
| | - Lanca Carla
- Escola Superior de Tecnologia da Saúde de Lisboa (ESTeSL), Instituto Politécnico de Lisboa, Lisboa, Portugal; Comprehensive Health Research Center (CHRC), Escola Nacional de Saúde Pública, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Grzybowski Andrzej
- Institute for Research in Ophthalmology, Foundation for Ophthalmology Development, Poznan, Poland
| | - Chen-Wei Pan
- School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China.
| |
Collapse
|
3
|
Ban N, Shinojima A, Negishi K, Kurihara T. Drusen in AMD from the Perspective of Cholesterol Metabolism and Hypoxic Response. J Clin Med 2024; 13:2608. [PMID: 38731137 PMCID: PMC11084323 DOI: 10.3390/jcm13092608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/15/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
Drusen are one of the most characteristic pathologies of precursor lesion of age-related macular degeneration (AMD). Drusen comprise a yellowish white substance that accumulates typically under the retinal pigment epithelium (RPE), and their constituents are lipids, complement, amyloid, crystallin, and others. In the past, many researchers have focused on drusen and tried to elucidate the pathophysiology of AMD because they believed that disease progression from early AMD to advanced AMD might be based on drusen or drusen might cause AMD. In fact, it is well established that drusen are the hallmark of precursor lesion of AMD and a major risk factor for AMD progression mainly based on their size and number. However, the existence of advanced AMD without drusen has long been recognized. For example, polypoidal choroidal vasculopathy (PCV), which comprises the majority of AMD cases in Asians, often lacks drusen. Thus, there is the possibility that drusen might be no more than a biomarker of AMD and not a cause of AMD. Now is the time to reconsider the relationship between AMD and drusen. In this review, we focus on early AMD pathogenesis based on basic research from the perspective of cholesterol metabolism and hypoxic response in the retina, and we discuss the role of drusen.
Collapse
Affiliation(s)
- Norimitsu Ban
- Laboratory of Aging and Retinal Biology, Keio University School of Medicine, Tokyo 160-8582, Japan;
- Department of Ophthalmology, Keio University School of Medicine, Tokyo 160-8582, Japan; (A.S.); (K.N.)
| | - Ari Shinojima
- Department of Ophthalmology, Keio University School of Medicine, Tokyo 160-8582, Japan; (A.S.); (K.N.)
- Laboratory of Photobiology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Kazuno Negishi
- Department of Ophthalmology, Keio University School of Medicine, Tokyo 160-8582, Japan; (A.S.); (K.N.)
| | - Toshihide Kurihara
- Department of Ophthalmology, Keio University School of Medicine, Tokyo 160-8582, Japan; (A.S.); (K.N.)
- Laboratory of Photobiology, Keio University School of Medicine, Tokyo 160-8582, Japan
| |
Collapse
|
4
|
Karema-Jokinen V, Koskela A, Hytti M, Hongisto H, Viheriälä T, Liukkonen M, Torsti T, Skottman H, Kauppinen A, Nymark S, Kaarniranta K. Crosstalk of protein clearance, inflammasome, and Ca 2+ channels in retinal pigment epithelium derived from age-related macular degeneration patients. J Biol Chem 2023:104770. [PMID: 37137441 DOI: 10.1016/j.jbc.2023.104770] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 04/21/2023] [Accepted: 04/23/2023] [Indexed: 05/05/2023] Open
Abstract
Degeneration and/or dysfunction of retinal pigment epithelium (RPE) is generally detected as the formation of intra- and extracellular protein aggregates, called lipofuscin and drusen, respectively, in patients with age-related macular degeneration (AMD), the leading cause of blindness in the elderly population. These clinical hallmarks are linked to dysfunctional protein homeostasis and inflammation, and furthermore, are both regulated by changes in intracellular Ca2+ concentration. While many other cellular mechanisms have been considered in the investigations of AMD-RPE, there has been relatively little work on understanding the interactions of protein clearance, inflammation, and Ca2+ dynamics in disease pathogenesis. Here we established induced pluripotent stem cell-derived RPE from two patients with advanced AMD and from an age- and gender-matched control subject. We studied autophagy and inflammasome activation under disturbed proteostasis in these cell lines and investigated changes in their intracellular Ca2+ concentration and L-type voltage-gated Ca2+ channels. Our work demonstrated dysregulated autophagy and inflammasome activation in AMD-RPE accompanied by reduced intracellular free Ca2+ levels. Interestingly, we found currents through L-type voltage-gated Ca2+ channels to be diminished and showed these channels to be significantly localized to intracellular compartments in AMD-RPE. Taken together, the alterations in Ca2+ dynamics in AMD-RPE together with dysregulated autophagy and inflammasome activation indicate an important role for Ca2+ signaling in AMD pathogenesis, providing new avenues for the development of therapeutic approaches.
Collapse
Affiliation(s)
| | - Ali Koskela
- Department of Ophthalmology, University of Eastern Finland, Kuopio, Finland
| | - Maria Hytti
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Heidi Hongisto
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland; Department of Ophthalmology, University of Eastern Finland, Kuopio, Finland
| | - Taina Viheriälä
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Mikko Liukkonen
- Department of Ophthalmology, University of Eastern Finland, Kuopio, Finland
| | - Tommi Torsti
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Heli Skottman
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Anu Kauppinen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Soile Nymark
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.
| | - Kai Kaarniranta
- Department of Ophthalmology, University of Eastern Finland, Kuopio, Finland; Department of Ophthalmology, Kuopio University Hospital, Finland, Immuno-Ophthalmology, School of Pharmacy, University of Eastern Finland, Kuopio, Finland; Department of Molecular Genetics, University of Lodz, Lodz, Poland.
| |
Collapse
|
5
|
Emri E, Cappa O, Kelly C, Kortvely E, SanGiovanni JP, McKay BS, Bergen AA, Simpson DA, Lengyel I. Zinc Supplementation Induced Transcriptional Changes in Primary Human Retinal Pigment Epithelium: A Single-Cell RNA Sequencing Study to Understand Age-Related Macular Degeneration. Cells 2023; 12:773. [PMID: 36899910 PMCID: PMC10000409 DOI: 10.3390/cells12050773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 03/05/2023] Open
Abstract
Zinc supplementation has been shown to be beneficial to slow the progression of age-related macular degeneration (AMD). However, the molecular mechanism underpinning this benefit is not well understood. This study used single-cell RNA sequencing to identify transcriptomic changes induced by zinc supplementation. Human primary retinal pigment epithelial (RPE) cells could mature for up to 19 weeks. After 1 or 18 weeks in culture, we supplemented the culture medium with 125 µM added zinc for one week. RPE cells developed high transepithelial electrical resistance, extensive, but variable pigmentation, and deposited sub-RPE material similar to the hallmark lesions of AMD. Unsupervised cluster analysis of the combined transcriptome of the cells isolated after 2, 9, and 19 weeks in culture showed considerable heterogeneity. Clustering based on 234 pre-selected RPE-specific genes divided the cells into two distinct clusters, we defined as more and less differentiated cells. The proportion of more differentiated cells increased with time in culture, but appreciable numbers of cells remained less differentiated even at 19 weeks. Pseudotemporal ordering identified 537 genes that could be implicated in the dynamics of RPE cell differentiation (FDR < 0.05). Zinc treatment resulted in the differential expression of 281 of these genes (FDR < 0.05). These genes were associated with several biological pathways with modulation of ID1/ID3 transcriptional regulation. Overall, zinc had a multitude of effects on the RPE transcriptome, including several genes involved in pigmentation, complement regulation, mineralization, and cholesterol metabolism processes associated with AMD.
Collapse
Affiliation(s)
- Eszter Emri
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University of Belfast, Belfast BT97BL, UK
- Section Ophthalmogenetics, Department of Human Genetics, Queen Emma Centre for Precision Medicine, Amsterdam UMC, Location AMC, 1105AZ Amsterdam, The Netherlands
| | - Oisin Cappa
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University of Belfast, Belfast BT97BL, UK
| | - Caoimhe Kelly
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University of Belfast, Belfast BT97BL, UK
| | - Elod Kortvely
- Immunology, Infectious Diseases and Ophthalmology (I2O) Discovery and Translational Area, Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., 4070 Basel, Switzerland
| | - John Paul SanGiovanni
- Biosciences Research Laboratories, BIO5 Institute, University of Arizona, 1230 North Cherry Avenue, Tucson, AZ 85724, USA
| | - Brian S. McKay
- Department of Ophthalmology and Vision Science, University of Arizona, 1656 E. Mabel Street, Tucson, AZ 85724, USA
| | - Arthur A. Bergen
- Section Ophthalmogenetics, Department of Human Genetics, Queen Emma Centre for Precision Medicine, Amsterdam UMC, Location AMC, 1105AZ Amsterdam, The Netherlands
- The Netherlands Institute for Neuroscience (NIN-KNAW), 1105AZ Amsterdam, The Netherlands
| | - David A. Simpson
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University of Belfast, Belfast BT97BL, UK
| | - Imre Lengyel
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University of Belfast, Belfast BT97BL, UK
| |
Collapse
|
6
|
Valencia E, García M, Fernández-Vega B, Pereiro R, Lobo L, González-Iglesias H. Targeted Analysis of Tears Revealed Specific Altered Metal Homeostasis in Age-Related Macular Degeneration. Invest Ophthalmol Vis Sci 2022; 63:10. [PMID: 35426907 PMCID: PMC9034717 DOI: 10.1167/iovs.63.4.10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Purpose Specific altered metal homeostasis has been investigated in the tear film of age-related macular degeneration (AMD) patients considering that metal dyshomeostasis contributes to the production of free radicals, inflammation, and apoptosis and results in conformational changes of proteins. Methods A multitargeted approach based on spectrophotometry and mass spectrometry techniques has been implemented to the multiplexed quantitation of lactoferrin (LF), S100 calcium binding protein A6 (S100A6), metallothionein 1A (MT1A), complement factor H (CFH), clusterin (CLU), amyloid precursor protein (APP), Mg, P, Na, Fe, Cu, Zn, and Ca, in the tear film from 60 subjects, 31 patients diagnosed with the dry form of AMD, and 29 healthy individuals Results Significant up-regulations of MT1A (1.9-fold) and S100A6 (1.4-fold) and down-regulations of LF (0.7-fold), Fe (0.6-fold), Mg (0.7-fold), and Cu (0.7-fold) were observed in AMD patients, when compared to control subjects. Of all the studied variables, only APP showed negative correlation with age in the AMD group. Also, positive correlations were observed for the variables Mg and Na, Cu and Mg, and P and Mg in both the AMD and control groups, whereas positive correlations were exclusively determined in the AMD group for Cu and LF, Na and Ca, and Mg and Ca. The panel constituted of MT1A, Na, and Mg predicts AMD disease in 73% of cases. Conclusions The different levels of target metals and (metallo-)proteins in the tear film suggest altered metal homeostasis in AMD patients. These observed pathophysiological changes may be related with the anomalous protein aggregation in the macula.
