1
|
Geng P, Guan M, Wang Y, Mi F, Zhang S, Rao X. A double boronic acid affinity "sandwich" SERS biosensor based on magnetic boronic acid controllable-oriented imprinting for high-affinity biomimetic specific recognition and rapid detection of target glycoproteins. Mikrochim Acta 2024; 191:444. [PMID: 38955823 DOI: 10.1007/s00604-024-06522-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 06/21/2024] [Indexed: 07/04/2024]
Abstract
Transferrin (TRF), recognized as a glycoprotein clinical biomarker and therapeutic target, has its concentration applicable for disease diagnosis and treatment monitoring. Consequently, this study developed boronic acid affinity magnetic surface molecularly imprinted polymers (B-MMIPs) with pH-responsitivity as the "capture probe" for TRF, which have high affinity similar to antibodies, with a dissociation constant of (3.82 ± 0.24) × 10-8 M, showing 7 times of reusability. The self-copolymerized imprinted layer synthesized with dopamine (DA) and 3-Aminophenylboronic acid (APBA) as double monomers avoided nonspecific binding sites and produced excellent adsorption properties. Taking the gold nanostar (AuNS) with a branch tip "hot spot" structure as the core, the silver-coated AuNS functionalized with the biorecognition element 4-mercaptophenylboronic acid (MPBA) was employed as a surface-enhanced Raman scattering (SERS) nanotag (AuNS@Ag-MPBA) to label TRF, thereby constructing a double boronic acid affinity "sandwich" SERS biosensor (B-MMIPs-TRF-SERS nanotag) for the highly sensitive detection of TRF. The SERS biosensor exhibited a detection limit for TRF of 0.004 ng/mL, and its application to spiked serum samples confirmed its reliability and feasibility, demonstrating significant potential for clinical TRF detection. Moreover, the SERS biosensor designed in this study offers advantages in stability, detection speed (40 min), and cost efficiency. The portable Raman instrument for SERS detection fulfills the requirements for point-of-care testing.
Collapse
Affiliation(s)
- Pengfei Geng
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi, 830054, China
| | - Ming Guan
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi, 830054, China.
| | - Ying Wang
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi, 830054, China
| | - Fang Mi
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi, 830054, China
| | - Shan Zhang
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi, 830054, China
| | - Xuehui Rao
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi, 830054, China
| |
Collapse
|
2
|
Ma D, Luo Y, Zhang X, Xie Z, Yan Y, Ding CF. A highly sensitive and selective fluorescent biosensor for breast cancer derived exosomes using click reaction of azide-CD63 aptamer and alkyne-polymer dots. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:2751-2759. [PMID: 38634398 DOI: 10.1039/d4ay00146j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Exosomes have gained recognition as valuable reservoirs of biomarkers, holding immense potential for early cancer detection. Consequently, there is a pressing need for the development of an economical and highly sensitive exosome detection methodology. In this work, we present a fluorescence method for breast cancer-derived exosome detection based on Cu-triggered click reaction of azide-modified CD63 aptamer and alkyne functionalized Pdots. The detection threshold for the exosomes obtained from the breast cancer serum was determined to be 6.09 × 107 particles per μL, while the measurable range spanned from 6.50 × 107 to 1.30 × 109 particles per μL. The employed methodology achieved notable success in accurately distinguishing breast cancer patients from healthy individuals through serum analysis. The application of this method showcases the significant potential for early exosome analysis in the clinical diagnosis of breast cancer patients.
Collapse
Affiliation(s)
- Dumei Ma
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China.
| | - Yiting Luo
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China.
| | - Xiaoya Zhang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China.
| | - Zehu Xie
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China.
| | - Yinghua Yan
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China.
| | - Chuan-Fan Ding
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China.
| |
Collapse
|
3
|
Li Y, Lin C, Peng Y, He J, Yang Y. High-sensitivity and point-of-care detection of SARS-CoV-2 from nasal and throat swabs by magnetic SERS biosensor. SENSORS AND ACTUATORS. B, CHEMICAL 2022; 365:131974. [PMID: 35505925 PMCID: PMC9047405 DOI: 10.1016/j.snb.2022.131974] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 04/13/2022] [Accepted: 04/26/2022] [Indexed: 05/20/2023]
Abstract
The outbreak of COVID-19 caused by SARS-CoV-2 urges the development of rapidly and accurately diagnostic methods. Here, one high-sensitivity and point-of-care detection method based on magnetic SERS biosensor composed of Fe3O4-Au nanocomposite and Au nanoneedles array was developed to detect SARS-CoV-2 directly. Among, the magnetic Fe3O4-Au nanocomposite is applied to capture and separate virus from nasal and throat swabs and enhance the Raman signals of SARS-CoV-2. The magnetic SERS biosensor possessed high sensitivity by optimizing the Fe3O4-Au nanocomposite. More significantly, the on-site detection of inactivated SARS-CoV-2 virus was achieved based on the magnetic SERS biosensor with ultra-low limit of detection of 100 copies/mL during 15 mins. Furthermore, the contaminated nasal and throat swabs samples were identified by support vector machine, and the diagnostic accuracy of 100% was obtained. The magnetic SERS biosensor combined with support vector machine provides giant potential as the point-of-care detection tool for SARS-CoV-2.
Collapse
Affiliation(s)
- Yanyan Li
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, People's Republic of China
- Graduate School of the Chinese Academy of Sciences, No.19(A) Yuquan Road, Beijing 100049, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chenglong Lin
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, People's Republic of China
- Graduate School of the Chinese Academy of Sciences, No.19(A) Yuquan Road, Beijing 100049, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yusi Peng
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, People's Republic of China
- Graduate School of the Chinese Academy of Sciences, No.19(A) Yuquan Road, Beijing 100049, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun He
- Anhui Provincial Center for Disease Control and Prevention, Hefei 12560, Anhui, People's Republic of China
- Public Health Research Institute of Anhui Province, Hefei 12560, Anhui, People's Republic of China
| | - Yong Yang
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
A tailorable and recyclable TiO2 NFSF/Ti@Ag NPs SERS substrate fabricated by a facile method and its applications in prohibited fish drugs detection. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01401-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
5
|
Silver@mesoporous Anatase TiO2 Core-Shell Nanoparticles and Their Application in Photocatalysis and SERS Sensing. COATINGS 2022. [DOI: 10.3390/coatings12010064] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Nanostructured noble metal-semiconductor materials have been attracting increasing attention because of their broad application in the field of environmental remediation, sensing and photocatalysis. In this study, a facile approach for fabricating silver@mesoporousanataseTiO2 (Ag@mTiO2) core-shell nanoparticles employing sol-gel and hydrothermal reaction is demonstrated. The Ag@mTiO2nanoparticles display excellent surface-enhanced Raman scattering (SERS) sensitivity and they can detect the methylene blue (MB) molecules with the concentration of as low as 10−8 M. They also exhibit outstanding photocatalytic activity compared with mTiO2, due to the efficient separation and recombination restrain of electron–hole pairs under ultraviolet light. The Ag@mTiO2nanoparticles also present good stability and they can achieve recyclable photocatalytic degradation experiments for five times without loss of activity. Subsequently, the nanoparticles with dual functions were successfully used to in situ monitor the photodegradation process of MB aqueous solution. These results, demonstrating the multifunctional Ag@mTiO2 nanoparticles, hold promising applications for simultaneous SERS analysis and the removal of dye pollutants in environmental field.
