1
|
Pel AV, Van Nest BN, Hathaway SR, Fahrbach SE. Impact of odorants on perception of sweetness by honey bees. PLoS One 2023; 18:e0290129. [PMID: 38150461 PMCID: PMC10752549 DOI: 10.1371/journal.pone.0290129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/28/2023] [Indexed: 12/29/2023] Open
Abstract
Organic volatiles produced by fruits can result in overestimation of sweetness by humans, but it is unknown if a comparable phenomenon occurs in other species. Honey bees collect nectar of varying sweetness at different flowering plants. Bees discriminate sugar concentration and generally prefer higher concentrations; they encounter floral volatiles as they collect nectar, suggesting that they, like humans, could be susceptible to sweetness enhancement by odorant. In this study, limonene, linalool, geraniol, and 6-methyl-5-hepten-2-ol were tested for their ability to alter behaviors related to perception of sweetness by honey bees. Honey bees were tested in the laboratory using proboscis extension response-based assays and in the field using feeder-based assays. In the laboratory assays, 6-methyl-5-hepten-2-ol and geraniol, but neither linalool nor limonene, significantly increased responses to low concentrations of sucrose compared with no odorant conditions in 15-day and 25-day-old adult worker honey bees, but not in 35-day-old bees. Limonene reduced responding in 15-day-old bees, but not in the older bees. There was no odorant-based difference in performance in field assays comparing geraniol and limonene with a no odorant control. The interaction of the tested plant volatiles with sucrose concentration revealed in laboratory testing is therefore unlikely to be a major determinant of nectar choice by honey bees foraging under natural conditions. Because geraniol is a component of honey bee Nasonov gland pheromone as well as a floral volatile, its impact on responses in the laboratory may reflect conveyance of different information than the other odorants tested.
Collapse
Affiliation(s)
| | - Byron N. Van Nest
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Stephanie R. Hathaway
- Department of Entomology, Purdue University, West Lafayette, Indiana, United States of America
| | - Susan E. Fahrbach
- Department of Biology, Wake Forest University, Winston-Salem, North Carolina, United States of America
| |
Collapse
|
2
|
Shah S, Ilyas M, Li R, Yang J, Yang FL. Microplastics and Nanoplastics Effects on Plant-Pollinator Interaction and Pollination Biology. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:6415-6424. [PMID: 37068375 DOI: 10.1021/acs.est.2c07733] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Microplastics and nanoplastics (MNPs) contamination is an emerging environmental and public health concern, and these particles have been reported both in aquatic and terrestrial ecosystems. Recent studies have expanded our understanding of the adverse effects of MNPs pollution on human, terrestrial, and aquatic animals, insects, and plants. In this perspective, we describe the adverse effects of MNPs particles on pollinator and plant health and discuss the mechanisms by which MNPs disrupt the pollination process. We discuss the evidence and integrate transcriptome studies to investigate the negative effects of MNPs on the molecular biology of pollination, which may cause delay or inhibit the pollination services. We conclude by addressing challenges to plant-pollinator health from MNPs pollution and argue that such harmful effects disrupt the communication between plant and pollinator for a successful pollination process.