Collapse
Affiliation(s)
- Eva Valencia
- Ophtalmological Research Foundation, University Institute Fernández-Vega, University of Oviedo, Oviedo, Spain.,Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, Oviedo, Spain
| | - Montserrat García
- Ophtalmological Research Foundation, University Institute Fernández-Vega, University of Oviedo, Oviedo, Spain.,Ophthalmological Institute Fernández-Vega, Oviedo, Spain
| | - Beatriz Fernández-Vega
- Ophtalmological Research Foundation, University Institute Fernández-Vega, University of Oviedo, Oviedo, Spain.,Ophthalmological Institute Fernández-Vega, Oviedo, Spain
| | - Rosario Pereiro
- Ophtalmological Research Foundation, University Institute Fernández-Vega, University of Oviedo, Oviedo, Spain.,Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, Oviedo, Spain
| | - Lara Lobo
- Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, Oviedo, Spain
| | - Héctor González-Iglesias
- Ophtalmological Research Foundation, University Institute Fernández-Vega, University of Oviedo, Oviedo, Spain.,Ophthalmological Institute Fernández-Vega, Oviedo, Spain
| |
Collapse
|
7
|
Pilgrim MG, Marouf S, Fearn S, Csincsik L, Kortvely E, Knowles JC, Malek G, Thompson RB, Lengyel I. Characterization of Calcium Phosphate Spherical Particles in the Subretinal Pigment Epithelium-Basal Lamina Space in Aged Human Eyes. OPHTHALMOLOGY SCIENCE 2021; 1:100053. [PMID: 36247811 PMCID: PMC9559963 DOI: 10.1016/j.xops.2021.100053] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 07/21/2021] [Accepted: 08/12/2021] [Indexed: 11/17/2022]
Abstract
Purpose Micrometer-sized spherules formed of hydroxyapatite or whitlockite were identified within extracellular deposits that accumulate in the space between the basal lamina (BL) of retinal pigment epithelium (RPE) and the inner collagenous layer of Bruch's membrane (sub-RPE-BL space). This investigation aimed to characterize the morphologic features, structure, and distribution of these spherules in aged human eyes with and without clinical indications of age-related macular degeneration (AMD). Design Experimental study. Participants Five human eyes with varying degrees of sub-RPE-BL deposits were obtained from the University College London Institute of Ophthalmology and Moorfield's Eye Hospital Tissue Repository or the Advancing Sight Network. Two eyes were reported as having clinical indications of AMD (age, 76-87 years), whereas 3 were considered healthy (age, 69-91 years). Methods Cadaveric eyes with sub-RPE-BL deposits were embedded in paraffin wax and sectioned to a thickness of 4-10 μm. Spherules were identified and characterized using high-resolution scanning electron microscopy (SEM), energy-dispersive x-ray spectroscopy, and time-of-flight secondary ion mass spectroscopy. Main Outcome Measures High-resolution scanning electron micrographs of spherules, the size-frequency distribution of spherules including average diameter, and the distribution of particles across the central-peripheral axis. Elemental maps and time-of-flight secondary ion mass spectra also were obtained. Results The precipitation of spherules is ubiquitous across the central, mid-peripheral, and far-peripheral axis in aged human eyes. No significant difference was found in the frequency of spherules along this axis. However, statistical analysis indicated that spherules exhibited significantly different sizes in these regions. In-depth analysis revealed that spherules in the sub-RPE-BL space of eyes with clinical signs of AMD were significantly larger (median diameter, 1.64 μm) than those in healthy aged eyes (median diameter, 1.16 μm). Finally, spherules showed great variation in surface topography and internal structure. Conclusions The precipitation of spherules in the sub-RPE-BL space is ubiquitous across the central-peripheral axis in aged human eyes. However, a marked difference exists in the size and frequency of spherules in eyes with clinical signs of AMD compared to those without, suggesting that the size and frequency of spherules may be associated with AMD.
Collapse
Key Words
- AMD, age-related macular degeneration
- BL, basal lamina
- BrM, Bruch’s membrane
- C, Calcium
- Choroid
- Drusen
- EDX, Energy dispersive x-ray spectroscopy
- Ectopic calcification
- H, hydrogen
- Mg, Magnesium
- N, Nitrogen
- Na, sodium
- O, oxygen
- P, phosphorus
- RPE, retinal pigment epithelium
- Retina
- SEM, scanning electron microscopy
- Spherical particle
- Sub-retinal pigment epithelium-basal lamina deposit
- Sub-retinal pigment epithelium-basal lamina space
- Sub–retinal pigment epithelium
- ToF-SIMs, time of flight-secondary ion mass spectrometry
- sub-RPE–BL space, sub-retinal pigment epithelium-basal lamina space
Collapse
Affiliation(s)
- Matthew G. Pilgrim
- University College London Institute of Ophthalmology, London, United Kingdom
- Division of Biomaterials and Tissue Engineering, University College London Eastman Dental Institute, Royal Free Hospital, London, United Kingdom
- Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical Science, Queen’s University Belfast, Belfast, United Kingdom
| | - Salma Marouf
- Barts and The London School of Medicine and Dentistry, London, United Kingdom
| | - Sarah Fearn
- Department of Materials, Imperial College London, London, United Kingdom
| | - Lajos Csincsik
- Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical Science, Queen’s University Belfast, Belfast, United Kingdom
| | - Elod Kortvely
- Roche Pharma Research and Early Development, Immunology, Infectious Diseases and Ophthalmology (I20) Discovery and Translational Area, Roche Innovation Centre Basel, F. Hoffmann-La Roche, Ltd., Basel, Switzerland
| | - Jonathan C. Knowles
- Division of Biomaterials and Tissue Engineering, University College London Eastman Dental Institute, Royal Free Hospital, London, United Kingdom
| | - Goldis Malek
- Department of Ophthalmology, Albert Eye Research Institute, and Department of Pathology, Duke University School of Medicine, Durham, North Carolina
| | - Richard B. Thompson
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Imre Lengyel
- Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical Science, Queen’s University Belfast, Belfast, United Kingdom
| |
Collapse
|
8
|
Peripheral Monocyte Count and Age-Related Macular Degeneration. The Tongren Health Care Study. Am J Ophthalmol 2021; 227:143-153. [PMID: 33737032 DOI: 10.1016/j.ajo.2021.03.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 02/18/2021] [Accepted: 03/08/2021] [Indexed: 01/08/2023]
Abstract
PURPOSE To assess potential associations between the prevalence of age-related macular degeneration (AMD) and systemic parameters in a Chinese population. DESIGN Cross-sectional study. METHODS The Tongren Health Care Study included individuals attending regular health care check-up examinations in the Beijing Tongren Hospital from 2017 to 2019. Detailed medical examinations and ophthalmic examinations were applied, including fundus photography. AMD was evaluated according to the Beckman Initiative guidelines. RESULTS The study included 7,719 participants (mean age: 60.5 ± 8.1 years; range: 50-97 years). The prevalence of any, early, intermediate, and late AMD was 1,607 of 7,719 (20.8%; 95% confidence interval [CI]: 20.1%, 21.9%), 832 of 7,719 (10.8%; 95% CI: 10.1%, 11.5%), 733 of 7,719 (9.5%; 95% CI: 8.9%, 10.2%), and 42 of 7,719 (0.50%; 95% CI: 0.40%, 0.70%), respectively. In multivariate analysis, the prevalence of any AMD increased with higher blood monocyte count (odds ratio [OR]:3.49; 95% CI: 2.26, 5.38; P < .001), after adjusting for older age (OR: 1.06; 95% CI: 1.05, 1.07; P < .001), higher serum concentration of calcium (OR: 2.52; 95% CI: 1.32, 4.84; P = .005), high-density lipoproteins (OR: 1.39; 95% CI: 1.19, 1.61; P < .001), and lower lipoprotein a (OR: 0.99; 95% CI: 0.98, 0.99; P = .02). Similar findings were obtained for the prevalence of intermediate and late AMD combined. The association between higher monocyte count and higher AMD prevalence showed the highest odds ratio for the age group of 50-59 years (any AMD: OR: 4.35, P < .001; intermediate and late AMD: OR: 6.14, P < .001). Individuals with a monocyte count of ≥0.5 × 109/L as compared to participants with a monocyte of 0.1-0.4 × 109/L had a 1.45-fold increased risk for any AMD (OR: 1.45; 95% CI: 1.27, 1.64; P < .001) and 1.58 fold increase risk for intermediate/late AMD (OR: 1.58; 95% CI: 1.33, 1.87; P < .001). CONCLUSION A higher prevalence of early AMD, intermediate AMD, late AMD, and any AMD was associated with a higher peripheral monocyte count. In agreement with previous studies, the observation suggests monocytes playing a role in the pathogenesis of AMD.