Collapse
|
6
|
Jiang G, Wang Z, Zong S, Yang K, Zhu K, Cui Y. Peroxidase-like recyclable SERS probe for the detection and elimination of cationic dyes in pond water. JOURNAL OF HAZARDOUS MATERIALS 2021; 408:124426. [PMID: 33158654 DOI: 10.1016/j.jhazmat.2020.124426] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/19/2020] [Accepted: 10/27/2020] [Indexed: 06/11/2023]
Abstract
A peroxidase-like MOF coated magnetic surface-enhanced Raman scattering (SERS) probe as Ni@Mil-100(Fe)@Ag nanowires (NMAs) was developed, which can detect multiple cationic dyes with a good recyclability and a high sensitivity. Specifically, Mil-100(Fe) with peroxidase-like activity was fabricated on the magnetic prickly Ni nanowires through layer-by-layer (LBL) method. With the presence of 10 mM H2O2, hydroxyl radical (•OH) produced by peroxidase-like catalytic reaction of Mil-100(Fe) layer can easily eliminate the pollution molecules within 1 min without any requirement for expensive equipment or complicated process. The magnetic NMAs can provide a rapid refreshment for at least 10 times. In addition, carboxyl-functionalized Mil-100(Fe) can not only increase the decoration efficiency of Tollens but also promote the selective enrichment of the cationic dyes, which endows the probe with a greatly improved sensitivity with a limit of detection (LOD) as low as 10-10 M for crystal violet (CV). Following the erasure by H2O2, multiple cationic fishery drugs in pond water can be sequentially detected. Such a recyclable SERS probe holds a great potential in various applications as aquaculture, biomedicine and chemical analysis.
Collapse
Affiliation(s)
- Guohua Jiang
- Advanced Photonics Center, Southeast University, Nanjing 210096, China
| | - Zhuyuan Wang
- Advanced Photonics Center, Southeast University, Nanjing 210096, China.
| | - Shenfei Zong
- Advanced Photonics Center, Southeast University, Nanjing 210096, China
| | - Kuo Yang
- Advanced Photonics Center, Southeast University, Nanjing 210096, China
| | - Kai Zhu
- Advanced Photonics Center, Southeast University, Nanjing 210096, China
| | - Yiping Cui
- Advanced Photonics Center, Southeast University, Nanjing 210096, China.
| |
Collapse
|
7
|
Tian Y, Li X, Wang F, Gu C, Zhao Z, Si H, Jiang T. SERS-based immunoassay and degradation of CA19-9 mediated by gold nanowires anchored magnetic-semiconductor nanocomposites. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:124009. [PMID: 33265038 DOI: 10.1016/j.jhazmat.2020.124009] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 08/31/2020] [Accepted: 09/13/2020] [Indexed: 05/22/2023]
Abstract
Here, straight upward Au nanowires (NWs) were successfully grown onto Fe3O4@TiO2 matrix through a seed-mediated strategy to intensively improve its photocatalysis and SERS performances, facilitating a peculiar recyclable surface-enhanced Raman spectroscopy (SERS)-based immunoassay of CA19-9 in liquid form based on visible light irradiation. Such immunoassay was also supported by a smart heterobifunctional cross-linking agent-mediated probe of anti-CA19-9/4-MBA without metal nanoparticles. A low limit of detection of 5.65 × 10-4 IUmL-1 and a wide linear range from 1000 to 0.001 IUmL-1 were demonstrated through repeated constructing the sandwich immunostructure with only one batch of nanocomposites. Moreover, the actual levels of CA19-9 for colorectal cancer patients were readily measured by the recyclable immunoassay, the results of which are principally consistent with the conventional CLIA detection. Thus, such a green strategy of visible light-induced recyclable immunoassay could be expected to have a potential practicability in the clinical diagnoses of cancer.
Collapse
Affiliation(s)
- Yiran Tian
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo 315211, Zhejiang, PR China
| | - Xiuting Li
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo 315211, Zhejiang, PR China
| | - Fuyan Wang
- School of Medicine, Ningbo University, Ningbo 315211, Zhejiang, PR China
| | - Chenjie Gu
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo 315211, Zhejiang, PR China
| | - Ziqi Zhao
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo 315211, Zhejiang, PR China
| | - Hongjie Si
- Urology Departments, Zhuji Chinese Medicine Hospital, Zhuji 311800, Zhejiang, PR China
| | - Tao Jiang
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo 315211, Zhejiang, PR China.
| |
Collapse
|
8
|
Wu PF, Xue Q, Wang TY, Li SJ, Li GP, Xue GL. A PW 12/Ag functionalized mesoporous silica-coated magnetic Fe 3O 4 core-shell composite as an efficient and recyclable photocatalyst. Dalton Trans 2021; 50:578-586. [PMID: 33464251 DOI: 10.1039/d0dt03882b] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The novel composite, Fe3O4@SiO2@mSiO2-PW12/Ag, was successfully prepared by in situ loading Ag nanoparticles (Ag NPs) on the surface of grafted phosphotungstate (denoted as PW12) Fe3O4@SiO2@mSiO2via a photoreduction deposition method. PW12 not only acts as a reducing agent and stabilizer for Ag NPs but also as a bridge to link Ag NPs and the SiO2 shell in the loading process. Its activity toward the photodegradation of methyl orange (MO) and photoreduction of Cr2O72- anions was evaluated. Experimental results showed that Fe3O4@SiO2@mSiO2-PW12/Ag with 5.3 wt% Ag loading and 18.65 wt% of PW12 exhibits the highest photocatalytic efficacy, and complete degradation of MO and 91.2% photoreduction of Cr(vi) were realized under simulated sunlight for 75 min, respectively. The enhanced catalytic activities of the composite are due to its high specific surface area, the synergistic effect among the components and the formation of a heterojunction of PW12/Ag. The possible enhanced photocatalytic mechanism is proposed. The catalyst is durable and can be easily recovered using a magnet for recycling without a significant loss of catalytic activity.
Collapse
Affiliation(s)
- Pan-Feng Wu
- School of Chemistry and Chemical Engineering, Xi'an Shiyou University, 18 Dianzi Road, Yanta District, Xi'an, 710065, P. R. China. and Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, College of Chemistry & Materials Science, Northwest University, 1 Xuefu Ave., Xi'an, 710127, P. R. China.
| | - Qi Xue
- Xi'an Modern Chemistry Research Institute, Xi'an, 710065, P. R. China
| | - Tian-Yu Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, College of Chemistry & Materials Science, Northwest University, 1 Xuefu Ave., Xi'an, 710127, P. R. China.
| | - Shan-Jian Li
- School of Chemistry and Chemical Engineering, Xi'an Shiyou University, 18 Dianzi Road, Yanta District, Xi'an, 710065, P. R. China.
| | - Gao-Peng Li
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials (Ministry of Education), School of Chemistry & Material Science, Shanxi Normal University, Linfen 041004, P. R. China.
| | - Gang-Lin Xue
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, College of Chemistry & Materials Science, Northwest University, 1 Xuefu Ave., Xi'an, 710127, P. R. China.
| |
Collapse
|
9
|
Korkmaz I, Sakir M, Sarp G, Salem S, Torun I, Volodkin D, Yavuz E, Onses MS, Yilmaz E. Fabrication of superhydrophobic Ag@ZnO@Bi2WO6 membrane disc as flexible and photocatalytic active reusable SERS substrate. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129258] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
10
|
Wang Y, Yin SJ, Zhao CP, Chen GY, Yang FQ. Preparation of a zirconium terephthalate metal-organic framework coated magnetic nanoparticle for the extraction of berberine prior to high-performance liquid chromatography analysis. J Sep Sci 2020; 44:1220-1230. [PMID: 33369071 DOI: 10.1002/jssc.202001026] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 12/18/2020] [Accepted: 12/20/2020] [Indexed: 02/04/2023]
Abstract
In this study, a zirconium terephthalate metal-organic framework-coated magnetic nanoparticle (UiO-66@PA@PEI@Fe3 O4 ) was synthesized for the extraction of berberine prior to high-performance liquid chromatography analysis. The phytic acid, which could be grafted onto the magnetic nanoparticle through electrostatic interaction with the abundant amino groups of polyethylenimine, possesses outstanding metal ion coordination ability for the immobilization of metal-organic frameworks UiO-66. The physicochemical properties of the obtained nanoparticle were thoroughly investigated by a series of characterization techniques. Then, the factors that will affect the extraction efficiency and recovery of berberine were investigated. Results indicated that the material had good stability and reusability, and high adsorption capacity (50.01 mg/g) to berberine through single-layer adsorption. In addition, a molecular docking study indicated that the interactions between the material and berberine were mainly π-π stacking and hydrophobic interaction. Finally, the material was successfully applied to the extraction of berberine in Rhizoma Coptidis and Cortex Phellodendri extracts with the recoveries of 76.1% and 71.6%, respectively.