Collapse
Affiliation(s)
- Sakhawat Shah
- Hubei Key Laboratory of Insect Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, 430070 Wuhan, Hubei, People's Republic of China
| | - Muhammad Ilyas
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, 666316 Menglun, China
- Chinese Academy of Sciences, 100045 Beijing, China
| | - Rui Li
- Hubei Key Laboratory of Insect Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, 430070 Wuhan, Hubei, People's Republic of China
| | - Jie Yang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, 666316 Menglun, China
| | - Feng-Lian Yang
- Hubei Key Laboratory of Insect Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, 430070 Wuhan, Hubei, People's Republic of China
| |
Collapse
|
3
|
Song SY, Ahn MS, Mekapogu M, Jung JA, Song HY, Lim SH, Jin JS, Kwon OK. Analysis of Floral Scent and Volatile Profiles of Different Aster Species by E-nose and HS-SPME-GC-MS. Metabolites 2023; 13:metabo13040503. [PMID: 37110161 PMCID: PMC10141722 DOI: 10.3390/metabo13040503] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
Plants from the Aster species are known to be a rich source of bioactive chemical compositions and are popularly known for their medicinal properties. To investigate the relationship between the nine species of Aster, the floral fragrance and volatile profile patterns were characterized using E-nose and HS-SPME-GC-MS. Initial optimization for fragrance analysis was performed with Aster yomena using E-nose by evaluating the scent patterns in different flowering stages. Aster yomena exhibited varied scent patterns in each flowering stage, with the highest relative aroma intensity (RAI) in the full flowering stage. PCA analysis to compare and analyze the scent characteristics of nine Aster species, showed a species-specific classification. HS-SPME-GC-MS analysis of flowers from nine Aster species revealed 52 volatile compounds including β-myrcene, α-phellandrene, D-limonene, trans-β-ocimene, caryophyllene, and β-cadinene. The terpenoid compounds accounted for the largest proportion. Among the nine Aster species flowers, Aster koraiensis had sesquiterpenes as the major component, and the remaining eight varieties had monoterpenes in abundance. These results could distinguish the species according to the scent patterns and volatile components of the nine Aster species. Additionally, flower extracts from the Aster species’ plants exhibited radical scavenging antioxidant activity. Among them, it was confirmed that Aster pseudoglehnii, Aster maackii, and Aster arenarius had high antioxidant activity. In conclusion, the results of this study provide fundamental data of the volatile compound properties and antioxidant activity of Aster species, offering basic information of valuable natural sources that can be utilized in the pharmaceutical, perfume, and cosmetic industries.
Collapse
|
4
|
Eisen KE, Powers JM, Raguso RA, Campbell DR. An analytical pipeline to support robust research on the ecology, evolution, and function of floral volatiles. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.1006416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Research on floral volatiles has grown substantially in the last 20 years, which has generated insights into their diversity and prevalence. These studies have paved the way for new research that explores the evolutionary origins and ecological consequences of different types of variation in floral scent, including community-level, functional, and environmentally induced variation. However, to address these types of questions, novel approaches are needed that can handle large sample sizes, provide quality control measures, and make volatile research more transparent and accessible, particularly for scientists without prior experience in this field. Drawing upon a literature review and our own experiences, we present a set of best practices for next-generation research in floral scent. We outline methods for data collection (experimental designs, methods for conducting field collections, analytical chemistry, compound identification) and data analysis (statistical analysis, database integration) that will facilitate the generation and interpretation of quality data. For the intermediate step of data processing, we created the R package bouquet, which provides a data analysis pipeline. The package contains functions that enable users to convert chromatographic peak integrations to a filtered data table that can be used in subsequent statistical analyses. This package includes default settings for filtering out non-floral compounds, including background contamination, based on our best-practice guidelines, but functions and workflows can be easily customized as necessary. Next-generation research into the ecology and evolution of floral scent has the potential to generate broadly relevant insights into how complex traits evolve, their genomic architecture, and their consequences for ecological interactions. In order to fulfill this potential, the methodology of floral scent studies needs to become more transparent and reproducible. By outlining best practices throughout the lifecycle of a project, from experimental design to statistical analysis, and providing an R package that standardizes the data processing pipeline, we provide a resource for new and seasoned researchers in this field and in adjacent fields, where high-throughput and multi-dimensional datasets are common.
