1
|
Xu J, Cotruvo JA. Iron-responsive riboswitches. Curr Opin Chem Biol 2022; 68:102135. [PMID: 35427920 PMCID: PMC9133107 DOI: 10.1016/j.cbpa.2022.102135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/27/2022] [Accepted: 03/02/2022] [Indexed: 11/23/2022]
Abstract
All cells must manage deficiency, sufficiency, and excess of essential metal ions. Although iron has been one of most important metals in biology for billions of years, the mechanisms by which bacteria cope with high intracellular iron concentrations are only recently coming into focus. Recent work has suggested that an RNA riboswitch (czcD or "NiCo"), originally thought to respond specifically to CoII and NiII excess, is more likely a selective regulator of FeII levels in important human gut bacteria and pathogens. We discuss the challenges and controversies encountered in the characterization of iron-responsive riboswitches, and we suggest a physiological role in responding to iron overload, perhaps during anaerobiosis. Finally, we place these riboswitches in the context of the better understood mechanisms of protein-based metal ion regulation, proposing that riboswitch-mediated mechanisms may be particularly important in regulating transport of the weakest-binding biological divalent metal ions, MgII, MnII, and FeII.
Collapse
Affiliation(s)
- Jiansong Xu
- Department of Chemistry and Center for RNA Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Joseph A Cotruvo
- Department of Chemistry and Center for RNA Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
2
|
Pulos-Holmes MC, Srole DN, Juarez MG, Lee ASY, McSwiggen DT, Ingolia NT, Cate JH. Repression of ferritin light chain translation by human eIF3. eLife 2019; 8:48193. [PMID: 31414986 PMCID: PMC6721798 DOI: 10.7554/elife.48193] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Accepted: 08/14/2019] [Indexed: 11/13/2022] Open
Abstract
A central problem in human biology remains the discovery of causal molecular links between mutations identified in genome-wide association studies (GWAS) and their corresponding disease traits. This challenge is magnified for variants residing in non-coding regions of the genome. Single-nucleotide polymorphisms (SNPs) in the 5ʹ untranslated region (5ʹ-UTR) of the ferritin light chain (FTL) gene that cause hyperferritinemia are reported to disrupt translation repression by altering iron regulatory protein (IRP) interactions with the FTL mRNA 5ʹ-UTR. Here, we show that human eukaryotic translation initiation factor 3 (eIF3) acts as a distinct repressor of FTL mRNA translation, and eIF3-mediated FTL repression is disrupted by a subset of SNPs in FTL that cause hyperferritinemia. These results identify a direct role for eIF3-mediated translational control in a specific human disease.
Collapse
Affiliation(s)
- Mia C Pulos-Holmes
- Department of Molecular & Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Daniel N Srole
- Department of Molecular & Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Maria G Juarez
- Department of Molecular & Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Amy S-Y Lee
- Biology Department, Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, United States
| | - David T McSwiggen
- Department of Molecular & Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Nicholas T Ingolia
- Department of Molecular & Cell Biology, University of California, Berkeley, Berkeley, United States.,California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, United States
| | - Jamie H Cate
- Department of Molecular & Cell Biology, University of California, Berkeley, Berkeley, United States.,California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, United States.,Department of Chemistry, University of California, Berkeley, Berkeley, United States.,Molecular Biophysics & Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, United States
| |
Collapse
|
3
|
Otsuka H, Fukao A, Funakami Y, Duncan KE, Fujiwara T. Emerging Evidence of Translational Control by AU-Rich Element-Binding Proteins. Front Genet 2019; 10:332. [PMID: 31118942 PMCID: PMC6507484 DOI: 10.3389/fgene.2019.00332] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 03/28/2019] [Indexed: 12/27/2022] Open
Abstract
RNA-binding proteins (RBPs) are key regulators of posttranscriptional gene expression and control many important biological processes including cell proliferation, development, and differentiation. RBPs bind specific motifs in their target mRNAs and regulate mRNA fate at many steps. The AU-rich element (ARE) is one of the major cis-regulatory elements in the 3′ untranslated region (UTR) of labile mRNAs. Many of these encode factors requiring very tight regulation, such as inflammatory cytokines and growth factors. Disruption in the control of these factors’ expression can cause autoimmune diseases, developmental disorders, or cancers. Therefore, these mRNAs are strictly regulated by various RBPs, particularly ARE-binding proteins (ARE-BPs). To regulate mRNA metabolism, ARE-BPs bind target mRNAs and affect some factors on mRNAs directly, or recruit effectors, such as mRNA decay machinery and protein kinases to target mRNAs. Importantly, some ARE-BPs have stabilizing roles, whereas others are destabilizing, and ARE-BPs appear to compete with each other when binding to target mRNAs. The function of specific ARE-BPs is modulated by posttranslational modifications (PTMs) including methylation and phosphorylation, thereby providing a means for cellular signaling pathways to regulate stability of specific target mRNAs. In this review, we summarize recent studies which have revealed detailed molecular mechanisms of ARE-BP-mediated regulation of gene expression and also report on the importance of ARE-BP function in specific physiological contexts and how this relates to disease. We also propose an mRNP regulatory network based on competition between stabilizing ARE-BPs and destabilizing ARE-BPs.