Collapse
Affiliation(s)
- Yuan Wang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, P. R. China
| | - Shi-Jun Yin
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, P. R. China
| | - Cong-Peng Zhao
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, P. R. China
| | - Guo-Ying Chen
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, P. R. China
| | - Feng-Qing Yang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, P. R. China
| |
Collapse
|
11
|
Pourjavadi A, Kohestanian M, Keshavarzi N. Immobilization of Au nanoparticles on poly(glycidyl methacrylate)‐functionalized magnetic nanoparticles for enhanced catalytic application in the reduction of nitroarenes and Suzuki reaction. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5828] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Ali Pourjavadi
- Polymer Research Laboratory, Department of Chemistry Sharif University of Technology Tehran Iran
| | - Mohammad Kohestanian
- Polymer Research Laboratory, Department of Chemistry Sharif University of Technology Tehran Iran
| | - Nahid Keshavarzi
- Polymer Research Laboratory, Department of Chemistry Sharif University of Technology Tehran Iran
| |
Collapse
|
12
|
Song L, Huang Y, Nie Z, Chen T. Macroscopic two-dimensional monolayer films of gold nanoparticles: fabrication strategies, surface engineering and functional applications. NANOSCALE 2020; 12:7433-7460. [PMID: 32219290 DOI: 10.1039/c9nr09420b] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
In the last few decades, two-dimensional monolayer films of gold nanoparticles (2D MFGS) have attracted increasing attention in various fields, due to their superior attributes of macroscopic size and accessible fabrication, controllable electromagnetic enhancement, distinctive optical harvesting and electron transport capabilities. This review will focus on the recent progress of 2D monolayer films of gold nanoparticles in construction approaches, surface engineering strategies and functional applications in the optical and electric fields. The research challenges and prospective directions of 2D MFGS are also discussed. This review would promote a better understanding of 2D MFGS and establish a necessary bridge among the multidisciplinary research fields.
Collapse
Affiliation(s)
- Liping Song
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China.
| | - Youju Huang
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China. and College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China and National Engineering Research Centre for Advanced Polymer Processing Technology, Key Laboratory of Materials Processing and Mold (Zhengzhou University), Ministry of Education, Zhengzhou University, Zhengzhou 450002, P. R. China
| | - Zhihong Nie
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, P. R. China.
| | - Tao Chen
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China.
| |
Collapse
|
13
|
Du Y, Liu H, Tian Y, Gu C, Zhao Z, Zeng S, Jiang T. Recyclable SERS-Based Immunoassay Guided by Photocatalytic Performance of Fe 3O 4@TiO 2@Au Nanocomposites. BIOSENSORS-BASEL 2020; 10:bios10030025. [PMID: 32188036 PMCID: PMC7146594 DOI: 10.3390/bios10030025] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/20/2020] [Accepted: 03/13/2020] [Indexed: 12/24/2022]
Abstract
A novel recyclable surface-enhanced Raman scattering (SERS)-based immunoassay was demonstrated and exhibited extremely high sensitivity toward prostate specific antigen (PSA). The immunoassay, which possessed a sandwich structure, was constructed of multifunctional Fe3O4@TiO2@Au nanocomposites as immune probe and Ag-coated sandpaper as immune substrate. First, by adjusting the density of outside Au seeds on Fe3O4@TiO2 core-shell nanoparticles (NPs), the structure-dependent SERS and photocatalytic performance of the samples was explored by monitoring and degradating 4-mercaptobenzonic acid (4MBA). Afterwards, the SERS enhancement capability of Ag-coated sandpaper with different meshes was investigated, and a limit of detection (LOD), as low as 0.014 mM, was achieved by utilizing the substrate. Subsequently, the recyclable feasibility of PSA detection was approved by zeta potential measurement, absorption spectra, and SEM images and, particularly, more than 80% of SERS intensity still existed after even six cycles of immunoassay. The ultralow LOD of the recyclable immunoassay was finally calculated to be 1.871 pg/mL. Therefore, the recyclable SERS-based immunoassay exhibits good application prospects for diagnosis of cancer in clinical measurements.
Collapse
Affiliation(s)
- Yuanyuan Du
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo 315211, China; (Y.D.); (Y.T.); (C.G.); (Z.Z.)
| | - Hongmei Liu
- Institute of Solid State Physics, Shanxi Datong University, Datong 037009, China;
| | - Yiran Tian
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo 315211, China; (Y.D.); (Y.T.); (C.G.); (Z.Z.)
| | - Chenjie Gu
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo 315211, China; (Y.D.); (Y.T.); (C.G.); (Z.Z.)
| | - Ziqi Zhao
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo 315211, China; (Y.D.); (Y.T.); (C.G.); (Z.Z.)
| | - Shuwen Zeng
- XLIM Research Institute, UMR 7252 CNRS/University of Limoges, Avenue Albert Thomas, 87060 Limoges, France;
| | - Tao Jiang
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo 315211, China; (Y.D.); (Y.T.); (C.G.); (Z.Z.)
- Correspondence:
| |
Collapse
|
14
|
Pang Y, Shi J, Yang X, Wang C, Sun Z, Xiao R. Personalized detection of circling exosomal PD-L1 based on Fe3O4@TiO2 isolation and SERS immunoassay. Biosens Bioelectron 2020; 148:111800. [DOI: 10.1016/j.bios.2019.111800] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/23/2019] [Accepted: 10/18/2019] [Indexed: 12/19/2022]
|
15
|
Zou B, Niu C, Ma M, Zhao L, Wang Y. Magnetic Assembly Route to Construct Reproducible and Recyclable SERS Substrate. NANOSCALE RESEARCH LETTERS 2019; 14:369. [PMID: 31807938 PMCID: PMC6895331 DOI: 10.1186/s11671-019-3184-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 10/15/2019] [Indexed: 06/10/2023]
Abstract
The fabrication of a uniform array film through assembly of colloidal building blocks is of practical interest for the integrated individual and collective functions. Here, a magnetic assembly route was put forward to organize monodisperse noble metal microspheres into a uniform array film for surface-enhanced Raman scattering (SERS) application, which demonstrated the integrated signal sensitivity of single noble metal microspheres and reproducibility of their assembled uniform array film. For this purpose, monodisperse multifunctional Fe3O4@SiO2@TiO2@Ag (FOSTA) colloidal microspheres as building blocks were successfully synthesized through a homemade ultrasonic-assisted reaction system. When used in SERS test, these multifunctional microspheres could firstly bind the analyte (R6G) from solution and then assembled into a uniform film under an external magnetic field, which exhibited high SERS detection sensitivity with good reproducibility. In addition, due to the TiO2 interlayer in FOSTA colloidal microspheres, the building blocks could be recycled and self cleaned through photocatalytic degradation of the adsorbed analyte for recycling SERS application.