Collapse
|
5
|
Erickson E, Junker RR, Ali JG, McCartney N, Patch HM, Grozinger CM. Complex floral traits shape pollinator attraction to ornamental plants. ANNALS OF BOTANY 2022; 130:561-577. [PMID: 35732011 PMCID: PMC9510942 DOI: 10.1093/aob/mcac082] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND AND AIMS Ornamental flowering plant species are often used in managed greenspaces to attract and support pollinator populations. In natural systems, selection by pollinators is hypothesized to result in convergent multimodal floral phenotypes that are more attractive to specific pollinator taxa. In contrast, ornamental cultivars are bred via artificial selection by humans, and exhibit diverse and distinct phenotypes. Despite their prevalence in managed habitats, the influence of cultivar phenotypic variation on plant attractiveness to pollinator taxa is not well resolved. METHODS We used a combination of field and behavioural assays to evaluate how variation in floral visual, chemical and nutritional traits impacted overall attractiveness and visitation by pollinator taxonomic groups and bee species to 25 cultivars of five herbaceous perennial ornamental plant genera. KEY RESULTS Despite significant phenotypic variation, cultivars tended to attract a broad range of pollinator species. Nonetheless, at the level of insect order (bee, fly, butterfly, beetle), attraction was generally modulated by traits consistent with the pollination syndrome hypothesis. At the level of bee species, the relative influence of traits on visitation varied across plant genera, with some floral phenotypes leading to a broadening of the visitor community, and others leading to exclusion of visitation by certain bee species. CONCLUSIONS Our results demonstrate how pollinator choice is mediated by complex multimodal floral signals. Importantly, the traits that had the greatest and most consistent effect on regulating pollinator attraction were those that are commonly selected for in cultivar development. Though variation among cultivars in floral traits may limit the pollinator community by excluding certain species, it may also encourage interactions with generalist taxa to support pollinator diversity in managed landscapes.
Collapse
Affiliation(s)
| | - R R Junker
- Evolutionary Ecology of Plants, Department of Biology, University of Marburg, 35043 Marburg, Germany
- Department of Environment and Biodiversity, University of Salzburg, Salzburg, Austria
| | - J G Ali
- Department of Entomology, Center for Pollinator Research, Huck Institutes of the Life Sciences, Pennsylvania State University, ASI Building University Park, PA, USA
| | - N McCartney
- Department of Entomology, Center for Pollinator Research, Huck Institutes of the Life Sciences, Pennsylvania State University, ASI Building University Park, PA, USA
| | - H M Patch
- Department of Entomology, Center for Pollinator Research, Huck Institutes of the Life Sciences, Pennsylvania State University, ASI Building University Park, PA, USA
| | - C M Grozinger
- Department of Entomology, Center for Pollinator Research, Huck Institutes of the Life Sciences, Pennsylvania State University, ASI Building University Park, PA, USA
| |
Collapse
|
6
|
Campbell DR, Bischoff M, Raguso RA, Briggs HM, Sosenski P. Selection of Floral Traits by Pollinators and Seed Predators during Sequential Life History Stages. Am Nat 2022; 199:808-823. [DOI: 10.1086/716740] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Diane R. Campbell
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California 92617
- Rocky Mountain Biological Laboratory, Crested Butte, Colorado 81224
| | - Mascha Bischoff
- Rocky Mountain Biological Laboratory, Crested Butte, Colorado 81224
- Environmental Research Institute, North Highland College, Castle Street, Thurso KW14 7JD, United Kingdom
| | - Robert A. Raguso
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York 14853
| | - Heather M. Briggs
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California 92617
- Rocky Mountain Biological Laboratory, Crested Butte, Colorado 81224
| | - Paula Sosenski
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California 92617
- Rocky Mountain Biological Laboratory, Crested Butte, Colorado 81224
- Consejo Nacional de Ciencia y Tecnología (CONACYT)–Departamento de Ecología Tropical, Universidad Autónoma de Yucatán, Mérida, Yucatán, Mexico
| |
Collapse
|
7
|
Höfer RJ, Ayasse M, Kuppler J. Water Deficit, Nitrogen Availability, and Their Combination Differently Affect Floral Scent Emission in Three Brassicaceae Species. J Chem Ecol 2022; 48:882-899. [PMID: 36525146 PMCID: PMC9840598 DOI: 10.1007/s10886-022-01393-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/10/2022] [Accepted: 11/13/2022] [Indexed: 12/23/2022]
Abstract
Floral scent plays a central role in plant-pollinator interactions, as flower visitors can discriminate between scent differences to recognize and forage on rewarding flowers. Changes in scent compositions might therefore lead to recognition mismatches between host plants and flower visitors. An understanding of the phenotypic plasticity of floral scent, especially in crop species, is becoming important because of climate change, e.g., increasing drought periods, and other anthropogenic influences, e.g., nitrogen (N) deposition. We have investigated the effects of the combination of progressive water deficits (dry-down) and N supplementation on floral scent emission in three Brassicaceae species (cultivated vs. wild). Individuals were randomly assigned to one of four treatments: (1) well-watered without N supplementation; (2) well-watered with N supplementation; (3) dry-down without N supplementation; (4) dry-down with N supplementation. We collected scent on day 0, 2, 7, and 14 after the commencement of the watering treatment. All samples were analyzed using gas chromatography coupled with mass spectrometry. We found that the highly cultivated Brassica napus had the lowest overall emission rate; its scent composition was affected by the interaction of watering treatment and N supplementation. Scent bouquets of the cultivated Sinapis alba also changed under these treatments. Scent bouquets of the common weed Sinapis arvensis were affected by watering treatment, but not by time and N supplementation. Furthermore, the influence of treatments on the emission rate of single compounds was highly compound-specific. Nonetheless, our study revealed that especially terpenes were negatively affected by drought-stress.