Collapse
|
9
|
Lores-Padín A, Fernández B, Álvarez L, González-Iglesias H, Lengyel I, Pereiro R. Multiplex bioimaging of proteins-related to neurodegenerative diseases in eye sections by laser ablation - Inductively coupled plasma - Mass spectrometry using metal nanoclusters as labels. Talanta 2020; 221:121489. [PMID: 33076097 DOI: 10.1016/j.talanta.2020.121489] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/23/2020] [Accepted: 07/29/2020] [Indexed: 11/29/2022]
Abstract
Simultaneous determination of proteins with micrometric resolution is a significant challenge. In this study, laser ablation (LA) inductively coupled plasma - mass spectrometry (ICP-MS) was employed to quantify the distribution of proteins associated to the eye disease age-related macular degeneration (AMD) using antibodies labelled with three different metal nanoclusters (MNCs). PtNCs, AuNCs and AgNCs contain hundreds of metal atoms and were used to detect metallothionein 1/2 (MT1/2), complement factor H (CFH) and amyloid precursor protein (APP) in retina, ciliary body, retinal pigment epithelium (RPE), choroid and sclera from human cadaveric eye sections. First, the labelling of MNCs bioconjugated primary antibodies (Ab) was optimised following an immunolabelling protocol to avoid the non-specific interaction of MNCs with the tissue. Then, the LA and ICP-MS conditions were studied to obtain high-resolution images for the simultaneous detection of the three labels at the same tissue section. A significant signal amplification was found when using AuNCs, AgNCs and PtNCs labelled Ab of 310, 723 and 1194 respectively. After the characterisation of MNCs labelled immunoprobes, the Ab labelling was used for determination of MT1/2, CFH and APP in the RPE-choroid-sclera, where accumulation of extracellular deposits related to AMD was observed. Experimental results suggest that this method is fully suitable for the simultaneous detection of at least three different proteins.
Collapse
Affiliation(s)
- Ana Lores-Padín
- Department of Physical and Analytical Chemistry, University of Oviedo, Julian Clavería 8, 33006, Oviedo, Spain
| | - Beatriz Fernández
- Department of Physical and Analytical Chemistry, University of Oviedo, Julian Clavería 8, 33006, Oviedo, Spain; Instituto Universitario Fernández-Vega, Fundación de Investigación Oftalmológica, Universidad de Oviedo, Oviedo, Spain.
| | - Lydia Álvarez
- Instituto Universitario Fernández-Vega, Fundación de Investigación Oftalmológica, Universidad de Oviedo, Oviedo, Spain; Instituto Oftalmológico Fernández-Vega, Avda. Dres. Fernández-Vega, 34, 33012, Oviedo, Spain
| | - Héctor González-Iglesias
- Instituto Universitario Fernández-Vega, Fundación de Investigación Oftalmológica, Universidad de Oviedo, Oviedo, Spain; Instituto Oftalmológico Fernández-Vega, Avda. Dres. Fernández-Vega, 34, 33012, Oviedo, Spain.
| | - Imre Lengyel
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, Northern Ireland, United Kingdom
| | - Rosario Pereiro
- Department of Physical and Analytical Chemistry, University of Oviedo, Julian Clavería 8, 33006, Oviedo, Spain; Instituto Universitario Fernández-Vega, Fundación de Investigación Oftalmológica, Universidad de Oviedo, Oviedo, Spain
| |
Collapse
|
10
|
Calcium and hydroxyapatite binding site of human vitronectin provides insights to abnormal deposit formation. Proc Natl Acad Sci U S A 2020; 117:18504-18510. [PMID: 32699145 DOI: 10.1073/pnas.2007699117] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The human blood protein vitronectin (Vn) is a major component of the abnormal deposits associated with age-related macular degeneration, Alzheimer's disease, and many other age-related disorders. Its accumulation with lipids and hydroxyapatite (HAP) has been demonstrated, but the precise mechanism for deposit formation remains unknown. Using a combination of solution and solid-state NMR experiments, cosedimentation assays, differential scanning fluorimetry (DSF), and binding energy calculations, we demonstrate that Vn is capable of binding both soluble ionic calcium and crystalline HAP, with high affinity and chemical specificity. Calcium ions bind preferentially at an external site, at the top of the hemopexin-like (HX) domain, with a group of four Asp carboxylate groups. The same external site is also implicated in HAP binding. Moreover, Vn acquires thermal stability upon association with either calcium ions or crystalline HAP. The data point to a mechanism whereby Vn plays an active role in orchestrating calcified deposit formation. They provide a platform for understanding the pathogenesis of macular degeneration and other related degenerative disorders, and the normal functions of Vn, especially those related to bone resorption.
Collapse
|
11
|
Zinc and Autophagy in Age-Related Macular Degeneration. Int J Mol Sci 2020; 21:ijms21144994. [PMID: 32679798 PMCID: PMC7404247 DOI: 10.3390/ijms21144994] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/13/2020] [Accepted: 07/13/2020] [Indexed: 02/06/2023] Open
Abstract
Zinc supplementation is reported to slow down the progression of age-related macular degeneration (AMD), but there is no general consensus on the beneficiary effect on zinc in AMD. As zinc can stimulate autophagy that is declined in AMD, it is rational to assume that it can slow down its progression. As melanosomes are the main reservoir of zinc in the retina, zinc may decrease the number of lipofuscin granules that are substrates for autophagy. The triad zinc–autophagy–AMD could explain some controversies associated with population studies on zinc supplementation in AMD as the effect of zinc on AMD may be modulated by genetic background. This aspect was not determined in many studies regarding zinc in AMD. Zinc deficiency induces several events associated with AMD pathogenesis, including increased oxidative stress, lipid peroxidation and the resulting lipofuscinogenesis. The latter requires autophagy, which is impaired. This is a vicious cycle-like reaction that may contribute to AMD progression. Promising results with zinc deficiency and supplementation in AMD patients and animal models, as well as emerging evidence of the importance of autophagy in AMD, are the rationale for future research on the role of autophagy in the role of zinc supplementation in AMD.
Collapse
|
12
|
Copper mediates mitochondrial biogenesis in retinal pigment epithelial cells. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165843. [PMID: 32454166 DOI: 10.1016/j.bbadis.2020.165843] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 02/29/2020] [Accepted: 05/19/2020] [Indexed: 11/22/2022]
Abstract
Age related macular degeneration (AMD) is a multifactorial disease with genetic, biochemical and environmental risk factors. We observed a significant increase in copper levels in choroid-RPE from donor eyeballs with AMD. Adult retinal pigment epithelial cells (ARPE19 cells) exposed to copper in-vitro showed a 2-fold increase in copper influx transporter CTR1 and copper uptake at 50 μM concentration. Further there was 2-fold increase in cytochrome C oxidase activity and a 2-fold increase in the mRNA expression of NRF 2 with copper treatment. There was a significant increase in mitochondrial biogenesis markers PGC1β and TFAM which was confirmed by mitochondrial mass and copy number. On the contrary, in AMD choroid-RPE, the CTR1 mRNA was found to be significantly down-regulated compared to its respective controls. SCO1 and PGC1β mRNA showed an increase in choroid-RPE. Our study proposes copper to play an important role in mitochondrial biogenesis in RPE cells.
Collapse
|
13
|
Rajapakse D, Peterson K, Mishra S, Fan J, Lerner J, Campos M, Wistow G. Amelotin is expressed in retinal pigment epithelium and localizes to hydroxyapatite deposits in dry age-related macular degeneration. Transl Res 2020; 219:45-62. [PMID: 32160961 PMCID: PMC7197213 DOI: 10.1016/j.trsl.2020.02.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 02/19/2020] [Accepted: 02/20/2020] [Indexed: 11/28/2022]
Abstract
Deposition of hydroxyapatite (HAP) basal to the retinal pigment epithelium (RPE) is linked to the progression of age-related macular degeneration (AMD). Serum-deprivation of RPE cells in culture mimics some features of AMD. We now show that serum-deprivation also leads to the induction of amelotin (AMTN), a protein involved in hydroxyapatite mineralization in enamel. HAP is formed in our culture model and is blocked by siRNA inhibition of AMTN expression. In situ hybridization and immunofluorescence imaging of human eye tissue show that AMTN is expressed in RPE of donor eyes with geographic atrophy ("dry" AMD) in regions with soft drusen containing HAP spherules or nodules. AMTN is not found in hard drusen, normal RPE, or donor eyes diagnosed with wet AMD. These findings suggest that AMTN is involved in formation of HAP spherules or nodules in AMD, and as such provides a new therapeutic target for slowing disease progression.