Collapse
Affiliation(s)
- Bingfang Zou
- Key Laboratory for Special Functional Materials of the Ministry of Education, Henan University, Kaifeng, People's Republic of China
- School of Physics and Electronics, Henan University, Kaifeng, People's Republic of China
| | - Chunyu Niu
- Key Laboratory for Special Functional Materials of the Ministry of Education, Henan University, Kaifeng, People's Republic of China
| | - Ming Ma
- Key Laboratory for Special Functional Materials of the Ministry of Education, Henan University, Kaifeng, People's Republic of China
| | - Lu Zhao
- Key Laboratory for Special Functional Materials of the Ministry of Education, Henan University, Kaifeng, People's Republic of China
| | - Yongqiang Wang
- Key Laboratory for Special Functional Materials of the Ministry of Education, Henan University, Kaifeng, People's Republic of China.
| |
Collapse
|
16
|
Guo H, Zhao A, He Q, Chen P, Wei Y, Chen X, Hu H, Wang M, Huang H, Wang R. Multifunctional Fe3O4@mTiO2@noble metal composite NPs as ultrasensitive SERS substrates for trace detection. ARAB J CHEM 2019. [DOI: 10.1016/j.arabjc.2019.01.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
17
|
Affiliation(s)
- Jai Prakash
- Department of Chemistry, National Institute of Technology Hamirpur, Hamirpur, India
| |
Collapse
|
18
|
Scaramuzza S, Polizzi S, Amendola V. Magnetic tuning of SERS hot spots in polymer-coated magnetic-plasmonic iron-silver nanoparticles. NANOSCALE ADVANCES 2019; 1:2681-2689. [PMID: 36132716 PMCID: PMC9417711 DOI: 10.1039/c9na00143c] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 05/21/2019] [Indexed: 05/19/2023]
Abstract
Plasmonic nanostructures are intensively studied for their ability to create electromagnetic hot spots, where a great variety of optical and spectroscopic processes can be amplified. Understanding how to control the formation of hot spots in a dynamic and reversible way is crucial to further expand the panorama of plasmon enhanced phenomena. In this work, we investigate the ability to modulate the hot spots in magnetic-plasmonic iron-doped silver nanoparticles dispersed in aqueous solution, by applying an external magnetic field. Evidence of magnetic field induction of hot spots was achieved by measuring the amplification of surface enhanced Raman scattering (SERS) from analytes dispersed in the solution containing Ag-Fe NPs. A polymeric shell was introduced around Ag-Fe NPs to confer colloidal stability, and it was found that the length and density of the polymer chains have a significant influence on SERS performance, and therefore on the formation of electromagnetic hot spots, under the action of the external magnetic field. These findings are expected to provide an important contribution to understanding the growing field of tuneable electromagnetic enhancement by external stimuli, such as magnetic fields applied to magnetic-plasmonic nanoparticles.
Collapse
Affiliation(s)
- Stefano Scaramuzza
- Department of Chemical Sciences, University of Padova Via Marzolo 1 I-35131 Padova Italy
| | - Stefano Polizzi
- Department of Molecular Sciences and Nanosystems, Centro di Microscopia Elettronica "G. Stevanato", Università Cà Foscari Venezia Via Torino 155/b, I-30172 Venezia-Mestre Italy
| | - Vincenzo Amendola
- Department of Chemical Sciences, University of Padova Via Marzolo 1 I-35131 Padova Italy
| |
Collapse
|
19
|
Song D, Yang R, Long F, Zhu A. Applications of magnetic nanoparticles in surface-enhanced Raman scattering (SERS) detection of environmental pollutants. J Environ Sci (China) 2019; 80:14-34. [PMID: 30952332 DOI: 10.1016/j.jes.2018.07.004] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 06/25/2018] [Accepted: 07/18/2018] [Indexed: 05/19/2023]
Abstract
Environmental pollution, a major problem worldwide, poses considerable threat to human health and ecological environment. Efficient and reliable detection technologies, which focus on the appearance of emerging environmental and trace pollutants, are urgently needed. Surface-enhanced Raman scattering (SERS) has become an attractive analytical tool for sensing trace targets in environmental field because of its inherent molecular fingerprint specificity and high sensitivity. In this review, we focused on the recent developments in the integration of magnetic nanoparticles (MNPs) with SERS for facilitating sensitive detection of environmental pollutants. An overview and classification of different types of MNPs for SERS detection were initially provided, enabling us to categorize the huge amount of literature that was available in the interdisciplinary research field of MNPs based SERS technology. Then, the basic working principles and applications of MNPs in SERS detection were presented. Subsequently, the detection technologies integrating MNPs with SERS that eventually were used for the detection of various environmental pollutions were reviewed. Finally, the advantages of MNP-basedSERS detection technology for environmental pollutants were concluded, and the current challenges and future outlook of this technology in practical applications were highlighted. The application of the MNPs-basedSERS techniques for environmental analysis will be significantly advanced with the great progresses of the nanotechnologies, optics, and materials.
Collapse
Affiliation(s)
- Dan Song
- School of Environment and Natural Resources, Renmin University of China, Beijing 100872, China
| | - Rong Yang
- School of Environment and Natural Resources, Renmin University of China, Beijing 100872, China
| | - Feng Long
- School of Environment and Natural Resources, Renmin University of China, Beijing 100872, China.
| | - Anna Zhu
- Research Institute of Chemical Defense, Academy of Military Sciences PLA China, Beijing 102205, China; State Key Laboratory of NBC Protection FOR Civilian, Beijing 102205, China.
| |
Collapse
|
20
|
Amino-terminated supramolecular cucurbit [6] uril pseudorotaxane complexes immobilized on magnetite@silica nanoparticles: A highly efficient sorbent for salvianolic acids. Talanta 2019; 195:354-365. [DOI: 10.1016/j.talanta.2018.11.086] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 11/08/2018] [Accepted: 11/22/2018] [Indexed: 01/17/2023]
|
21
|
Lai H, Shang W, Yun Y, Chen D, Wu L, Xu F. Uniform arrangement of gold nanoparticles on magnetic core particles with a metal-organic framework shell as a substrate for sensitive and reproducible SERS based assays: Application to the quantitation of Malachite Green and thiram. Mikrochim Acta 2019; 186:144. [PMID: 30707312 DOI: 10.1007/s00604-019-3257-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 01/16/2019] [Indexed: 11/29/2022]
Abstract
Magnetite (Fe3O4) spheres acting as a core were evenly decorated with gold nanoparticles (AuNPs) and coated with a shell of a metal organic framework (MOF) of type MIL-100(Fe). The resulting hybrid nanomaterial of type Fe3O4-Au@MIL-100(Fe) hybrid is shown to be a viable new SERS substrate. The integration of magnetic core, build-in plasmonic gold nanoparticles and a MOF shell endows the Fe3O4-Au@MIL-100(Fe) with highly efficient magnetic separation and enrichment ability, abundant interparticle hotspots, and significant chemical enhancement effect. This leads to a large enhancement, and greatly improved reproducibility of the SERS signals as shown for Malachite Green (MG) and the fungicide thiram. MG in solution can be quantified with a 50-fold lower detection limit (0.14 nM for peak at 1398 cm-1) and largely improved reproducibility (RSD = 9%, 1398 cm-1) when compared to the use of (a) AuNPs anchored on MIL-100(Fe) (RSD = 27%, 1186 cm-1), or (b) AuNPs embedded in MIL-100(Fe) (RSD = 36%, 1398 cm-1). The method was applied to the quantitation of MG and thiram in spiked water samples. The lower limits of detection are 4.4 nM for MG (1398 cm-1) and 15 nM for thiram (1380 cm-1), respectively, and signals' RSDs are 13% (1398 cm-1) and 5% (1380 cm-1) for MG and thiram, respectively. The substrate is recyclable. Graphical abstract Schematic illustration of the preparation and SERS molecule sensing application of Fe3O4-Au@MIL-100(Fe) hybrid. PMMA: poly(methacrylic acid; BPEI: branched poly(ethyleneimine); BTC: 1,3,5-tricarboxybenzene.