Collapse
Affiliation(s)
- Rebecca J. Höfer
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, Ulm, Germany
| | - Manfred Ayasse
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, Ulm, Germany
| | - Jonas Kuppler
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, Ulm, Germany
| |
Collapse
|
8
|
Abstract
Natural products are the most effective source of potential drug leads. The total
synthesis of bioactive natural products plays a crucial role in confirming the hypothetical
complex structure of natural products in the laboratory. The total synthesis of rare bioactive
natural products is one of the great challenges for the organic synthetic community due to
their complex structures, biochemical specificity, and difficult stereochemistry. Subsequently,
the total synthesis is a long process in several cases, and it requires a substantial amount of
time. Microwave irradiation has emerged as a greener tool in organic methodologies to reduce
reaction time from days and hours to minutes and seconds. Moreover, this non-classical
methodology increases product yields and purities, improves reproducibility, modifications of
selectivity, simplification of work-up methods, and reduces unwanted side reactions. Such
beneficial qualities have stimulated this review to cover the application of microwave irradiation in the field of the
total synthesis of bioactive natural products for the first time during the last decade. An overview of the use of microwave
irradiation, natural sources, structures, and biological activities of secondary metabolites is presented elegantly,
focusing on the involvement of at least one or more steps by microwave irradiation as a green technique.
Collapse
Affiliation(s)
- Sasadhar Majhi
- Department of Chemistry (UG & PG Department), Triveni Devi Bhalotia College, Raniganj, Kazi Nazrul University, West Bengal- 713347, India
| |
Collapse
|
9
|
Byers KJRP. "As if they discovered it by the scent": improving our understanding of the chemical ecology, evolution, and genetics of floral scent and its role in pollination. AMERICAN JOURNAL OF BOTANY 2021; 108:729-731. [PMID: 34008177 DOI: 10.1002/ajb2.1661] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 03/17/2021] [Indexed: 06/12/2023]
Affiliation(s)
- Kelsey J R P Byers
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, UK
| |
Collapse
|
10
|
Ojeda F, Carrera C, Paniw M, García-Moreno L, Barbero GF, Palma M. Volatile and Semi-Volatile Organic Compounds May Help Reduce Pollinator-Prey Overlap in the Carnivorous Plant Drosophyllum lusitanicum (Drosophyllaceae). J Chem Ecol 2021; 47:73-86. [PMID: 33417071 DOI: 10.1007/s10886-020-01235-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/02/2020] [Accepted: 11/18/2020] [Indexed: 10/22/2022]
Abstract
Most carnivorous plants show a conspicuous separation between flowers and leaf-traps, which has been interpreted as an adaptive response to minimize pollinator-prey conflicts which will reduce fitness. Here, we used the carnivorous subshrub Drosophyllum lusitanicum (Drosophyllaceae) to explore if and how carnivorous plants with minimal physical separation of flower and trap avoid or reduce a likely conflict of pollinator and prey. We carried out an extensive field survey in the Aljibe Mountains, at the European side of the Strait of Gibraltar, of pollinating and prey insects of D. lusitanicum. We also performed a detailed analysis of flower and leaf volatile and semi-volatile organic compounds (VOCs and SVOCs, respectively) by direct thermal desorption-gas chromatography/mass spectrometry (TD-GC/MS) to ascertain whether this species shows different VOC/SVOC profiles in flowers and leaf-traps that might attract pollinators and prey, respectively. Our results show a low overlap between pollinator and prey groups as well as clear differences in the relative abundance of VOCs and SVOCs between flowers and leaf-traps. Coleopterans and hymenopterans were the most represented groups of floral visitors, whereas dipterans were the most diverse group of prey insects. Regarding VOCs and SVOCs, while aldehydes and carboxylic acids presented higher relative contents in leaf-traps, alkanes and plumbagin were the main VOC/SVOC compounds detected in flowers. We conclude that D. lusitanicum, despite its minimal flower-trap separation, does not seem to present a marked pollinator-prey conflict. Differences in the VOCs and SVOCs produced by flowers and leaf-traps may help explain the conspicuous differences between pollinator and prey guilds.