Collapse
Affiliation(s)
- Hiroshi Otsuka
- Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Japan
| | | | | | - Kent E Duncan
- University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | |
Collapse
|
4
|
Coba de la Peña T, Cárcamo CB, Díaz MI, Winkler FM, Morales-Lange B, Mercado L, Brokordt KB. Cloning and molecular characterization of two ferritins from red abalone Haliotis rufescens and their expressions in response to bacterial challenge at juvenile and adult life stages. FISH & SHELLFISH IMMUNOLOGY 2018; 82:279-285. [PMID: 30125708 DOI: 10.1016/j.fsi.2018.08.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 08/08/2018] [Accepted: 08/14/2018] [Indexed: 06/08/2023]
Abstract
Ferritins are ubiquitous proteins with a pivotal role in iron storage and homeostasis, and in host defense responses during infection by pathogens in several organisms, including mollusks. In this study, we characterized two ferritin homologues in the red abalone Haliotis rufescens, a species of economic importance for Chile, USA and Mexico. Two ferritin subunits (Hrfer1 and Hrfer2) were cloned. Hrfer1 cDNA is an 807 bp clone containing a 516 bp open reading frame (ORF) that corresponds to a novel ferritin subunit in H. rufescens. Hrfer2 cDNA is an 868 bp clone containing a 516 bp ORF that corresponds to a previously reported ferritin subunit, but in this study 5'- and 3'-UTR sequences were additionally found. We detected a putative Iron Responsive Element (IRE) in the 5'-UTR sequence, suggesting a posttranscriptional regulation of Hrfer2 translation by iron. The deduced protein sequences of both cDNAs possessed the motifs and domains required in functional ferritin subunits. Expression patterns of both ferritins in different tissues, during different developmental stages, and in response to bacterial (Vibrio splendidus) exposure were examined. Both Hrfer1 and Hrfer2 are most expressed in digestive gland and gonad. Hrfer1 mRNA levels increased about 34-fold along with larval developmental process, attaining the highest level in the creeping post-larvae. Exogenous feeding is initiated at the creeping larva stage; thus, the increase of Hrfer1 may suggest and immunity-related role upon exposure to bacteria. Highest Hrfer2 expression levels were detected at trochophore stage; which may be related with early shell formation. Upon challenge with, the bacteria an early mild induction of Hrfer2 (2 h post-challenge), followed by a stronger induction of Hrfer1 at 15 h post-challenge, was observed in haemocytes from adult abalones. While maximal upregulation of both genes in the whole individual occurred at 24 h post-challenge, in juveniles. A significant increase in ferritin protein levels from 6 h to 24 h post-challenge was also detected. Our results suggest an involvement of Hrfer1 and Hrfer2, and of ferritin proteins in the immune response of H. rufescens to bacterial infection.