Collapse
Affiliation(s)
- Huasheng Lai
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, People's Republic of China
| | - Wenjuan Shang
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, People's Republic of China
| | - Yuyin Yun
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, People's Republic of China
| | - Danjiao Chen
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, People's Republic of China
| | - Liqian Wu
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, People's Republic of China
| | - Fugang Xu
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, People's Republic of China.
| |
Collapse
|
22
|
Functional and biocompatible polymeric ionic liquid (PIL) - Decorated immunomagnetic nanospheres for the efficient capture of rare number CTCs. Anal Chim Acta 2018; 1044:162-173. [DOI: 10.1016/j.aca.2018.07.066] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 07/22/2018] [Accepted: 07/25/2018] [Indexed: 11/22/2022]
|
23
|
Wu HC, Chen TC, Tsai HJ, Chen CS. Au Nanoparticles Deposited on Magnetic Carbon Nanofibers as the Ultrahigh Sensitive Substrate for Surface-Enhanced Raman Scattering: Detections of Rhodamine 6G and Aromatic Amino Acids. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:14158-14168. [PMID: 30380878 DOI: 10.1021/acs.langmuir.8b02488] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Surface-enhanced Raman scattering (SERS) is a unique spectroscopy that can offer high-sensitive detection for many molecules. Herein, the Au particles deposited on carbon nanofiber-encapsulated magnetic Ni nanoparticles (NPs) (Ni@CNFs@Au) have been successfully synthesized for SERS measurements. The Ni@CNFs@Au substrates have the advantages of a high SERS sensitivity and good magnetic response. The Ni@CNFs could be directly obtained from CO2 hydrogenation on a Ni catalyst, which has been characterized as having rich carboxylic acid groups, graphitic structures, and a high surface area. The Ni@CNFs surface could effectively increase the density of hotspots during Au NP aggregation and influence the morphology of the Au nanostructures. The spherical shape, oval shape, and coral-like Au nanostructures were prepared on Ni@CNFs with various Au concentrations. Brunauer-Emmett-Teller, zeta potential, high-resolution transmission electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy measurements were used to characterize the Ni@CNFs@Au samples. The Au NPs deposited on the Ni@CNFs presented a suitable oval shape, and an average size of ∼30-40 nm. The size allowed surprisingly ultrasensitive SERS detection of rhodamine 6G (R6G) with a resolution of approximately a single molecule under an excitation wavelength of 532 nm. Using 785 nm excitation, a low R6G concentration of ∼1 × 10-14 M was detected. Moreover, the Ni@CNFs@Au substrates could be rapidly magnetically separated after adsorption. Phenylalanine and tyrosine amino acids, which are associated with the liver disease, were examined using SERS with the Ni@CNFs@Au substrate. Ultralow concentrations of ∼1 × 10-11 M for phenylalanine and ∼1 × 10-13 M for tyrosine were clearly measured. The Ni@CNFs@Au substrates exhibited applicability as excellent SERS detection platforms that combine high-sensitivity and rapid magnetic separation for various adsorption molecules.
Collapse
Affiliation(s)
- Hung-Chi Wu
- Center for General Education , Chang Gung University , 259, Wen-Hua 1st Rd. , Guishan Dist., Taoyuan City 33302 , Taiwan , Republic of China
| | - Tse-Ching Chen
- Department of Pathology , Chang Gung Memorial Hospital Linkou , 5, Fusing Street , Guishan Dist., Taoyuan City 33302 , Taiwan , Republic of China
| | - Hsing-Jui Tsai
- Center for General Education , Chang Gung University , 259, Wen-Hua 1st Rd. , Guishan Dist., Taoyuan City 33302 , Taiwan , Republic of China
| | - Ching-Shiun Chen
- Center for General Education , Chang Gung University , 259, Wen-Hua 1st Rd. , Guishan Dist., Taoyuan City 33302 , Taiwan , Republic of China
- Department of Pathology , Chang Gung Memorial Hospital Linkou , 5, Fusing Street , Guishan Dist., Taoyuan City 33302 , Taiwan , Republic of China
| |
Collapse
|
24
|
Jiang Y, Carboni D, Malfatti L, Innocenzi P. Graphene Oxide-Silver Nanoparticles in Molecularly-Imprinted Hybrid Films Enabling SERS Selective Sensing. MATERIALS 2018; 11:ma11091674. [PMID: 30201868 PMCID: PMC6163847 DOI: 10.3390/ma11091674] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 08/23/2018] [Accepted: 09/03/2018] [Indexed: 11/16/2022]
Abstract
A highly sensitive and selective Raman sensor has been developed by combining molecularly imprinted cavities, silver nanoparticles, and graphene oxide into a hybrid organic-inorganic film. The molecular imprinted nanocomposite material is an advanced platform that exhibits Graphene-mediated Surface-Enhanced Raman Scattering. The sensing layers have been prepared via sol-gel process and imprinted with rhodamine 6G to obtain selective dye recognition. Graphene oxide sheets decorated with silver nanoparticles have been incorporated into the matrix to enhance the Raman scattering signal. The template molecule can be easily removed from the films by ultrasonication in ethanol. A 712-fold Raman enhancement has been observed, which corresponds to a 2.15 × 1013 count·μmol−1 signal enhancement per molecular cavity. Besides Raman enhancement, the sensing platform has shown an excellent selectivity toward the test molecule with respect to similar dyes. In addition, the material can be reused at least 10 times without any loss of performance.
Collapse
Affiliation(s)
- Yu Jiang
- Laboratorio di Scienza dei Materiali e Nanotecnologie (LMNT), Dipartimento di Chimica e Farmacia, Università di Sassari, CR-INSTM, Via Vienna 2, 07041 Sassari, Italy.
| | - Davide Carboni
- Laboratorio di Scienza dei Materiali e Nanotecnologie (LMNT), Dipartimento di Chimica e Farmacia, Università di Sassari, CR-INSTM, Via Vienna 2, 07041 Sassari, Italy.
| | - Luca Malfatti
- Laboratorio di Scienza dei Materiali e Nanotecnologie (LMNT), Dipartimento di Chimica e Farmacia, Università di Sassari, CR-INSTM, Via Vienna 2, 07041 Sassari, Italy.
| | - Plinio Innocenzi
- Laboratorio di Scienza dei Materiali e Nanotecnologie (LMNT), Dipartimento di Chimica e Farmacia, Università di Sassari, CR-INSTM, Via Vienna 2, 07041 Sassari, Italy.
| |
Collapse
|
25
|
Sun M, Zhao A, Wang D, Wang J, Chen P, Sun H. Cube-like Fe3O4@SiO2@Au@Ag magnetic nanoparticles: a highly efficient SERS substrate for detection of pesticide. NANOTECHNOLOGY 2018; 29:165302. [PMID: 29424699 DOI: 10.1088/1361-6528/aaae42] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
As a novel SERS nanocomposities, cube-like Fe3O4@SiO2@Au@Ag magnetic nanoparticles have been synthesized for the first time. Cube-like α-Fe2O3 NPs with uniform size can be achieved by optimizing reaction temperature and time. Firstly, the cube-like Fe3O4@SiO2 with good dispersity were achieved by calcining α-Fe2O3@SiO2 NPs in hydrogen atmosphere at 360 °C for 2.5 h, followed by self-assembling PEI shell via sonication. Furthermore, the Au@Ag particles can be densely assembled on the Fe3O4@SiO2 NPs to form the Fe3O4@SiO2@Au@Ag composite structure via strong Ag-N interaction. The obtained nanocomposites exhibit an excellent surface-enhanced Raman (SERS) behavior, reflected from low detection of limit (p-ATP) at 5×10-14 M level. Moreover, these nanocubes are used for detection of thiram and the detection limit can reach up to 5×10-11 M, while the rule of U.S. Environmental Protection Agency specifies that the residue in fruit must be lower than 7 ppm. Hence, the resulting substrate with high SERS activity has great practical potential applications in rapid detection of chemical, biological and environment pollutants with a simple portable Raman instrument at trace level.