Collapse
Affiliation(s)
- Fernando Ojeda
- Departamento de Biología-IVAGRO, Universidad de Cádiz, Campus Río San Pedro, 11510, Puerto Real, Spain.
| | - Ceferino Carrera
- Departamento de Química Analítica-IVAGRO, Universidad de Cádiz, Campus Río San Pedro, 11510, Puerto Real, Spain
| | - Maria Paniw
- Ecological and Forestry Applications Research Centre (CREAF), Campus de Bellaterra (UAB) Edifici C, ES-08193, Cerdanyola del Vallès, Spain
| | - Luis García-Moreno
- Departamento de Química Analítica-IVAGRO, Universidad de Cádiz, Campus Río San Pedro, 11510, Puerto Real, Spain
| | - Gerardo F Barbero
- Departamento de Química Analítica-IVAGRO, Universidad de Cádiz, Campus Río San Pedro, 11510, Puerto Real, Spain
| | - Miguel Palma
- Departamento de Química Analítica-IVAGRO, Universidad de Cádiz, Campus Río San Pedro, 11510, Puerto Real, Spain
| |
Collapse
|
11
|
Abstract
Pollination is the transfer of pollen grains from the stamens to the stigma, an essential requirement of sexual reproduction in flowering plants. Cross-pollination increases genetic diversity and is favored by selection in the majority of situations. Flowering plants have evolved a wide variety of traits that influence pollination success, including those involved in optimization of self-pollination, attraction of animal pollinators, and the effective use of wind pollination. In this review we discuss our current understanding of the molecular basis of the development and production of these various traits. We conclude that recent integration of molecular developmental studies with population genetic approaches is improving our understanding of how selection acts on key floral traits in taxonomically diverse species, and that further work in nonmodel systems promises to provide exciting insights in the years to come.
Collapse
Affiliation(s)
- Róisín Fattorini
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom;
| | - Beverley J Glover
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom;
| |
Collapse
|
12
|
Campbell DR, Sosenski P, Raguso RA. Phenotypic plasticity of floral volatiles in response to increasing drought stress. ANNALS OF BOTANY 2019; 123:601-610. [PMID: 30364929 PMCID: PMC6417471 DOI: 10.1093/aob/mcy193] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 10/04/2018] [Indexed: 05/20/2023]
Abstract
BACKGROUND AND AIMS Flowers emit a wide range of volatile compounds which can be critically important to interactions with pollinators or herbivores. Yet most studies of how the environment influences plant volatiles focus on leaf emissions, with little known about abiotic sources of variation in floral volatiles. Understanding phenotypic plasticity in floral volatile emissions has become increasingly important with globally increasing temperatures and changes in drought frequency and severity. Here quantitative relationships of floral volatile emissions to soil water content were analysed. METHODS Plants of the sub-alpine herb Ipomopsis aggregata and hybrids with its closest congener were subjected to a progressive dry down, mimicking the range of soil moistures experienced in the field. Floral volatiles and leaf gas exchange were measured at four time points during the drought. KEY RESULTS As the soil dried, floral volatile emissions increased overall and changed in composition, from more 1,3-octadiene and benzyl alcohol to higher representation of some terpenes. Emissions of individual compounds were not linearly related to volumetric water content in the soil. The dominant compound, the monoterpene α-pinene, made up the highest percentage of the scent mixture when soil moisture was intermediate. In contrast, emission of the sesquiterpene (E,E)-α-farnesene accelerated as the drought became more intense. Changes in floral volatiles did not track the time course of changes in photosynthetic rate or stomatal conductance. CONCLUSIONS This study shows responses of specific floral volatile organic compounds to soil moisture. The non-linear responses furthermore suggest that extreme droughts may have impacts that are not predictable from milder droughts. Floral volatiles are likely to change seasonally with early summer droughts in the Rocky Mountains, as well as over years as snowmelt becomes progressively earlier. Changes in water availability may have impacts on plant-animal interactions that are mediated through non-linear changes in floral volatiles.