Collapse
Affiliation(s)
- Dinusha Rajapakse
- Section on Molecular Structure and Functional Genomics, National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Katherine Peterson
- Section on Molecular Structure and Functional Genomics, National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Sanghamitra Mishra
- Section on Molecular Structure and Functional Genomics, National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Jianguo Fan
- Section on Molecular Structure and Functional Genomics, National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Joshua Lerner
- Section on Molecular Structure and Functional Genomics, National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Maria Campos
- Histopathology Core Facility, National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Graeme Wistow
- Section on Molecular Structure and Functional Genomics, National Eye Institute, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
14
|
Mónico A, Zorrilla S, Rivas G, Pérez-Sala D. Zinc Differentially Modulates the Assembly of Soluble and Polymerized Vimentin. Int J Mol Sci 2020; 21:E2426. [PMID: 32244501 PMCID: PMC7177742 DOI: 10.3390/ijms21072426] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 03/27/2020] [Accepted: 03/30/2020] [Indexed: 01/12/2023] Open
Abstract
The intermediate filament protein vimentin constitutes a critical sensor for electrophilic and oxidative stress. We previously showed that vimentin interacts with zinc, which affects its assembly and redox sensing. Here, we used vimentin wt and C328S, an oxidation-resistant mutant showing improved NaCl-induced polymerization, to assess the impact of zinc on soluble and polymerized vimentin by light scattering and electron microscopy. Zinc acts as a switch, reversibly inducing the formation of vimentin oligomeric species. High zinc concentrations elicit optically-detectable vimentin structures with a characteristic morphology depending on the support. These effects also occur in vimentin C328S, but are not mimicked by magnesium. Treatment of vimentin with micromolar ZnCl2 induces fibril-like particles that do not assemble into filaments, but form aggregates upon subsequent addition of NaCl. In contrast, when added to NaCl-polymerized vimentin, zinc increases the diameter or induces lateral association of vimentin wt filaments. Remarkably, these effects are absent or attenuated in vimentin C328S filaments. Therefore, the zinc-vimentin interaction depends on the chemical environment and on the assembly state of the protein, leading to atypical polymerization of soluble vimentin, likely through electrostatic interactions, or to broadening and lateral association of preformed filaments through mechanisms requiring the cysteine residue. Thus, the impact of zinc on vimentin assembly and redox regulation is envisaged.
Collapse
Affiliation(s)
| | | | | | - Dolores Pérez-Sala
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas, Ramiro de Maeztu, 9, 28040 Madrid, Spain; (A.M.); (S.Z.); (G.R.)
| |
Collapse
|
15
|
Menon M, Mohammadi S, Davila-Velderrain J, Goods BA, Cadwell TD, Xing Y, Stemmer-Rachamimov A, Shalek AK, Love JC, Kellis M, Hafler BP. Single-cell transcriptomic atlas of the human retina identifies cell types associated with age-related macular degeneration. Nat Commun 2019; 10:4902. [PMID: 31653841 PMCID: PMC6814749 DOI: 10.1038/s41467-019-12780-8] [Citation(s) in RCA: 200] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 09/27/2019] [Indexed: 12/19/2022] Open
Abstract
Genome-wide association studies (GWAS) have identified genetic variants associated with age-related macular degeneration (AMD), one of the leading causes of blindness in the elderly. However, it has been challenging to identify the cell types associated with AMD given the genetic complexity of the disease. Here we perform massively parallel single-cell RNA sequencing (scRNA-seq) of human retinas using two independent platforms, and report the first single-cell transcriptomic atlas of the human retina. Using a multi-resolution network-based analysis, we identify all major retinal cell types, and their corresponding gene expression signatures. Heterogeneity is observed within macroglia, suggesting that human retinal glia are more diverse than previously thought. Finally, GWAS-based enrichment analysis identifies glia, vascular cells, and cone photoreceptors to be associated with the risk of AMD. These data provide a detailed analysis of the human retina, and show how scRNA-seq can provide insight into cell types involved in complex, inflammatory genetic diseases.
Collapse
Affiliation(s)
- Madhvi Menon
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Departments of Ophthalmology and Neurology, Harvard Medical School, Boston, MA, 02115, USA
- Evergrande Center for Immunologic Diseases, Harvard Medical School, Boston, MA, 02115, USA
| | - Shahin Mohammadi
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, MA, 02139, USA
| | - Jose Davila-Velderrain
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, MA, 02139, USA
| | - Brittany A Goods
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Institute for Medical Engineering and Science and Department of Chemistry, MIT, Cambridge, MA, 02139, USA
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, 02142, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, 02139, USA
| | - Tanina D Cadwell
- Evergrande Center for Immunologic Diseases, Harvard Medical School, Boston, MA, 02115, USA
| | - Yu Xing
- Evergrande Center for Immunologic Diseases, Harvard Medical School, Boston, MA, 02115, USA
| | | | - Alex K Shalek
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Institute for Medical Engineering and Science and Department of Chemistry, MIT, Cambridge, MA, 02139, USA
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, 02142, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, 02139, USA
| | - John Christopher Love
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, 02142, USA
| | - Manolis Kellis
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Evergrande Center for Immunologic Diseases, Harvard Medical School, Boston, MA, 02115, USA
- MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, MA, 02139, USA
| | - Brian P Hafler
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.
- Departments of Ophthalmology and Neurology, Harvard Medical School, Boston, MA, 02115, USA.
- Evergrande Center for Immunologic Diseases, Harvard Medical School, Boston, MA, 02115, USA.
- Department of Ophthalmology and Visual Science, Yale School of Medicine, New Haven, CT, 06510, USA.
| |
Collapse
|
16
|
Mukhtar S, Ambati BK. The value of nutritional supplements in treating Age-Related Macular Degeneration: a review of the literature. Int Ophthalmol 2019; 39:2975-2983. [PMID: 31313070 DOI: 10.1007/s10792-019-01140-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Accepted: 07/06/2019] [Indexed: 12/26/2022]
Abstract
PURPOSE To describe and evaluate the value of nutritional supplements in the management of age-related macular degeneration (AMD) through a review of the current literature. METHODS An extensive literature search was performed, and key research articles exploring AREDS and AREDS-2 formulations, genetics, omega fatty acids, calcium and folic acid in high-risk women were reviewed. PubMed and Web of Science databases were used for generating articles to review. RESULTS The AREDS and AREDS-2 trials, while difficult to validate, show support for antioxidant supplementation in reducing AMD progression in Caucasian populations. While genetic guided personalized medicine has been studied mainly with complement factor H and age-related maculopathy susceptibility 2 risk alleles, the data have not been reproducible. Women at a higher risk of cardiovascular disease may benefit from antioxidant therapies in preventing AMD. Omega 3 fatty acid supplementation has been widely supported through observational studies; however, randomized controlled trials have not shown benefit in disease progression. Calcium exposure has been linked to increased mechanisms in cell death and may be detrimental to older individuals with AMD. CONCLUSION The data regarding nutritional supplements in preventing AMD progression are inconclusive, and therefore recommendations should be based on risk factors and demographic data.
Collapse
Affiliation(s)
- Sabrina Mukhtar
- University of Pittsburgh Medical Center, 203 Lothrop Street, Pittsburgh, PA, 15213, USA.
| | | |
Collapse
|
17
|
Gilbert R, Peto T, Lengyel I, Emri E. Zinc Nutrition and Inflammation in the Aging Retina. Mol Nutr Food Res 2019; 63:e1801049. [PMID: 31148351 DOI: 10.1002/mnfr.201801049] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 04/18/2019] [Indexed: 12/16/2022]
Abstract
Zinc is an essential nutrient for human health. It plays key roles in maintaining protein structure and stability, serves as catalytic factor for many enzymes, and regulates diverse fundamental cellular processes. Zinc is important in affecting signal transduction and, in particular, in the development and integrity of the immune system, where it affects both innate and adaptive immune responses. The eye, especially the retina-choroid complex, has an unusually high concentration of zinc compared to other tissues. The highest amount of zinc is concentrated in the retinal pigment epithelium (RPE) (RPE-choroid, 292 ± 98.5 µg g-1 dry tissue), followed by the retina (123 ± 62.2 µg g-1 dry tissue). The interplay between zinc and inflammation has been explored in other parts of the body but, so far, has not been extensively researched in the eye. Several lines of evidence suggest that ocular zinc concentration decreases with age, especially in the context of age-related disease. Thus, a hypothesis that retinal function could be modulated by zinc nutrition is proposed, and subsequently trialled clinically. In this review, the distribution and the potential role of zinc in the retina-choroid complex is outlined, especially in relation to inflammation and immunity, and the clinical studies to date are summarized.