Collapse
Affiliation(s)
- Teodoro Coba de la Peña
- Laboratorio de Fisiología y Genética Marina (FIGEMA), Centro de Estudios Avanzados en Zonas Áridas (CEAZA) and Universidad Católica del Norte, Larrondo, 1281, Coquimbo, Chile
| | - Claudia B Cárcamo
- Laboratorio de Fisiología y Genética Marina (FIGEMA), Centro de Estudios Avanzados en Zonas Áridas (CEAZA) and Universidad Católica del Norte, Larrondo, 1281, Coquimbo, Chile; Centro de Innovación Acuícola AquaPacífico, Facultad de Ciencias Del Mar, Universidad Católica del Norte, Larrondo, 1281, Coquimbo, Chile
| | - María I Díaz
- Laboratorio de Fisiología y Genética Marina (FIGEMA), Centro de Estudios Avanzados en Zonas Áridas (CEAZA) and Universidad Católica del Norte, Larrondo, 1281, Coquimbo, Chile; Programa de Magíster en Ciencias Del Mar Mención Recursos Costeros, Facultad de Ciencias Del Mar, Universidad Católica del Norte, Larrondo, 1281, Coquimbo, Chile
| | - Federico M Winkler
- Laboratorio de Fisiología y Genética Marina (FIGEMA), Centro de Estudios Avanzados en Zonas Áridas (CEAZA) and Universidad Católica del Norte, Larrondo, 1281, Coquimbo, Chile; Centro de Innovación Acuícola AquaPacífico, Facultad de Ciencias Del Mar, Universidad Católica del Norte, Larrondo, 1281, Coquimbo, Chile; Departamento de Biología Marina, Facultad de Ciencias Del Mar, Universidad Católica del Norte, Larrondo, 1281, Coquimbo, Chile
| | - Byron Morales-Lange
- Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, 2373223, Valparaíso, Chile
| | - Luis Mercado
- Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, 2373223, Valparaíso, Chile
| | - Katherina B Brokordt
- Laboratorio de Fisiología y Genética Marina (FIGEMA), Centro de Estudios Avanzados en Zonas Áridas (CEAZA) and Universidad Católica del Norte, Larrondo, 1281, Coquimbo, Chile; Centro de Innovación Acuícola AquaPacífico, Facultad de Ciencias Del Mar, Universidad Católica del Norte, Larrondo, 1281, Coquimbo, Chile.
| |
Collapse
|
5
|
Lightfoot HL, Hagen T, Cléry A, Allain FHT, Hall J. Control of the polyamine biosynthesis pathway by G 2-quadruplexes. eLife 2018; 7:e36362. [PMID: 30063205 PMCID: PMC6067879 DOI: 10.7554/elife.36362] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 06/13/2018] [Indexed: 12/16/2022] Open
Abstract
G-quadruplexes are naturally-occurring structures found in RNAs and DNAs. Regular RNA G-quadruplexes are highly stable due to stacked planar arrangements connected by short loops. However, reports of irregular quadruplex structures are increasing and recent genome-wide studies suggest that they influence gene expression. We have investigated a grouping of G2-motifs in the UTRs of eight genes involved in polyamine biosynthesis, and concluded that several likely form novel metastable RNA G-quadruplexes. We performed a comprehensive biophysical characterization of their properties, comparing them to a reference G-quadruplex. Using cellular assays, together with polyamine-depleting and quadruplex-stabilizing ligands, we discovered how some of these motifs regulate and sense polyamine levels, creating feedback loops during polyamine biosynthesis. Using high-resolution 1H-NMR spectroscopy, we demonstrated that a long-looped quadruplex in the AZIN1 mRNA co-exists in salt-dependent equilibria with a hairpin structure. This study expands the repertoire of regulatory G-quadruplexes and demonstrates how they act in unison to control metabolite homeostasis.