Collapse
Affiliation(s)
- Diane R Campbell
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, USA
- Rocky Mountain Biological Laboratory, Crested Butte, CO, USA
- For correspondence. E-mail
| | - Paula Sosenski
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, USA
- Rocky Mountain Biological Laboratory, Crested Butte, CO, USA
- CONACYT – Departamento de Ecología Tropical, Campus de Ciencias Biológicas y Agropecuarias, Universidad Autónoma de Yucatán, Mérida, Yucatán, México
| | - Robert A Raguso
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, USA
| |
Collapse
|
13
|
Li G, Lou HX. Strategies to diversify natural products for drug discovery. Med Res Rev 2017; 38:1255-1294. [PMID: 29064108 DOI: 10.1002/med.21474] [Citation(s) in RCA: 172] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 09/18/2017] [Accepted: 09/28/2017] [Indexed: 12/11/2022]
Abstract
Natural product libraries contain specialized metabolites derived from plants, animals, and microorganisms that play a pivotal role in drug discovery due to their immense structural diversity and wide variety of biological activities. The strategies to greatly extend natural product scaffolds through available biological and chemical approaches offer unique opportunities to access a new series of natural product analogues, enabling the construction of diverse natural product-like libraries. The affordability of these structurally diverse molecules has been a crucial step in accelerating drug discovery. This review provides an overview of various approaches to exploit the diversity of compounds for natural product-based drug development, drawing upon a series of examples to illustrate each strategy.
Collapse
Affiliation(s)
- Gang Li
- Department of Natural Medicine and Pharmacognosy, School of Pharmacy, Qingdao University, Qingdao, China
| | - Hong-Xiang Lou
- Department of Natural Medicine and Pharmacognosy, School of Pharmacy, Qingdao University, Qingdao, China.,Department of Natural Products Chemistry, Key Lab of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| |
Collapse
|
14
|
Nunes CEP, Wolowski M, Pansarin ER, Gerlach G, Aximoff I, Vereecken NJ, Salvador MJ, Sazima M. More than euglossines: the diverse pollinators and floral scents of Zygopetalinae orchids. Naturwissenschaften 2017; 104:92. [PMID: 29028068 DOI: 10.1007/s00114-017-1511-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 09/25/2017] [Accepted: 09/30/2017] [Indexed: 12/27/2022]
Abstract
Floral volatile organic compounds (VOCs) play important roles in plant-pollinator interactions. We investigated the reproductive ecology and floral VOCs of Zygopetalinae orchids to understand the relationship between floral scents and pollinators. We performed focal observations, phenological censuses and breeding system experiments in eight species in southeast Brazil. Floral scents were collected and analysed using SPME/GC-MS. We performed multivariate analyses to group species according to affinities of their VOCs and define compounds associated to each plant. Dichaea cogniauxiana was pollinated by weevils which use their developing ovules, while D. pendula was pollinated by the same weevils and perfume-collecting male euglossine bees. The other species were deceit-pollinated by bees. Zygopetalum crinitum was pollinated by carpenter bees, while W. warreana, Z. mackayi and Z. maxillare were bumblebee-pollinated. The latter was also pollinated by Centris confusa. Breeding system varied widely with no association to any pollinator group. Most VOCs are common to other floral scents. Zygopetalum crinitum presented an exclusive blend of VOCs, mainly composed of benzenoids. The scents of Pabstia jugosa, Promenaea xanthina and the Zygopetalum spp. were similar. The bumblebee-pollinated species have flowering periods partially overlapped, thus neither phenology nor pollinators constitute hybridization barriers among these species. Euglossines are not the only pollinators of Zygopetalinae. Different VOCs, size and lifespan of flowers are associated with distinct pollinators. A distinctive VOC bouquet may determine specialisation in carpenter bees or male euglossines within bee-pollinated flowers. Finally, visitation of deceit-pollinated flowers by perfume-collecting euglossines allows us to hypothesise how pollination by this group of bees had evolved.