Collapse
Affiliation(s)
- Rosie Gilbert
- Moorfields Eye Hospital NHS Foundation Trust, City Road, London, EC1V 2PD, UK.,UCL Institute of Ophthalmology, Bath Street, London, EC1V 2EL, UK
| | - Tunde Peto
- School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, Ireland
| | - Imre Lengyel
- UCL Institute of Ophthalmology, Bath Street, London, EC1V 2EL, UK.,School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, Ireland
| | - Eszter Emri
- School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, Ireland
| |
Collapse
|
18
|
Brown CN, Green BD, Thompson RB, den Hollander AI, Lengyel I. Metabolomics and Age-Related Macular Degeneration. Metabolites 2018; 9:metabo9010004. [PMID: 30591665 PMCID: PMC6358913 DOI: 10.3390/metabo9010004] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 12/17/2018] [Accepted: 12/20/2018] [Indexed: 12/11/2022] Open
Abstract
Age-related macular degeneration (AMD) leads to irreversible visual loss, therefore, early intervention is desirable, but due to its multifactorial nature, diagnosis of early disease might be challenging. Identification of early markers for disease development and progression is key for disease diagnosis. Suitable biomarkers can potentially provide opportunities for clinical intervention at a stage of the disease when irreversible changes are yet to take place. One of the most metabolically active tissues in the human body is the retina, making the use of hypothesis-free techniques, like metabolomics, to measure molecular changes in AMD appealing. Indeed, there is increasing evidence that metabolic dysfunction has an important role in the development and progression of AMD. Therefore, metabolomics appears to be an appropriate platform to investigate disease-associated biomarkers. In this review, we explored what is known about metabolic changes in the retina, in conjunction with the emerging literature in AMD metabolomics research. Methods for metabolic biomarker identification in the eye have also been discussed, including the use of tears, vitreous, and aqueous humor, as well as imaging methods, like fluorescence lifetime imaging, that could be translated into a clinical diagnostic tool with molecular level resolution.
Collapse
Affiliation(s)
- Connor N Brown
- Wellcome-Wolfson Institute for Experimental Medicine (WWIEM), Queen's University Belfast, Belfast BT9 7BL, UK.
| | - Brian D Green
- Institute for Global Food Security (IGFS), Queen's University Belfast, Belfast BT9 6AG, UK.
| | - Richard B Thompson
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA.
| | - Anneke I den Hollander
- Department of Ophthalmology, Radboud University Nijmegen Medical Centre, Nijmegen 6525 EX, The Netherlands.
| | - Imre Lengyel
- Wellcome-Wolfson Institute for Experimental Medicine (WWIEM), Queen's University Belfast, Belfast BT9 7BL, UK.
| |
Collapse
|
19
|
On the origin of proteins in human drusen: The meet, greet and stick hypothesis. Prog Retin Eye Res 2018; 70:55-84. [PMID: 30572124 DOI: 10.1016/j.preteyeres.2018.12.003] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 12/11/2018] [Accepted: 12/12/2018] [Indexed: 12/12/2022]
Abstract
Retinal drusen formation is not only a clinical hallmark for the development of age-related macular degeneration (AMD) but also for other disorders, such as Alzheimer's disease and renal diseases. The initiation and growth of drusen is poorly understood. Attention has focused on lipids and minerals, but relatively little is known about the origin of drusen-associated proteins and how they are retained in the space between the basal lamina of the retinal pigment epithelium and the inner collagenous layer space (sub-RPE-BL space). While some authors suggested that drusen proteins are mainly derived from cellular debris from processed photoreceptor outer segments and the RPE, others suggest a choroidal cell or blood origin. Here, we reviewed and supplemented the existing literature on the molecular composition of the retina/choroid complex, to gain a more complete understanding of the sources of proteins in drusen. These "drusenomics" studies showed that a considerable proportion of currently identified drusen proteins is uniquely originating from the blood. A smaller, but still large fraction of drusen proteins comes from both blood and/or RPE. Only a small proportion of drusen proteins is uniquely derived from the photoreceptors or choroid. We next evaluated how drusen components may "meet, greet and stick" to each other and/or to structures like hydroxyapatite spherules to form macroscopic deposits in the sub-RPE-BL space. Finally, we discuss implications of our findings with respect to the previously proposed homology between drusenogenesis in AMD and plaque formation in atherosclerosis.
Collapse
|
20
|
Curcio CA. Soft Drusen in Age-Related Macular Degeneration: Biology and Targeting Via the Oil Spill Strategies. Invest Ophthalmol Vis Sci 2018; 59:AMD160-AMD181. [PMID: 30357336 PMCID: PMC6733535 DOI: 10.1167/iovs.18-24882] [Citation(s) in RCA: 201] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
AMD is a major cause of legal blindness in older adults approachable through multidisciplinary research involving human tissues and patients. AMD is a vascular-metabolic-inflammatory disease, in which two sets of extracellular deposits, soft drusen/basal linear deposit (BLinD) and subretinal drusenoid deposit (SDD), confer risk for end-stages of atrophy and neovascularization. Understanding how deposits form can lead to insights for new preventions and therapy. The topographic correspondence of BLinD and SDD with cones and rods, respectively, suggest newly realized exchange pathways among outer retinal cells and across Bruch's membrane and the subretinal space, in service of highly evolved, eye-specific physiology. This review focuses on soft drusen/BLinD, summarizing evidence that a major ultrastructural component is large apolipoprotein B,E-containing, cholesterol-rich lipoproteins secreted by the retinal pigment epithelium (RPE) that offload unneeded lipids of dietary and outer segment origin to create an atherosclerosis-like progression in the subRPE-basal lamina space. Clinical observations and an RPE cell culture system combine to suggest that soft drusen/BLinD form when secretions of functional RPE back up in the subRPE-basal lamina space by impaired egress across aged Bruch's membrane-choriocapillary endothelium. The soft drusen lifecycle includes growth, anterior migration of RPE atop drusen, then collapse, and atrophy. Proof-of-concept studies in humans and animal models suggest that targeting the “Oil Spill in Bruch's membrane” offers promise of treating a process in early AMD that underlies progression to both end-stages. A companion article addresses the antecedents of soft drusen within the biology of the macula.
Collapse
Affiliation(s)
- Christine A Curcio
- Department of Ophthalmology and Visual Sciences, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| |
Collapse
|
21
|
Tan ACS, Pilgrim MG, Fearn S, Bertazzo S, Tsolaki E, Morrell AP, Li M, Messinger JD, Dolz-Marco R, Lei J, Nittala MG, Sadda SR, Lengyel I, Freund KB, Curcio CA. Calcified nodules in retinal drusen are associated with disease progression in age-related macular degeneration. Sci Transl Med 2018; 10:eaat4544. [PMID: 30404862 PMCID: PMC10721335 DOI: 10.1126/scitranslmed.aat4544] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 08/10/2018] [Accepted: 10/17/2018] [Indexed: 12/17/2023]
Abstract
Drusen are lipid-, mineral-, and protein-containing extracellular deposits that accumulate between the basal lamina of the retinal pigment epithelium (RPE) and Bruch's membrane (BrM) of the human eye. They are a defining feature of age-related macular degeneration (AMD), a common sight-threatening disease of older adults. The appearance of heterogeneous internal reflectivity within drusen (HIRD) on optical coherence tomography (OCT) images has been suggested to indicate an increased risk of progression to advanced AMD. Here, in a cohort of patients with AMD and drusen, we show that HIRD indicated an increased risk of developing advanced AMD within 1 year. Using multimodal imaging in an independent cohort, we demonstrate that progression to AMD was associated with increasing degeneration of the RPE overlying HIRD. Morphological analysis of clinically imaged cadaveric human eye samples revealed that HIRD was formed by multilobular nodules. Nanoanalytical methods showed that nodules were composed of hydroxyapatite and that they differed from spherules and BrM plaques, other refractile features also found in the retinas of patients with AMD. These findings suggest that hydroxyapatite nodules may be indicators of progression to advanced AMD and that using multimodal clinical imaging to determine the composition of macular calcifications may help to direct therapeutic strategies and outcome measures in AMD.
Collapse
Affiliation(s)
- Anna C S Tan
- Vitreous Retina Macula Consultants of New York, New York, NY 10022, USA
- LuEsther T. Mertz Retinal Research Center, Manhattan, Eye, Ear and Throat Hospital, New York, NY 10075, USA
- Singapore National Eye Center/Singapore Eye Research Institute Singapore, Singapore 168751, Singapore
- Duke-NUS Singapore, Singapore 168751, Singapore
| | - Matthew G Pilgrim
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, University College London, London WC1X 8LD, UK
| | - Sarah Fearn
- Department of Materials, Imperial College London, London SW7 2AZ, UK
| | - Sergio Bertazzo
- Department of Medical Physics and Biomedical Engineering, University College London, Malet Place Engineering Building, London WC1E 6BT, UK
| | - Elena Tsolaki
- Department of Medical Physics and Biomedical Engineering, University College London, Malet Place Engineering Building, London WC1E 6BT, UK
| | - Alexander P Morrell
- Material Physics, Aston University, Aston Express Way, Birmingham B4 7ET, UK
| | - Miaoling Li
- Department of Ophthalmology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 32594-0019, USA
| | - Jeffrey D Messinger
- Department of Ophthalmology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 32594-0019, USA
| | - Rosa Dolz-Marco
- Vitreous Retina Macula Consultants of New York, New York, NY 10022, USA
- LuEsther T. Mertz Retinal Research Center, Manhattan, Eye, Ear and Throat Hospital, New York, NY 10075, USA
| | - Jianqin Lei
- Doheny Image Reading Center, Doheny Eye Institute, Los Angeles, CA 90033, USA
| | - Muneeswar G Nittala
- Doheny Image Reading Center, Doheny Eye Institute, Los Angeles, CA 90033, USA
| | - Srinivas R Sadda
- Doheny Image Reading Center, Doheny Eye Institute, Los Angeles, CA 90033, USA
- Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Imre Lengyel
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK.
- Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast BT9 7BL, UK
| | - K Bailey Freund
- Vitreous Retina Macula Consultants of New York, New York, NY 10022, USA
- LuEsther T. Mertz Retinal Research Center, Manhattan, Eye, Ear and Throat Hospital, New York, NY 10075, USA
- Department of Ophthalmology, New York University Langone School of Medicine, New York, NY 10016, USA
| | - Christine A Curcio
- Department of Ophthalmology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 32594-0019, USA
| |
Collapse
|
22
|
The clinical relevance of visualising the peripheral retina. Prog Retin Eye Res 2018; 68:83-109. [PMID: 30316018 DOI: 10.1016/j.preteyeres.2018.10.001] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 10/01/2018] [Accepted: 10/07/2018] [Indexed: 01/04/2023]
Abstract
Recent developments in imaging technologies now allow the documentation, qualitative and quantitative evaluation of peripheral retinal lesions. As wide field retinal imaging, capturing both the central and peripheral retina up to 200° eccentricity, is becoming readily available the question is: what is it that we gain by imaging the periphery? Based on accumulating evidence it is clear that findings in the periphery do not always associate to those observed in the posterior pole. However, the newly acquired information may provide useful clues to previously unrecognised disease features and may facilitate more accurate disease prognostication. In this review, we explore the anatomy and physiology of the peripheral retina, focusing on how it differs from the posterior pole, recount the history of peripheral retinal imaging, describe various peripheral retinal lesions and evaluate the overall relevance of peripheral retinal findings to different diseases.
Collapse
|
23
|
Bharathselvi M, Biswas S, Raman R, Selvi R, Coral K, Narayanansamy A, Ramakrishnan S, Sulochana KN. Authors' Response. Indian J Med Res 2018; 146:431-432. [PMID: 29355154 PMCID: PMC5793482 DOI: 10.4103/0971-5916.223636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Muthuvel Bharathselvi
- Department of Biochemistry & Cell Biology, Visual Research Foundation, Sankara Nethralaya, Chennai 600 006, Tamil Nadu, India
| | - Sayantan Biswas
- Department of Biochemistry & Cell Biology, Visual Research Foundation, Sankara Nethralaya, Chennai 600 006, Tamil Nadu, India
| | - Rajiv Raman
- Department of Biochemistry & Cell Biology, Visual Research Foundation, Sankara Nethralaya, Chennai 600 006, Tamil Nadu, India
| | - Radhakrishnan Selvi
- Department of Biochemistry & Cell Biology, Visual Research Foundation, Sankara Nethralaya, Chennai 600 006, Tamil Nadu, India
| | - Karunakaran Coral
- Department of Biochemistry & Cell Biology, Visual Research Foundation, Sankara Nethralaya, Chennai 600 006, Tamil Nadu, India
| | - Angayarkanni Narayanansamy
- Department of Biochemistry & Cell Biology, Visual Research Foundation, Sankara Nethralaya, Chennai 600 006, Tamil Nadu, India
| | - Sivaramakrishnan Ramakrishnan
- Department of Biochemistry & Cell Biology, Visual Research Foundation, Sankara Nethralaya, Chennai 600 006, Tamil Nadu, India
| | - Konerirajapuram N Sulochana
- Department of Biochemistry & Cell Biology, Visual Research Foundation, Sankara Nethralaya, Chennai 600 006, Tamil Nadu, India
| |
Collapse
|
24
|
Wessels I, Maywald M, Rink L. Zinc as a Gatekeeper of Immune Function. Nutrients 2017; 9:E1286. [PMID: 29186856 PMCID: PMC5748737 DOI: 10.3390/nu9121286] [Citation(s) in RCA: 385] [Impact Index Per Article: 48.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 11/20/2017] [Accepted: 11/22/2017] [Indexed: 12/27/2022] Open
Abstract
After the discovery of zinc deficiency in the 1960s, it soon became clear that zinc is essential for the function of the immune system. Zinc ions are involved in regulating intracellular signaling pathways in innate and adaptive immune cells. Zinc homeostasis is largely controlled via the expression and action of zinc "importers" (ZIP 1-14), zinc "exporters" (ZnT 1-10), and zinc-binding proteins. Anti-inflammatory and anti-oxidant properties of zinc have long been documented, however, underlying mechanisms are still not entirely clear. Here, we report molecular mechanisms underlying the development of a pro-inflammatory phenotype during zinc deficiency. Furthermore, we describe links between altered zinc homeostasis and disease development. Consequently, the benefits of zinc supplementation for a malfunctioning immune system become clear. This article will focus on underlying mechanisms responsible for the regulation of cellular signaling by alterations in zinc homeostasis. Effects of fast zinc flux, intermediate "zinc waves", and late homeostatic zinc signals will be discriminated. Description of zinc homeostasis-related effects on the activation of key signaling molecules, as well as on epigenetic modifications, are included to emphasize the role of zinc as a gatekeeper of immune function.
Collapse
Affiliation(s)
- Inga Wessels
- Institute of Immunology, Faculty of Medicine, University Hospital RWTH Aachen, Pauwelsstr. 30, 52074 Aachen, Germany.
| | - Martina Maywald
- Institute of Immunology, Faculty of Medicine, University Hospital RWTH Aachen, Pauwelsstr. 30, 52074 Aachen, Germany.
| | - Lothar Rink
- Institute of Immunology, Faculty of Medicine, University Hospital RWTH Aachen, Pauwelsstr. 30, 52074 Aachen, Germany.
| |
Collapse
|
25
|
Pilgrim MG, Lengyel I, Lanzirotti A, Newville M, Fearn S, Emri E, Knowles JC, Messinger JD, Read RW, Guidry C, Curcio CA. Subretinal Pigment Epithelial Deposition of Drusen Components Including Hydroxyapatite in a Primary Cell Culture Model. Invest Ophthalmol Vis Sci 2017; 58:708-719. [PMID: 28146236 PMCID: PMC5295770 DOI: 10.1167/iovs.16-21060] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Purpose Extracellular deposits containing hydroxyapatite, lipids, proteins, and trace metals that form between the basal lamina of the RPE and the inner collagenous layer of Bruch's membrane are hallmarks of early AMD. We examined whether cultured RPE cells could produce extracellular deposits containing all of these molecular components. Methods Retinal pigment epithelium cells isolated from freshly enucleated porcine eyes were cultured on Transwell membranes for up to 6 months. Deposit composition and structure were characterized using light, fluorescence, and electron microscopy; synchrotron x-ray diffraction and x-ray fluorescence; secondary ion mass spectroscopy; and immunohistochemistry. Results Apparently functional primary RPE cells, when cultured on 10-μm-thick inserts with 0.4-μm-diameter pores, can produce sub-RPE deposits that contain hydroxyapatite, lipids, proteins, and trace elements, without outer segment supplementation, by 12 weeks. Conclusions The data suggest that sub-RPE deposit formation is initiated, and probably regulated, by the RPE, as well as the loss of permeability of the Bruch's membrane and choriocapillaris complex associated with age and early AMD. This cell culture model of early AMD lesions provides a novel system for testing new therapeutic interventions against sub-RPE deposit formation, an event occurring well in advance of the onset of vision loss.
Collapse
Affiliation(s)
- Matthew G Pilgrim
- UCL Institute of Ophthalmology, University College London, London, United Kingdom 2Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, University College London, London, United Kingdom
| | - Imre Lengyel
- UCL Institute of Ophthalmology, University College London, London, United Kingdom 3Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, Northern Ireland, United Kingdom
| | - Antonio Lanzirotti
- Center for Advanced Radiation Sources, The University of Chicago, Chicago, Illinois, United States
| | - Matt Newville
- Center for Advanced Radiation Sources, The University of Chicago, Chicago, Illinois, United States
| | - Sarah Fearn
- Department of Materials, Imperial College London, London, United Kingdom
| | - Eszter Emri
- UCL Institute of Ophthalmology, University College London, London, United Kingdom 3Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, Northern Ireland, United Kingdom
| | - Jonathan C Knowles
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, University College London, London, United Kingdom
| | - Jeffrey D Messinger
- Department of Ophthalmology, University of Alabama School of Medicine, Birmingham, Alabama, United States
| | - Russell W Read
- Department of Ophthalmology, University of Alabama School of Medicine, Birmingham, Alabama, United States
| | - Clyde Guidry
- Department of Ophthalmology, University of Alabama School of Medicine, Birmingham, Alabama, United States
| | - Christine A Curcio
- Department of Ophthalmology, University of Alabama School of Medicine, Birmingham, Alabama, United States
| |
Collapse
|
26
|
García M, Álvarez L, Fernández Á, González-Iglesias H, Escribano J, Fernández-Vega B, Villota E, Fernández-Vega Cueto L, Fernández-Vega Á, Coca-Prados M. Metallothionein polymorphisms in a Northern Spanish population with neovascular and dry forms of age-related macular degeneration. Ophthalmic Genet 2017. [PMID: 28635422 DOI: 10.1080/13816810.2017.1288825] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND To elucidate the potential role of single nucleotide polymorphisms (SNPs) in the metallothionein (MT) genes in Northern Spanish patients with age-related macular degeneration (AMD). METHODS A total of 130 unrelated Northern Spanish natives diagnosed with AMD (46 dry, 35 neovascular, and 49 mixed) and 96 healthy controls, matched by age and ethnicity, were enrolled in a case-control study. DNA was isolated from peripheral blood and genotyped for 14 SNPs located at 5 MT genes (MT1A: rs11076161, rs 11640851, rs8052394, and rs7196890; MT1B: rs8052334, rs964372, and rs7191779; MT1M: rs2270836 and rs9936741; MT2A: rs28366003, rs1610216, rs10636, and rs1580833; MT3: rs45570941) using TaqMan probes. The association study was performed using the HaploView 4.0 software. RESULTS The allelic and genotypic frequencies analysis revealed that rs28366003 at MT2A gene is significantly associated with dry AMD. The frequency of genotype AG was significantly higher in dry AMD than in control cases (p = 2.65 × 10-4; AG vs. AA) conferring more than ninefold increased risk to dry AMD (OR = 9.39, 95% CI: 2.11-41.72), whereas the genotype AA confers disease protection (OR = 0.82, 95% CI: 0.71-0.95). No statistically significant differences were observed between AMD subjects and controls in the rest of the 14 SNPs analyzed. CONCLUSIONS The present study is the first to investigate the potential association of SNPs at MT genes with susceptibility to AMD. We found a significant association of SNP rs28366003 at MT2A gene with susceptibility to the dry form of AMD in a Northern Spanish population.