Collapse
Affiliation(s)
- Mei Sun
- Institute of Intelligent Machines, Chinese Academy of Sciences, hefei, CHINA
| | - Aiwu Zhao
- Institute of Intelligent Machines, Chinese Academy of Sciences, hefei, CHINA
| | - Dapeng Wang
- Institute of Intelligent Machines, Chinese Academy of Sciences , hefei, CHINA
| | - Jin Wang
- Institute of Intelligent Machines, Chinese Academy of Sciences, hefei, CHINA
| | - Ping Chen
- Institute of Intelligent Machines, Chinese Academy of Sciences, hefei, CHINA
| | - Henghui Sun
- Institute of Intelligent Machines, Chinese Academy of Sciences, hefei, CHINA
| |
Collapse
|
26
|
Zhao Y, Sun Q, Zhang X, Baeyens J, Su H. Self-assembled selenium nanoparticles and their application in the rapid diagnostic detection of small cell lung cancer biomarkers. SOFT MATTER 2018; 14:481-489. [PMID: 29177363 DOI: 10.1039/c7sm01687e] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
By coupling molecular imprinting, chitosan biosorption and TiO2 photocatalysis, selenium nanoparticles (Se NPs) were self-assembled in a controlled manner on the molecular imprinting sites of zeolite-chitosan-TiO2 microspheres. Se NPs with different sizes and areal densities were individually synthesized by controlling the rapid adsorption of molecular-imprinted nanocomposites and photocatalytic reaction of TiO2 nanoparticles. In order to improve the sensitivity and specificity of rapid diagnostic detection, Se NPs were self-assembled again into high-order and spherically stable structures with an average size of 80 nm by well-defined monomer units, after separation from zeolite-chitosan-TiO2 microspheres with a stabilizer of 0.3% (v/v) bovine serum albumin. Due to their biological activity, spherical-shaped Se NPs were used for dot-blot immunoassays with multiple native antigens for rapid serodiagnosis of human lung cancer. The sensitivity of the dot immunoassays for detecting progastrin-releasing peptide (ProGRP) was 75 pg mL-1. The detection time of colloidal Se dot immunoassays for ProGRP was only 5 min. No positive results were observed with other commonly potential interfering substances, including carcinoembryonic antigen, α-fetoprotein antigen and BSA. The research presents a simple and green method for the reuse of SeO32- and the controlled synthesis of Se NPs for biological and medical applications by bioaffinity adsorption and photoreduction.
Collapse
Affiliation(s)
- Yilin Zhao
- Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, 15 BeiSanhuan East Road, ChaoYang District, Beijing, 100029, P. R. China.
| | | | | | | | | |
Collapse
|
27
|
Liu C, Hu Q, Chen Q, Wang J, Zhang L, Ni Y. Novel Au Nanoparticles-Strewn MnOOH Nanorod Composites: Simple Fabrication and Application in the Catalytic Reduction of Aromatic Nitro Compounds. J CLUST SCI 2017. [DOI: 10.1007/s10876-017-1320-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
28
|
Lv B, Sun Z, Zhang J, Jing C. Multifunctional satellite Fe3O4-Au@TiO2 nano-structure for SERS detection and photo-reduction of Cr(VI). Colloids Surf A Physicochem Eng Asp 2017. [DOI: 10.1016/j.colsurfa.2016.10.048] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
29
|
Wang C, Wang J, Li P, Rong Z, Jia X, Ma Q, Xiao R, Wang S. Sonochemical synthesis of highly branched flower-like Fe 3O 4@SiO 2@Ag microcomposites and their application as versatile SERS substrates. NANOSCALE 2016; 8:19816-19828. [PMID: 27878199 DOI: 10.1039/c6nr07295j] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
We report a novel strategy for the synthesis of magnetic-based flower-like silver composite microspheres (Fe3O4@SiO2@Ag microflowers) with a highly branched shell structure through a sonochemical-assisted method. The obtained Fe3O4@SiO2@Ag microflowers possess good dispersity, high magnetic responsiveness, and highly reproducible structures. The size and morphology of the silver petal shell of these microflowers can be easily controlled by varying the experimental parameters. The silver petal provides an effectively large surface area for forming sufficient plasmonic hot spots and capturing target molecules. The microscale magnetic core endows microflowers with superior magnetic nature to enrich targeted analytes and create abundant interparticle hot spots through magnetism-induced aggregation. Hence, Fe3O4@SiO2@Ag microflowers could be a versatile SERS substrate, as verified by the detection of the non-adsorbed R6G molecules and the adsorbed pesticide thiram, with a detection limit as low as 1 × 10-14 M and 1 × 10-11 M, respectively. We further demonstrate that aptamer-functionalized microflowers can easily capture S. aureus in tap water and significantly enhance their SERS signal. Moreover, the microflowers can be easily recycled because of the intrinsic magnetism of the Fe3O4 cores, which indicate a new route in eliminating the "single-use" problem of traditional SERS substrates. These advantages make the microflowers powerful SERS probes for chemical and biological analyses.
Collapse
Affiliation(s)
- Chongwen Wang
- Beijing Institute of Radiation Medicine, Beijing 100850, PR China. and College of Life Sciences & Bio-Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Junfeng Wang
- Beijing Institute of Radiation Medicine, Beijing 100850, PR China. and College of Mechatronics and Automation, National University of Defense Technology, Changsha, Hunan 410073, PR China
| | - Ping Li
- Beijing Institute of Radiation Medicine, Beijing 100850, PR China.
| | - Zhen Rong
- Beijing Institute of Radiation Medicine, Beijing 100850, PR China.
| | - Xiaofei Jia
- Beijing Institute of Radiation Medicine, Beijing 100850, PR China. and College of Life Sciences & Bio-Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Qiuling Ma
- Beijing Institute of Radiation Medicine, Beijing 100850, PR China.
| | - Rui Xiao
- Beijing Institute of Radiation Medicine, Beijing 100850, PR China.
| | - Shengqi Wang
- Beijing Institute of Radiation Medicine, Beijing 100850, PR China. and College of Life Sciences & Bio-Engineering, Beijing University of Technology, Beijing 100124, PR China
| |
Collapse
|
30
|
Highly sensitive and selective detection of nitrite ions using Fe3O4@SiO2/Au magnetic nanoparticles by surface-enhanced Raman spectroscopy. Biosens Bioelectron 2016; 85:726-733. [DOI: 10.1016/j.bios.2016.05.068] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 05/15/2016] [Accepted: 05/21/2016] [Indexed: 12/18/2022]
|
31
|
Affiliation(s)
- Ivano Alessandri
- INSTM
and Chemistry for Technologies Laboratory, University of Brescia, Brescia 25123, Italy
| | - John R. Lombardi
- Department
of Chemistry, The City College of New York, New York 10031, United States
| |
Collapse
|
32
|
Li J, Fang X, Yang Y, Cheng X, Tang P. An Improved Chemiluminescence Immunoassay for the Ultrasensitive Detection of Aflatoxin B1. FOOD ANAL METHOD 2016. [DOI: 10.1007/s12161-016-0499-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
33
|
Zhao Y, Tao C, Xiao G, Wei G, Li L, Liu C, Su H. Controlled synthesis and photocatalysis of sea urchin-like Fe3O4@TiO2@Ag nanocomposites. NANOSCALE 2016; 8:5313-26. [PMID: 26884248 DOI: 10.1039/c5nr08624h] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Based on the synergistic photocatalytic activities of nano-sized TiO2 and Ag, as well as the magnetic properties of Fe3O4, a sea urchin-like Fe3O4@TiO2@Ag nanocomposite (Fe3O4@TiO2@Ag NCs) is controllably synthesized with tunable cavity size, adjustable shell layer of TiO2 nanofiber, higher structural stability and larger specific surface area. Here, Fe3O4@TiO2@Ag NCs are obtained with Fe3O4 as the core and nanofiber TiO2/Fe3O4/Ag nanoheterojunctions as the shell; and Ag nanoparticles with diameter of approximately 4 nm are loaded both on TiO2 nanofibers and inside the cavities of sea urchin-like Fe3O4@TiO2 nanocomposites uniformly. Ag nanoparticles lead to the production of more photogenerated charges in the TiO2/Fe3O4/Ag heterojunction via LSPR absorption, and enhance the band-gap absorption of TiO2, while the Fe3O4 cocatalyst provides the active sites for oxygen reduction by the effective transfer of photogenerated electrons to oxygen. So the photocatalytic performance is improved due to the synergistic effect of TiO2/Fe3O4/Ag nanoheterojunctions. As photocatalysts under UV and visible irradiation, the as-synthesized nanocomposites display enhanced photocatalytic and recycling properties for the degradation of ampicillin. Moreover, they present better broad-spectrum antibiosis under visible irradiation. The enhanced photocatalytic activity and excellent chemical stability, in combination with the magnetic recyclability, makes this multifunctional nanostructure a promising candidate for antibiosis and remediation in aquatic environmental contamination in the future.