Collapse
Affiliation(s)
- Carlos E P Nunes
- Programa de Pós-Graduação em Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas, C.P. 6109, Campinas, SP, 13083-970, Brazil.
| | - Marina Wolowski
- Instituto de Ciências da Natureza, Universidade Federal de Alfenas, Alfenas, MG, 37130-001, Brazil
| | - Emerson Ricardo Pansarin
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras, Universidade de São Paulo, Ribeirão Preto, SP, 14040-901, Brazil
| | - Günter Gerlach
- Botanical Garden München-Nymphenburg, Menzinger Str., 65, 80638, Munich, Germany
| | - Izar Aximoff
- Jardim Botânico do Rio de Janeiro, Rua Pacheco Leão 915, Rio de Janeiro, RG, 22460-030, Brazil
| | - Nicolas J Vereecken
- Agroecology & Pollination Group, Landscape Ecology & Plant Production Systems Unit, Free University of Brussels, Boulevard du Triomphe C.P. 264/2, B-1050, Brussels, Belgium
| | - Marcos José Salvador
- Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas, C. P. 6109, Campinas, SP, 13083-970, Brazil
| | - Marlies Sazima
- Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas, C. P. 6109, Campinas, SP, 13083-970, Brazil
| |
Collapse
|
15
|
Complex Sexual Deception in an Orchid Is Achieved by Co-opting Two Independent Biosynthetic Pathways for Pollinator Attraction. Curr Biol 2017. [DOI: 10.1016/j.cub.2017.05.065] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
16
|
Burkle LA, Runyon JB. The smell of environmental change: Using floral scent to explain shifts in pollinator attraction. APPLICATIONS IN PLANT SCIENCES 2017; 5:apps1600123. [PMID: 28690928 PMCID: PMC5499301 DOI: 10.3732/apps.1600123] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 01/03/2017] [Indexed: 05/18/2023]
Abstract
As diverse environmental changes continue to influence the structure and function of plant-pollinator interactions across spatial and temporal scales, we will need to enlist numerous approaches to understand these changes. Quantitative examination of floral volatile organic compounds (VOCs) is one approach that is gaining popularity, and recent work suggests that floral VOCs hold substantial promise for better understanding and predicting the effects of environmental change on plant-pollinator interactions. Until recently, few ecologists were employing chemical approaches to investigate mechanisms by which components of environmental change may disrupt these essential mutualisms. In an attempt to make these approaches more accessible, we summarize the main field, laboratory, and statistical methods involved in capturing, quantifying, and analyzing floral VOCs in the context of changing environments. We also highlight some outstanding questions that we consider to be highly relevant to making progress in this field.
Collapse
Affiliation(s)
- Laura A. Burkle
- Department of Ecology, Montana State University, Bozeman, Montana 59717 USA
- Author for correspondence:
| | - Justin B. Runyon
- Rocky Mountain Research Station, USDA Forest Service, 1648 S. 7th Avenue, Bozeman, Montana 59717 USA
| |
Collapse
|
17
|
Nunes CEP, Peñaflor MFGV, Bento JMS, Salvador MJ, Sazima M. The dilemma of being a fragrant flower: the major floral volatile attracts pollinators and florivores in the euglossine-pollinated orchid Dichaea pendula. Oecologia 2016; 182:933-946. [PMID: 27538674 DOI: 10.1007/s00442-016-3703-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 08/09/2016] [Indexed: 01/01/2023]
Abstract
Volatile organic compounds (VOCs) mediate both mutualistic and antagonistic plant-animal interactions; thus, the attraction of mutualists and antagonists by floral VOCs constitutes an important trade-off in the evolutionary ecology of angiosperms. Here, we evaluate the role of VOCs in mediating communication between the plant and its mutualist and antagonist floral visitors. To assess the evolutionary consequences of VOC-mediated signalling to distinct floral visitors, we studied the reproductive ecology of Dichaea pendula, assessing the effects of florivores on fruit set, the pollination efficiency of pollinators and florivores, the floral scent composition and the attractiveness of the major VOC to pollinators and florivores. The orchid depends entirely on orchid-bees for sexual reproduction, and the major florivores, the weevils, feed on corollas causing self-pollination, triggering abortion of 26.4 % of the flowers. Floral scent was composed of approximately 99 % 2-methoxy-4-vinylphenol, an unusual floral VOC attractive to pollinators and florivores. The low fruit set from natural pollination (5.6 %) compared to hand cross-pollination (45.5 %) and low level of pollinator visitation [0.02 visits (flower hour)-1] represent the limitations to pollination. Our research found that 2-methoxy-4-vinylphenol mediates both mutualistic and antagonistic interactions, which could result in contrary evolutionary pressures on novo-emission. The scarcity of pollinators, not florivory, was the major constraint to fruit set. Our results suggest that, rather than anti-florivory adaptations, adaptations to enhance pollinator attraction and cross-pollination might be the primary drivers of the evolution of VOC emission in euglossine-pollinated flowers.