Collapse
Affiliation(s)
- Montserrat García
- a Fernández-Vega University Institute, Foundation of Ophthalmological Investigation, University of Oviedo , Oviedo , Spain.,b Department of Neurodegenerative Eye Disease , Fernández-Vega Ophthalmological Institute , Oviedo , Spain
| | - Lydia Álvarez
- a Fernández-Vega University Institute, Foundation of Ophthalmological Investigation, University of Oviedo , Oviedo , Spain
| | - Ángela Fernández
- a Fernández-Vega University Institute, Foundation of Ophthalmological Investigation, University of Oviedo , Oviedo , Spain
| | - Héctor González-Iglesias
- a Fernández-Vega University Institute, Foundation of Ophthalmological Investigation, University of Oviedo , Oviedo , Spain.,b Department of Neurodegenerative Eye Disease , Fernández-Vega Ophthalmological Institute , Oviedo , Spain
| | - Julio Escribano
- c Laboratory of Human Molecular Genetics, Faculty of Medicine/Institute of Investigation in Neurological Disabilities (IDINE) , University of Castilla-La Mancha , Albacete , Spain
| | - Beatriz Fernández-Vega
- a Fernández-Vega University Institute, Foundation of Ophthalmological Investigation, University of Oviedo , Oviedo , Spain.,b Department of Neurodegenerative Eye Disease , Fernández-Vega Ophthalmological Institute , Oviedo , Spain
| | - Eva Villota
- a Fernández-Vega University Institute, Foundation of Ophthalmological Investigation, University of Oviedo , Oviedo , Spain.,b Department of Neurodegenerative Eye Disease , Fernández-Vega Ophthalmological Institute , Oviedo , Spain
| | - Luis Fernández-Vega Cueto
- a Fernández-Vega University Institute, Foundation of Ophthalmological Investigation, University of Oviedo , Oviedo , Spain.,b Department of Neurodegenerative Eye Disease , Fernández-Vega Ophthalmological Institute , Oviedo , Spain
| | - Álvaro Fernández-Vega
- a Fernández-Vega University Institute, Foundation of Ophthalmological Investigation, University of Oviedo , Oviedo , Spain.,b Department of Neurodegenerative Eye Disease , Fernández-Vega Ophthalmological Institute , Oviedo , Spain
| | - Miguel Coca-Prados
- a Fernández-Vega University Institute, Foundation of Ophthalmological Investigation, University of Oviedo , Oviedo , Spain.,b Department of Neurodegenerative Eye Disease , Fernández-Vega Ophthalmological Institute , Oviedo , Spain.,d Department of Ophthalmology and Visual Science , Yale University School of Medicine , New Haven , Connecticut , USA
| |
Collapse
|
27
|
Abstract
PURPOSE To evaluate eyes with refractile drusen using clinical imaging and to identify candidate histologic correlates of refractile drusen. METHODS Refractile drusen were defined as drusenoid material containing small refractile spherules. Retrospective analysis of color, autofluorescence, and spectral domain optical coherence tomography images of eyes with refractile drusen was performed to characterize the morphology and topography of these lesions. Macular sections from donor eyes were processed with a von Kossa stain for calcium phosphate and viewed by light microscopy. Punches of retinal pigment epithelium-choroid from donors with geographic atrophy were prepared for transmission electron microscopy. RESULTS Fundus findings of 14 eyes of 10 patients with age-related macular degeneration (age, 82.9 ± 5.6 years) were evaluated. A generalized loss of autofluorescence signal over refractile drusen appeared to spread over a larger area than each druse, for drusen located centrally. By color fundus photography, refractile drusen showed corresponding depigmentation around drusen that were located in the center of the macula. Optical coherence tomography imaging of refractile drusen showed hyperreflective dots. In the histologic specimens, drusen contained many small spherules rich in calcium phosphate. Ultrastructural examination of the spherules showed complex assemblies consisting of concentric shells containing thin layers of calcium. CONCLUSION Refractile drusen appear to be a stage of drusen regression marked by loss of retinal pigment epithelium, thus contributing to the development of geographic atrophy. Calcium-containing spherules appear to account for the glistening appearance.
Collapse
|
28
|
Bennis A, Gorgels TGMF, ten Brink JB, van der Spek PJ, Bossers K, Heine VM, Bergen AA. Comparison of Mouse and Human Retinal Pigment Epithelium Gene Expression Profiles: Potential Implications for Age-Related Macular Degeneration. PLoS One 2015; 10:e0141597. [PMID: 26517551 PMCID: PMC4627757 DOI: 10.1371/journal.pone.0141597] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 10/09/2015] [Indexed: 11/26/2022] Open
Abstract
Background The human retinal pigment epithelium (RPE) plays an important role in the pathogenesis of age related macular degeneration (AMD). AMD is the leading cause of blindness worldwide. There is currently no effective treatment available. Preclinical studies in AMD mouse models are essential to develop new therapeutics. This requires further in-depth knowledge of the similarities and differences between mouse and human RPE. Methods We performed a microarray study to identify and functionally annotate RPE specific gene expression in mouse and human RPE. We used a meticulous method to determine C57BL/6J mouse RPE signature genes, correcting for possible RNA contamination from its adjacent layers: the choroid and the photoreceptors. We compared the signature genes, gene expression profiles and functional annotations of the mouse and human RPE. Results We defined sets of mouse (64), human (171) and mouse–human interspecies (22) RPE signature genes. Not unexpectedly, our gene expression analysis and comparative functional annotation suggested that, in general, the mouse and human RPE are very similar. For example, we found similarities for general features, like “organ development” and “disorders related to neurological tissue”. However, detailed analysis of the molecular pathways and networks associated with RPE functions, suggested also multiple species-specific differences, some of which may be relevant for the development of AMD. For example, CFHR1, most likely the main complement regulator in AMD pathogenesis was highly expressed in human RPE, but almost absent in mouse RPE. Furthermore, functions assigned to mouse and human RPE expression profiles indicate (patho-) biological differences related to AMD, such as oxidative stress, Bruch’s membrane, immune-regulation and outer blood retina barrier. Conclusion These differences may be important for the development of new therapeutic strategies and translational studies in age-related macular degeneration.
Collapse
Affiliation(s)
- Anna Bennis
- Department of Clinical Genetics, Academic Medical Centre, Amsterdam, The Netherlands
- The Netherlands Institute for Neuroscience (NIN-KNAW), Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - Theo G. M. F. Gorgels
- The Netherlands Institute for Neuroscience (NIN-KNAW), Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
- University Eye Clinic Maastricht, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Jacoline B. ten Brink
- Department of Clinical Genetics, Academic Medical Centre, Amsterdam, The Netherlands
| | - Peter J. van der Spek
- Department of Bioinformatics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Koen Bossers
- Laboratory for Neuroregeneration, the Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - Vivi M. Heine
- Department of Pediatrics / Child Neurology, Neuroscience Campus Amsterdam, VU University Medical Centre, Amsterdam, The Netherlands
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University, Amsterdam, The Netherlands
| | - Arthur A. Bergen
- Department of Clinical Genetics, Academic Medical Centre, Amsterdam, The Netherlands
- The Netherlands Institute for Neuroscience (NIN-KNAW), Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
- Department of Ophthalmology, Academic Medical Centre, Amsterdam, The Netherlands
- * E-mail:
| |
Collapse
|
29
|
Biesemeier A, Yoeruek E, Eibl O, Schraermeyer U. Iron accumulation in Bruch's membrane and melanosomes of donor eyes with age-related macular degeneration. Exp Eye Res 2015; 137:39-49. [DOI: 10.1016/j.exer.2015.05.019] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 05/11/2015] [Accepted: 05/26/2015] [Indexed: 02/07/2023]
|
30
|
Gelfand BD, Wright CB, Kim Y, Yasuma T, Yasuma R, Li S, Fowler BJ, Bastos-Carvalho A, Kerur N, Uittenbogaard A, Han YS, Lou D, Kleinman ME, McDonald WH, Núñez G, Georgel P, Dunaief JL, Ambati J. Iron Toxicity in the Retina Requires Alu RNA and the NLRP3 Inflammasome. Cell Rep 2015; 11:1686-93. [PMID: 26074074 DOI: 10.1016/j.celrep.2015.05.023] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 03/23/2015] [Accepted: 05/08/2015] [Indexed: 12/16/2022] Open
Abstract
Excess iron induces tissue damage and is implicated in age-related macular degeneration (AMD). Iron toxicity is widely attributed to hydroxyl radical formation through Fenton's reaction. We report that excess iron, but not other Fenton catalytic metals, induces activation of the NLRP3 inflammasome, a pathway also implicated in AMD. Additionally, iron-induced degeneration of the retinal pigmented epithelium (RPE) is suppressed in mice lacking inflammasome components caspase-1/11 or Nlrp3 or by inhibition of caspase-1. Iron overload increases abundance of RNAs transcribed from short interspersed nuclear elements (SINEs): Alu RNAs and the rodent equivalent B1 and B2 RNAs, which are inflammasome agonists. Targeting Alu or B2 RNA prevents iron-induced inflammasome activation and RPE degeneration. Iron-induced SINE RNA accumulation is due to suppression of DICER1 via sequestration of the co-factor poly(C)-binding protein 2 (PCBP2). These findings reveal an unexpected mechanism of iron toxicity, with implications for AMD and neurodegenerative diseases associated with excess iron.