Collapse
Affiliation(s)
- Helen Louise Lightfoot
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical SciencesETH ZurichZurichSwitzerland
| | - Timo Hagen
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical SciencesETH ZurichZurichSwitzerland
| | - Antoine Cléry
- Department of Biology, Institute of Molecular Biology and BiophysicsETH ZurichZurichSwitzerland
- Biomolecular NMR spectroscopy platformETH ZurichZurichSwitzerland
| | | | - Jonathan Hall
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical SciencesETH ZurichZurichSwitzerland
| |
Collapse
|
6
|
Hagen WR, Hagedoorn PL, Honarmand Ebrahimi K. The workings of ferritin: a crossroad of opinions. Metallomics 2018; 9:595-605. [PMID: 28573266 DOI: 10.1039/c7mt00124j] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Biochemistry of the essential element iron is complicated by radical chemistry associated with Fe(ii) ions and by the extremely low solubility of the Fe(iii) ion in near-neutral water. To mitigate these problems cells from all domains of life synthesize the protein ferritin to take up and oxidize Fe(ii) and to form a soluble storage of Fe(iii) from which iron can be made available for physiology. A long history of studies on ferritin has not yet resulted in a generally accepted mechanism of action of this enzyme. In fact strong disagreement exists between extant ideas on several key steps in the workings of ferritin. The scope of this review is to explain the experimental background of these controversies and to indicate directions towards their possible resolution.
Collapse
Affiliation(s)
- Wilfred R Hagen
- Delft University of Technology, Department of Biotechnology, van der Maasweg 9, 2629 HZ Delft, The Netherlands.
| | | | | |
Collapse
|
7
|
Role of transferrin receptor in hepatitis C viral infection. INFECTION INTERNATIONAL 2018. [DOI: 10.2478/ii-2018-0016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Hepatitis C virus (HCV) is the main pathogen causing chronic hepatitis and primary liver cancer. Various viral proteins and host cell molecules are involved in the HCV cell entry, but the mechanism of infection has not been completely elucidated. The transferrin receptor can act as a receptor for many viruses during cell entry. The transferrin receptor is not only closely related to HCV-induced iron metabolism disorders but also mediates the fusion of HCV with the host cell membrane as a specific receptor for CD81-dependent viral adhesion.
Collapse
|
8
|
Pourcelot E, Lénon M, Charbonnier P, Louis F, Mossuz P, Moulis JM. The iron regulatory proteins are defective in repressing translation via exogenous 5' iron responsive elements despite their relative abundance in leukemic cellular models. Metallomics 2018; 10:639-649. [PMID: 29652073 DOI: 10.1039/c8mt00006a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
In animal cells the specific translational control of proteins contributing to iron homeostasis is mediated by the interaction between the Iron Regulatory Proteins (IRP1 and IRP2) and the Iron Responsive Elements (IRE) located in the untranslated regions (UTR) of regulated messengers, such as those encoding ferritin or the transferrin receptor. The absolute concentrations of the components of this regulatory system in hematopoietic cells and the ability of the endogenous IRP to regulate exogenous IRE have been measured. The IRP concentration is in the low μM (10-6 M) range, whereas the most abundant IRE-containing messenger RNA (mRNA), i.e. those of the ferritin subunits, do not exceed 100 nM (10-7 M). Most other IRP mRNA targets are around or below 1 nM. The distribution of the mRNA belonging to the cellular iron network is similar in human leukemic cell lines and in normal cord blood progenitors, with differences among the cellular models only associated with their different propensities to synthesize hemoglobin. Thus, the IRP regulator is in large excess over its presently identified regulated mRNA targets. Yet, despite this excess, endogenous IRP poorly represses translation of transfected luciferase cDNA engineered with a series of IRE sequences in the 5' UTR. The cellular concentrations of the central hubs of the mammalian translational iron network will have to be included in the description of the proliferative phenotype of leukemic cells and in assessing any therapeutic action targeting iron provision.