Collapse
Affiliation(s)
- Yilin Zhao
- Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology (BUCT), 15 BeiSanhuan East Road, ChaoYang District, Beijing, 100029, P. R. China.
| | - Chengran Tao
- Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology (BUCT), 15 BeiSanhuan East Road, ChaoYang District, Beijing, 100029, P. R. China.
| | - Gang Xiao
- Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology (BUCT), 15 BeiSanhuan East Road, ChaoYang District, Beijing, 100029, P. R. China.
| | - Guipeng Wei
- Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology (BUCT), 15 BeiSanhuan East Road, ChaoYang District, Beijing, 100029, P. R. China.
| | - Linghui Li
- Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology (BUCT), 15 BeiSanhuan East Road, ChaoYang District, Beijing, 100029, P. R. China.
| | - Changxia Liu
- Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology (BUCT), 15 BeiSanhuan East Road, ChaoYang District, Beijing, 100029, P. R. China.
| | - Haijia Su
- Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology (BUCT), 15 BeiSanhuan East Road, ChaoYang District, Beijing, 100029, P. R. China.
| |
Collapse
|
34
|
Abstract
The design, fabrication, performance and applications of hierarchical semiconductor photocatalysts are thoroughly reviewed and apprised.
Collapse
Affiliation(s)
- Xin Li
- College of Materials and Energy
- South China Agricultural University
- Guangzhou
- P. R. China
- Key Laboratory of Energy Plants Resource and Utilization
| | - Jiaguo Yu
- State Key Laboratory of Advanced Technology for Material Synthesis and Processing
- Wuhan University of Technology
- Wuhan
- P. R. China
- Department of Physics
| | - Mietek Jaroniec
- Department of Chemistry and Biochemistry
- Kent State University
- Kent
- USA
| |
Collapse
|
35
|
Ganeshraja AS, Rajkumar K, Zhu K, Li X, Thirumurugan S, Xu W, Zhang J, Yang M, Anbalagan K, Wang J. Facile synthesis of iron oxide coupled and doped titania nanocomposites: tuning of physicochemical and photocatalytic properties. RSC Adv 2016. [DOI: 10.1039/c6ra13212j] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The iron oxide coupled and doped titania nanocomposites exhibited altered compositional, optical, electrical, magnetic and photocatalytic properties with respect to varying dosage of iron in the titania matrix.
Collapse
Affiliation(s)
| | | | - Kaixin Zhu
- Mössbauer Effect Data Center
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- China
| | - Xuning Li
- Mössbauer Effect Data Center
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- China
| | | | - Wei Xu
- Beijing Synchrotron Radiation Facility
- Institute of High Energy Physics
- Chinese Academy of Sciences
- Beijing 100049
- China
| | - Jing Zhang
- Beijing Synchrotron Radiation Facility
- Institute of High Energy Physics
- Chinese Academy of Sciences
- Beijing 100049
- China
| | - Minghui Yang
- Dalian National Laboratory for Clean Energy
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- China
| | | | - Junhu Wang
- Mössbauer Effect Data Center
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- China
| |
Collapse
|
36
|
Ag Nanorods Coated with Ultrathin TiO2 Shells as Stable and Recyclable SERS Substrates. Sci Rep 2015; 5:15442. [PMID: 26486994 PMCID: PMC4614262 DOI: 10.1038/srep15442] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 09/14/2015] [Indexed: 01/05/2023] Open
Abstract
TiO2-coated Ag nanorods (Ag@TiO2 NRs) have been fabricated as multifunctional surface-enhanced Raman scattering (SERS) substrates. Uniform TiO2 shells could sufficiently protect the internal Ag NRs against oxidation and sulfuration, thus the temporal stability of SERS substrates was markedly improved. Meanwhile, due to the synergetic effect between crystalline TiO2 and Ag, the nanocomposites could clean themselves via photocatalytic degradation of the adsorbed molecules under ultraviolet irradiation and water dilution, making the SERS substrates renewable. Such Ag@TiO2 NRs were shown to serve as outstanding SERS sensors featuring high sensitivity, superior stability and recyclability.
Collapse
|
37
|
Zhao Y, Yang Y, Luo Y, Yang X, Li M, Song Q. Double Detection of Mycotoxins Based on SERS Labels Embedded Ag@Au Core-Shell Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2015; 7:21780-6. [PMID: 26381109 DOI: 10.1021/acsami.5b07804] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
A sensitive surface-enhanced Raman scattering (SERS) signal dependent double detection of mycotoxins is achieved for the first time, without the aid of nucleic acid amplification strategies. SERS labels embedded Ag@Au core-shell (CS) nanoparticles (NPs) as novel SERS tags are successfully prepared through a galvanic replacement-free deposition. SERS tags produce stable and quantitative SERS signal, emerging from the plasmonic coupling at the junction of Ag core and Au shell. SERS tags engineered Raman aptasensors are developed for the double detection of ochratoxin A (OTA) and aflatoxin B1 (AFB1) in maize meal. The limits of detection (LODs) are as low as 0.006 ng/mL for OTA and 0.03 ng/mL for AFB1. The developed protocol can be extended to a large set of different SERS tags for the sensitive detection of multiple targets that possess different lengths of aptamers.
Collapse
Affiliation(s)
- Yuan Zhao
- The Key Lab of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University , Wuxi, Jiangsu 214122, People's Republic of China
| | - Yaxin Yang
- The Key Lab of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University , Wuxi, Jiangsu 214122, People's Republic of China
| | - Yaodong Luo
- The Key Lab of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University , Wuxi, Jiangsu 214122, People's Republic of China
| | - Xuan Yang
- The Key Lab of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University , Wuxi, Jiangsu 214122, People's Republic of China
| | - Manli Li
- The Key Lab of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University , Wuxi, Jiangsu 214122, People's Republic of China
| | - Qijun Song
- The Key Lab of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University , Wuxi, Jiangsu 214122, People's Republic of China
| |
Collapse
|
38
|
Ye M, Wei Z, Hu F, Wang J, Ge G, Hu Z, Shao M, Lee ST, Liu J. Fast assembling microarrays of superparamagnetic Fe3O4@Au nanoparticle clusters as reproducible substrates for surface-enhanced Raman scattering. NANOSCALE 2015; 7:13427-13437. [PMID: 26079311 DOI: 10.1039/c5nr02491a] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
It is currently a very active research area to develop new types of substrates which integrate various nanomaterials for surface-enhanced Raman scattering (SERS) techniques. Here we report a unique approach to prepare SERS substrates with reproducible performance. It features silicon mold-assisted magnetic assembling of superparamagnetic Fe3O4@Au nanoparticle clusters (NCs) into arrayed microstructures on a wafer scale. This approach enables the fabrication of both silicon-based and hydrogel-based substrates in a sequential manner. We have demonstrated that strong SERS signals can be harvested from these substrates due to an efficient coupling effect between Fe3O4@Au NCs, with enhancement factors >10(6). These substrates have been confirmed to provide reproducible SERS signals, with low variations in different locations or batches of samples. We investigate the spatial distributions of electromagnetic field enhancement around Fe3O4@Au NCs assemblies using finite-difference-time-domain (FDTD) simulations. The procedure to prepare the substrates is straightforward and fast. The silicon mold can be easily cleaned out and refilled with Fe3O4@Au NCs assisted by a magnet, therefore being re-useable for many cycles. Our approach has integrated microarray technologies and provided a platform for thousands of independently addressable SERS detection, in order to meet the requirements of a rapid, robust, and high throughput performance.