Collapse
Affiliation(s)
- Carlos E P Nunes
- Graduate Program in Plant Biology, University of Campinas, Rua Monteiro Lobato 255, Cidade Universitária "Zeferino Vaz", Campinas, 13083-970, Brazil.
| | - Maria Fernanda G V Peñaflor
- Department of Entomology and Acarology, University of São Paulo, Escola Superior de Agricultura "Luiz de Queiroz" (ESALQ), Piracicaba, Brazil
| | - José Maurício S Bento
- Department of Entomology and Acarology, University of São Paulo, Escola Superior de Agricultura "Luiz de Queiroz" (ESALQ), Piracicaba, Brazil
| | - Marcos José Salvador
- Department of Plant Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Marlies Sazima
- Department of Plant Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| |
Collapse
|
18
|
Bohman B, Flematti GR, Barrow RA, Pichersky E, Peakall R. Pollination by sexual deception-it takes chemistry to work. CURRENT OPINION IN PLANT BIOLOGY 2016; 32:37-46. [PMID: 27368084 DOI: 10.1016/j.pbi.2016.06.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Revised: 06/02/2016] [Accepted: 06/03/2016] [Indexed: 06/06/2023]
Abstract
Semiochemicals are of paramount importance in sexually deceptive plants. These plants sexually lure specific male insects as pollinators by chemical and physical mimicry of the female of the pollinator. The strategy has evolved repeatedly in orchids, with a wide diversity of insect groups exploited. Chemical communication systems confirmed by field bioassays include: alkenes and alkanes in bee pollinated Ophrys species, keto-acid and hydroxy-acids in scoliid wasp pollinated O. speculum, and cyclohexanediones and pyrazines in thynnine wasp pollinated Chiloglottis and Drakaea orchids, respectively. In Ophrys, stearoyl-acyl carrier protein desaturase (SAD) enzymes have been confirmed to control species level variation in alkene double bond position. The production of cyclohexanediones in Chiloglottis unexpectedly depends on UVB light, a phenomenon unknown for other plant specialised metabolites. Potential biosynthetic pathways for other systems are explored, and alternative approaches to further accelerate chemical discovery in sexually deceptive plants are proposed.
Collapse
Affiliation(s)
- Björn Bohman
- Research School of Chemistry, The Australian National University, Acton, ACT 2601, Australia; Research School of Biology, The Australian National University, Acton, ACT 2601, Australia; School of Chemistry and Biochemistry, The University of Western Australia, Crawley, WA 6009, Australia
| | - Gavin R Flematti
- School of Chemistry and Biochemistry, The University of Western Australia, Crawley, WA 6009, Australia
| | - Russell A Barrow
- Research School of Chemistry, The Australian National University, Acton, ACT 2601, Australia
| | - Eran Pichersky
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Rod Peakall
- Research School of Biology, The Australian National University, Acton, ACT 2601, Australia; School of Chemistry and Biochemistry, The University of Western Australia, Crawley, WA 6009, Australia.
| |
Collapse
|