Collapse
Affiliation(s)
- Emmanuel Pourcelot
- Univ. Grenoble Alpes, Inserm U1055, Laboratory of Fundamental and Applied Bioenergetics (LBFA) and SFR BEeSy, 38000 Grenoble, France
| | | | | | | | | | | |
Collapse
|
9
|
Thermodynamic and Kinetic Analyses of Iron Response Element (IRE)-mRNA Binding to Iron Regulatory Protein, IRP1. Sci Rep 2017; 7:8532. [PMID: 28819260 PMCID: PMC5561112 DOI: 10.1038/s41598-017-09093-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 07/21/2017] [Indexed: 11/08/2022] Open
Abstract
Comparison of kinetic and thermodynamic properties of IRP1 (iron regulatory protein1) binding to FRT (ferritin) and ACO2 (aconitase2) IRE-RNAs, with or without Mn2+, revealed differences specific to each IRE-RNA. Conserved among animal mRNAs, IRE-RNA structures are noncoding and bind Fe2+ to regulate biosynthesis rates of the encoded, iron homeostatic proteins. IRP1 protein binds IRE-RNA, inhibiting mRNA activity; Fe2+ decreases IRE-mRNA/IRP1 binding, increasing encoded protein synthesis. Here, we observed heat, 5 °C to 30 °C, increased IRP1 binding to IRE-RNA 4-fold (FRT IRE-RNA) or 3-fold (ACO2 IRE-RNA), which was enthalpy driven and entropy favorable. Mn2+ (50 µM, 25 °C) increased IRE-RNA/IRP1 binding (Kd) 12-fold (FRT IRE-RNA) or 6-fold (ACO2 IRE-RNA); enthalpic contributions decreased ~61% (FRT) or ~32% (ACO2), and entropic contributions increased ~39% (FRT) or ~68% (ACO2). IRE-RNA/IRP1 binding changed activation energies: FRT IRE-RNA 47.0 ± 2.5 kJ/mol, ACO2 IRE-RNA 35.0 ± 2.0 kJ/mol. Mn2+ (50 µM) decreased the activation energy of RNA-IRP1 binding for both IRE-RNAs. The observations suggest decreased RNA hydrogen bonding and changed RNA conformation upon IRP1 binding and illustrate how small, conserved, sequence differences among IRE-mRNAs selectively influence thermodynamic and kinetic selectivity of the protein/RNA interactions.
Collapse
|
10
|
Sterling J, Guttha S, Song Y, Song D, Hadziahmetovic M, Dunaief JL. Iron importers Zip8 and Zip14 are expressed in retina and regulated by retinal iron levels. Exp Eye Res 2017; 155:15-23. [PMID: 28057442 PMCID: PMC5359041 DOI: 10.1016/j.exer.2016.12.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 12/30/2016] [Accepted: 12/31/2016] [Indexed: 01/25/2023]
Abstract
Intracellular retinal iron accumulation has been implicated in the pathogenesis of age-related macular degeneration (AMD), the leading cause of irreversible blindness among individuals over the age of 50. Ceruloplasmin/hephaestin double knockout mice (Cp/Heph DKO) and hepcidin knockout mice (Hepc KO) accumulate retinal iron and model some features of AMD. Two canonical pathways govern cellular iron import - transferrin-bound iron import and non-transferrin bound iron import. In Cp/Heph DKO and Hepc KO iron-loaded retinas, transferrin-bound iron import is downregulated. Despite this effort to reduce cellular iron burden, iron continues to accumulate in these retinas in an age-dependent manner. Quantitative RT-PCR and Western analysis were used to quantify the expression of three ferrous iron importers, Dmt1, Zip8, and Zip14, in wild-type (Wt), Cp/Heph DKO, and Hepc KO retinas. Zip8 and Zip14 protein levels were analyzed using Western analysis in mice injected intravitreally with either apo- or holo-transferrin to elucidate one possible mechanism of Zip14 regulation in the retina. Both zip8 and zip14 were expressed in the mouse retina. Paradoxically, protein levels of non-transferrin bound iron importers were upregulated in both Cp/Heph DKO and Hepc KO retinas. Intravitreal holo-transferrin injection decreased Zip 14 protein levels. These data indicate that Zip8 and Zip14 may take up increasing amounts of non-transferrin bound iron in these two mouse models of retinal iron accumulation. Their upregulation in these already iron-loaded retinas suggests a vicious cycle leading to toxicity.