Collapse
Affiliation(s)
- Min Ye
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials & Devices, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu Province 215123, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Fu Q, Zhan Z, Dou J, Zheng X, Xu R, Wu M, Lei Y. Highly Reproducible and Sensitive SERS Substrates with Ag Inter-Nanoparticle Gaps of 5 nm Fabricated by Ultrathin Aluminum Mask Technique. ACS APPLIED MATERIALS & INTERFACES 2015; 7:13322-13328. [PMID: 26023763 DOI: 10.1021/acsami.5b01524] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Applicable surface enhanced Raman scattering (SERS) active substrates require high enhancement factor (EF), excellent spatial reproducibility, and low-cost fabrication method on a large area. Although several SERS substrates with high EF and relative standard deviation (RSD) of signal less than 5% were reported, reliable fabrication for large area SERS substrates with both high sensitivity and high reproducibility via low-cost routes remains a challenge. Here, we report a facile and cost-effective fabrication process for large-scale SERS substrate with Ag inter-nanoparticle (NP) gaps of 5 nm based on ultrathin alumina mask (UTAM) surface pattern technique. Such closely packed Ag NP arrays with high density of electromagnetic field enhancement ("hot spots") on large area exhibit high SERS activity and excellent reproducibility, simultaneously. Rhodamine 6G molecules with concentration of 1 × 10(-7) M are used to determine the SERS performance, and an EF of ∼10(9) is obtained. It should be noted that we obtain RSDs about 2% from 10 random spots on an area of 1 cm(2), which implies the highly reproducible signals. Finite-difference time-domain simulations further suggest that the enhanced electric field originates from the narrow gap, which agrees well with the experimental results. The low value of RSD and the high EF of SERS signals indicate that the as-prepared substrate may be promising for highly sensitive and uniform SERS detection.
Collapse
Affiliation(s)
- Qun Fu
- †Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China
| | - Zhibing Zhan
- ‡Institute for Physics and IMN MacroNano (ZIK), Technical University of Ilmenau, Prof. Schmidt Straße 26, 98693 Ilmenau, Germany
| | - Jinxia Dou
- †Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China
| | - Xianzheng Zheng
- †Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China
| | - Rui Xu
- ‡Institute for Physics and IMN MacroNano (ZIK), Technical University of Ilmenau, Prof. Schmidt Straße 26, 98693 Ilmenau, Germany
| | - Minghong Wu
- †Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China
| | - Yong Lei
- †Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China
- ‡Institute for Physics and IMN MacroNano (ZIK), Technical University of Ilmenau, Prof. Schmidt Straße 26, 98693 Ilmenau, Germany
| |
Collapse
|
40
|
Synthesis of monodisperse magnetic sandwiched gold nanoparticle as an easily recyclable catalyst with a protective polymer shell. Colloids Surf A Physicochem Eng Asp 2015. [DOI: 10.1016/j.colsurfa.2014.11.055] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
41
|
Cai B, Zhao M, Ma Y, Ye Z, Huang J. Bioinspired formation of 3D hierarchical CoFe2O4 porous microspheres for magnetic-controlled drug release. ACS APPLIED MATERIALS & INTERFACES 2015; 7:1327-33. [PMID: 25539822 DOI: 10.1021/am507689a] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Bioinspired by the morphology of dandelion pollen grains, we successfully prepared a template-free solution-based method for the large-scale preparation of three-dimensional (3D) hierarchical CoFe2O4 porous microspheres. Besides, on the basis of the effect of the reaction time on the morphology evolution of the precursor, we proposed an in situ dissolution-recrystallization growth mechanism with morphology and phase change to understand the formation of dandelion pollenlike microspheres. Doxorubicin hydrochloride, an anticancer drug, is efficiently loaded into the CoFe2O4 microspheres. The magnetic nanoparticles as field-controlled drug carriers offer a unique power of magnetic guidance and field-triggered drug-release behavior. Therefore, 3D hierarchical CoFe2O4 porous microspheres demonstrate the great potential for drug encapsulation and controlled drug-release applications.
Collapse
Affiliation(s)
- Bin Cai
- Department of Materials Science and Engineering, State Key Laboratory of Silicon Materials, and ‡Cyrus Tang Center for Sensor Materials and Applications, Zhejiang University , Hangzhou 310027, China
| | | | | | | | | |
Collapse
|
42
|
Zhou Y, Zhu Y, Yang X, Huang J, Chen W, Lv X, Li C, Li C. Au decorated Fe3O4@TiO2 magnetic composites with visible light-assisted enhanced catalytic reduction of 4-nitrophenol. RSC Adv 2015. [DOI: 10.1039/c5ra08243a] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Multifunctional Fe3O4@TiO2@Au core–shell composites exhibited excellent catalytic activity for the reduction of 4-NP in the presence of NaBH4 under visible light illumination due to the synergy of noble metal-catalysis and photocatalysis.
Collapse
Affiliation(s)
- Ying Zhou
- Key Laboratory for Ultrafine Materials of Ministry of Education
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Yihua Zhu
- Key Laboratory for Ultrafine Materials of Ministry of Education
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Xiaoling Yang
- Key Laboratory for Ultrafine Materials of Ministry of Education
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Jianfei Huang
- Key Laboratory for Ultrafine Materials of Ministry of Education
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Wei Chen
- Key Laboratory for Ultrafine Materials of Ministry of Education
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Xiaoming Lv
- Key Laboratory for Ultrafine Materials of Ministry of Education
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Cuiyan Li
- Key Laboratory for Ultrafine Materials of Ministry of Education
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Chunzhong Li
- Key Laboratory for Ultrafine Materials of Ministry of Education
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| |
Collapse
|
43
|
Shi W, Lu D, Wang L, Teng F, Zhang J. Core–shell structured Fe3O4@SiO2@CdS nanoparticles with enhanced visible-light photocatalytic activities. RSC Adv 2015. [DOI: 10.1039/c5ra22295h] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Uniform core–shell structured Fe3O4@SiO2@CdS is synthesized by a facile chelating-assistant growth route, which enhances the photocatalytic activities.
Collapse
Affiliation(s)
- Wen Shi
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| | - Deli Lu
- School of Chemical and Environmental Engineering
- Shanghai Institute of Technology
- Shanghai
- P. R. China
| | - Lingzhi Wang
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| | - Fei Teng
- Innovative Research Laboratory of Environment & Energy
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring & Pollution Control
- School of Environmental Science and Engineering
- Nanjing University of Information Science & Technology
- P. R. China
| | - Jinlong Zhang
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| |
Collapse
|
44
|
Cao X, Chen Y, Jiao S, Fang Z, Xu M, Liu X, Li L, Pang G, Feng S. Magnetic photocatalysts with a p-n junction: Fe3O4 nanoparticle and FeWO4 nanowire heterostructures. NANOSCALE 2014; 6:12366-70. [PMID: 25201551 DOI: 10.1039/c4nr03729d] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Magnetic n-type semiconductor Fe3O4 nanoparticle and p-type semiconductor FeWO4 nanowire heterostructures were successfully synthesized without any surfactants or templates via a facile one-step hydrothermal process at 160 °C. The heterojunction structure and morphology were characterized by X-ray powder diffraction (XRD), transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM). Magnetic measurements indicated the coexistence of ferrimagnetic behavior of Fe3O4 and weak antiferromagnetic behavior of FeWO4. The degradation of methylene blue (MB) under UV-Visible light irradiation was studied as a model experiment to evaluate the catalytic activity of the Fe3O4/FeWO4 heterostructure p-n junctions. The decomposition efficiency was 97.1% after one hour UV-Visible irradiation. This magnetic photocatalyst can be easily recovered from the solution using a permanent magnet and redispersed by removing the magnet.
Collapse
Affiliation(s)
- Xuan Cao
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Yang L, Li P, Liu J. Progress in multifunctional surface-enhanced Raman scattering substrate for detection. RSC Adv 2014. [DOI: 10.1039/c4ra09231g] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|