Collapse
Affiliation(s)
- Bradley D Gelfand
- Department of Ophthalmology and Visual Sciences, University of Kentucky, Lexington, KY 40536, USA; Department of Biomedical Engineering, University of Kentucky, Lexington, KY 40536, USA; Department of Microbiology, Immunology, and Human Genetics, University of Kentucky, Lexington, KY 40536, USA.
| | - Charles B Wright
- Department of Ophthalmology and Visual Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Younghee Kim
- Department of Ophthalmology and Visual Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Tetsuhiro Yasuma
- Department of Ophthalmology and Visual Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Reo Yasuma
- Department of Ophthalmology and Visual Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Shengjian Li
- Department of Ophthalmology and Visual Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Benjamin J Fowler
- Department of Ophthalmology and Visual Sciences, University of Kentucky, Lexington, KY 40536, USA; Department of Physiology, University of Kentucky, Lexington, KY 40536, USA
| | - Ana Bastos-Carvalho
- Department of Ophthalmology and Visual Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Nagaraj Kerur
- Department of Ophthalmology and Visual Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Annette Uittenbogaard
- Department of Ophthalmology and Visual Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Youn Seon Han
- Department of Ophthalmology and Visual Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Dingyuan Lou
- Department of Ophthalmology and Visual Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Mark E Kleinman
- Department of Ophthalmology and Visual Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - W Hayes McDonald
- Proteomics Laboratory, Mass Spectrometry Research Center and Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37205, USA
| | - Gabriel Núñez
- Department of Pathology and Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Philippe Georgel
- INSERM UMR_S 1109, Fédération de Médecine Translationnelle (FMTS), Université de Strasbourg, Strasbourg 67085, France
| | - Joshua L Dunaief
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jayakrishna Ambati
- Department of Ophthalmology and Visual Sciences, University of Kentucky, Lexington, KY 40536, USA; Department of Physiology, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
31
|
Lengyel I, Csutak A, Florea D, Leung I, Bird AC, Jonasson F, Peto T. A Population-Based Ultra-Widefield Digital Image Grading Study for Age-Related Macular Degeneration-Like Lesions at the Peripheral Retina. Ophthalmology 2015; 122:1340-7. [PMID: 25870081 DOI: 10.1016/j.ophtha.2015.03.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Revised: 03/05/2015] [Accepted: 03/06/2015] [Indexed: 10/23/2022] Open
Abstract
PURPOSE Our understanding of the relevance of peripheral retinal abnormalities to disease in general and in age-related macular degeneration (AMD) in particular is limited by the lack of detailed peripheral imaging studies. The purpose of this study was to develop image grading protocols suited to ultra-widefield imaging (UWFI) in an aged population. DESIGN A cross-sectional study of a random population sample in which UWFI was introduced at the 12-year review of the Reykjavik Eye Study in Iceland. PARTICIPANTS Five hundred seventy-six subjects 62 years of age or older. METHODS Ultra-widefield (up to 200°) color and autofluorescence images were obtained using the Optos P200CAF laser scanning ophthalmoscope (Optos plc, Dunfermline, Scotland). The images were graded at Moorfields Eye Hospital Reading Centre primarily based on the International Classification for AMD. Macular and peripheral changes were graded using a standardized grid developed for this imaging method. MAIN OUTCOME MEASURES Presence or absence of hard, crystalline, and soft drusen; retinal pigment epithelial changes; choroidal neovascularization (CNV); atrophy; and hypoautofluorescence and hyperautofluorescence were graded in the peripheral retina. RESULTS Of the eyes examined, 81.1% had AMD-like changes in the macula alone (13.6%), periphery alone (10.1%), and both periphery and macula (57.4%). There was no AMD-like CNV or pigment epithelial detachment in the periphery except in those cases in which these clearly originated from the macula. Seven patients had AMD-like atrophy in the periphery without end-stage disease in the macula. One patient with end-stage disease in the macula had normal periphery results on the color images. While analyzing the eyes, we detected pathologic appearances that were very reliably identified by graders. CONCLUSIONS Phenotyping the retinal periphery using the categories defined by the International Classification confirmed the presence of wide-ranging AMD-like pathologic changes even in those without central sight-threatening macular disease. Based on our observations, we propose here new, reliably identifiable grading categories that may be more suited for population-based UWFI.
Collapse
Affiliation(s)
- Imre Lengyel
- UCL Institute of Ophthalmology, University College London, London, United Kingdom
| | - Adrienne Csutak
- NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, United Kingdom; Department of Ophthalmology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Daniela Florea
- UCL Institute of Ophthalmology, University College London, London, United Kingdom; NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, United Kingdom
| | - Irene Leung
- NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, United Kingdom
| | - Alan C Bird
- UCL Institute of Ophthalmology, University College London, London, United Kingdom
| | | | - Tunde Peto
- NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, United Kingdom.
| |
Collapse
|
32
|
Calcium, ARMS2 genotype, and Chlamydia pneumoniae infection in early age-related macular degeneration: a multivariate analysis from the Nagahama study. Sci Rep 2015; 5:9345. [PMID: 25792034 PMCID: PMC4366853 DOI: 10.1038/srep09345] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 02/27/2015] [Indexed: 12/18/2022] Open
Abstract
Although various risk factors have been identified for the development of age-related macular degeneration (AMD), risk factors of early AMD have been relatively under studied. We aimed to investigate AMD risk factors by evaluating multiple factors in association with large drusen, an important component of AMD, simultaneously. In a community-based cross-sectional survey in Japan, 971 large drusen cases and 3,209 controls were compared for 65 variables, including systemic, environmental, and genetic factors. The association and the effect size of each factor were evaluated with logistic regression analysis using a backward-elimination approach. Multivariate analyses identified a significant association in serum calcium level (odds ratio [OR] = 0.932, P = 1.05 × 10−3), ARMS2 A69S (rs10490924) genotype (OR = 1.046, P < 0.001), Chlamydia pneumoniae IgG (OR = 1.020, P = 0.0440), and age (OR = 1.013, P < 0.001) for large drusen. Hypocalcemia was observed in 7.2% of large drusen cases and in 5.5% of controls (P = 0.0490). C. pneumoniae infections was more frequent in large drusen cases (56.4%) than in conrols (51.7%, P = 0.00956). These results suggest that calcium, ARMS2 genotype, C. pneumonia infection, and age are significant factors in the development of the early stages of AMD.
Collapse
|
33
|
Identification of hydroxyapatite spherules provides new insight into subretinal pigment epithelial deposit formation in the aging eye. Proc Natl Acad Sci U S A 2015; 112:1565-70. [PMID: 25605911 DOI: 10.1073/pnas.1413347112] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Accumulation of protein- and lipid-containing deposits external to the retinal pigment epithelium (RPE) is common in the aging eye, and has long been viewed as the hallmark of age-related macular degeneration (AMD). The cause for the accumulation and retention of molecules in the sub-RPE space, however, remains an enigma. Here, we present fluorescence microscopy and X-ray diffraction evidence for the formation of small (0.5-20 μm in diameter), hollow, hydroxyapatite (HAP) spherules in Bruch's membrane in human eyes. These spherules are distinct in form, placement, and staining from the well-known calcification of the elastin layer of the aging Bruch's membrane. Secondary ion mass spectrometry (SIMS) imaging confirmed the presence of calcium phosphate in the spherules and identified cholesterol enrichment in their core. Using HAP-selective fluorescent dyes, we show that all types of sub-RPE deposits in the macula, as well as in the periphery, contain numerous HAP spherules. Immunohistochemical labeling for proteins characteristic of sub-RPE deposits, such as complement factor H, vitronectin, and amyloid beta, revealed that HAP spherules were coated with these proteins. HAP spherules were also found outside the sub-RPE deposits, ready to bind proteins at the RPE/choroid interface. Based on these results, we propose a novel mechanism for the growth, and possibly even the formation, of sub-RPE deposits, namely, that the deposit growth and formation begin with the deposition of insoluble HAP shells around naturally occurring, cholesterol-containing extracellular lipid droplets at the RPE/choroid interface; proteins and lipids then attach to these shells, initiating or supporting the growth of sub-RPE deposits.
Collapse
|