Collapse
Affiliation(s)
- Jacob Sterling
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, 305 Stellar-Chance Laboratory, 422 Curie Blvd, Philadelphia, PA 19104, USA.
| | - Samyuktha Guttha
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, 305 Stellar-Chance Laboratory, 422 Curie Blvd, Philadelphia, PA 19104, USA.
| | - Ying Song
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, 305 Stellar-Chance Laboratory, 422 Curie Blvd, Philadelphia, PA 19104, USA.
| | - Delu Song
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, 305 Stellar-Chance Laboratory, 422 Curie Blvd, Philadelphia, PA 19104, USA.
| | - Majda Hadziahmetovic
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, 305 Stellar-Chance Laboratory, 422 Curie Blvd, Philadelphia, PA 19104, USA.
| | - Joshua L Dunaief
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, 305 Stellar-Chance Laboratory, 422 Curie Blvd, Philadelphia, PA 19104, USA.
| |
Collapse
|
11
|
Saunders AM, DeRose VJ. Beyond Mg 2+: functional interactions between RNA and transition metals. Curr Opin Chem Biol 2016; 34:152-158. [PMID: 27616014 DOI: 10.1016/j.cbpa.2016.07.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
It is well-known that RNA structure and function depend heavily on cations, and the ability of Mg2+ to stabilize RNA structures has been emphasized. Recent studies, however, highlight the importance of transition metals in RNA function. Riboswitches that selectively bind Ni2+, Co2+, and Mn2+ have been discovered with specific RNA-metal sites that influence metal-related gene expression. Exogenous metals such as Pt(II) from therapeutics also bind and may inhibit cellular RNA function. Novel reports that RNA can host Fe(II) in catalytic sites are relevant to early life in pre-oxygenic atmospheres. These new observations emphasize the importance of transition metals in the field of RNA metallobiochemistry.
Collapse
Affiliation(s)
- Adam M Saunders
- Department of Chemistry and Biochemistry, Institute of Molecular Biology, University of Oregon Eugene, OR 97403, United States
| | - Victoria J DeRose
- Department of Chemistry and Biochemistry, Institute of Molecular Biology, University of Oregon Eugene, OR 97403, United States.
| |
Collapse
|
12
|
Coba de la Peña T, Cárcamo CB, Díaz MI, Brokordt KB, Winkler FM. Molecular characterization of two ferritins of the scallop Argopecten purpuratus and gene expressions in association with early development, immune response and growth rate. Comp Biochem Physiol B Biochem Mol Biol 2016; 198:46-56. [DOI: 10.1016/j.cbpb.2016.03.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Revised: 03/21/2016] [Accepted: 03/28/2016] [Indexed: 12/16/2022]
|
13
|
Saunders AM, DeRose VJ. Beyond Mg(2+): functional interactions between RNA and transition metals. Curr Opin Chem Biol 2016; 31:153-9. [PMID: 27031926 DOI: 10.1016/j.cbpa.2016.02.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 02/25/2016] [Indexed: 12/19/2022]
Abstract
It is well-known that RNA structure and function depend heavily on cations, and the ability of Mg(2+) to stabilize RNA structures has been emphasized. Recent studies, however, highlight the importance of transition metals in RNA function. Riboswitches that selectively bind Ni(2+), Co(2+), and Mn(2+) have been discovered with specific RNA-metal sites that influence metal-related gene expression. Exogenous metals such as Pt(II) from therapeutics also bind and may inhibit cellular RNA. Novel reports that RNA can host Fe(II) in catalytic sites are relevant to early life in pre-oxygenic atmospheres. These new observations emphasize the importance of transition metals in the field of RNA metallobiochemistry.
Collapse
Affiliation(s)
- Adam M Saunders
- Department of Chemistry and Biochemistry, Institute of Molecular Biology, University of Oregon Eugene, OR 97403, United States
| | - Victoria J DeRose
- Department of Chemistry and Biochemistry, Institute of Molecular Biology, University of Oregon Eugene, OR 97403, United States.
| |
Collapse
|
14
|
Lu H, Li S, Chen J, Xia J, Zhang J, Huang Y, Liu X, Wu HC, Zhao Y, Chai Z, Hu Y. Metal ions modulate the conformation and stability of a G-quadruplex with or without a small-molecule ligand. Metallomics 2015; 7:1508-14. [DOI: 10.1039/c5mt00188a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|