1
|
Zhao X, Zhang Y, Zhu C, Yang Z, Chu X. Advanced surface-enhanced raman scattering nanoprobes for precise detection of Nitroreductase in Hypoxic tumor cells: Improving Cancer diagnosis. SLAS Technol 2024; 30:100229. [PMID: 39638258 DOI: 10.1016/j.slast.2024.100229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/29/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
Nitroreductase (NTR) plays a critical role in the oxygen-deficient environment of anoxic tumor cells, and its identification is crucial for the diagnosis and treatment of cancer. This research introduces an innovative Surface Enhanced Raman Scattering (SERS) probe, created by attaching p-nitrothiophenol (p-NTP) to gold nanoparticles (Au NPs). This probe leverages the specific enzymatic reaction of NTR in hypoxic status, utilizing decreased NADH. The enzymatic activity of NTR transforms nitroaromatic compounds into aromatic amines, which is then reflected as a measurable shift in the SERS signal of the probe. This novel approach allows for the accurate quantification of NTR, with the sensitivity reaching a detection threshold of less than 0.02 μg/mL. The probe's non-toxic nature and superior biocompatibility facilitate its use for direct SERS investigations in A549 cells under reduced oxygen levels. We also applied this method to xenograft model. The results demonstrate a marked increase in NTR levels in tumor cells and tumor tissues in hypoxic conditions, highlighting the significance of this nanoprobe in enhancing cancer diagnostics, helping medical doctors making treatment decisions more swiftly and effectively.
Collapse
Affiliation(s)
- Xiaoyue Zhao
- Department of Medical Oncology, Affiliated Jinling Hospital of Medical School of Nanjing University, Nanjing 210000, PR China
| | - Ying Zhang
- Department of Pathology, Affiliated Jinling Hospital of Medical School of Nanjing University, Nanjing 210000, PR China
| | - Chunyan Zhu
- Department of Medical Oncology, Affiliated Jinling Hospital of Medical School of Nanjing University, Nanjing 210000, PR China
| | - Zhihui Yang
- Department of Pathology, Affiliated Jinling Hospital of Medical School of Nanjing University, Nanjing 210000, PR China
| | - Xiaoyuan Chu
- Department of Medical Oncology, Affiliated Jinling Hospital of Medical School of Nanjing University, Nanjing 210000, PR China.
| |
Collapse
|
2
|
Tapia-Rojas S, García-Paitán M, Rosario-Chavarri JD, Santiani A, Alvarez-Vega S, Amiel-Pérez J, Mayanga-Herrera A. Medicinal plant extracts interfere in gastric cancer stem cells fluorescence-based assays. Saudi J Biol Sci 2024; 31:104000. [PMID: 38706720 PMCID: PMC11066463 DOI: 10.1016/j.sjbs.2024.104000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 04/06/2024] [Accepted: 04/14/2024] [Indexed: 05/07/2024] Open
Abstract
Fluorescence is used in various biological assays due to its high sensitivity, versatility, and precision. In recent years, studies using medicinal plant extracts have increased. However, fluorescence-based assays could be biased by plant metabolites autofluorescence. To address this issue, this study investigated the interference caused by methanolic extracts and chloroform fractions of three medicinal plants in three fluorescence-based assays on gastric cancer stem cells(CSC): resazurin reduction, confocal microscopy, and flow cytometry. CSC were isolated based on CD44 surface marker, incubated with methanolic extracts and chloroform fractions of Buddleja incana, Dracontium spruceanum, Piper aduncum. Resazurin assay evidenced that CSC exposed to extracts and fractions from the three plants showed significant differences in relative fluorescence units (RFU) levels (p < 0.001) compared to the unexposed groups after a 3-hour incubation. In addition, DMSO-treated CSC exposed to extracts and fractions had significantly lower fluorescence levels than living ones, but higher than extracts and fractions without cells. In confocal microscopy, cancer stem cells exposed to extracts and fractions of B. incana and P. aduncum were observed in the same emission spectra of the CSC markers. In flow cytometry, CSC exposed to extracts and fractions without any fluorescent dyes were detected in the double positive quadrants for CSC markers (CD44+/CD133 + ). Among the three plants, D. spruceanum exhibited the least interference. These results show that methanolic extracts and chloroform fractions contain autofluorescent metabolites that interfere with fluorescence-based assays. These results highlight the importance of a prior evaluation for possible fluorescence interference to avoid interpretation biases in fluorescence assays.
Collapse
Affiliation(s)
- Salyoc Tapia-Rojas
- Cell Culture and Immunology Lab, Universidad Científica del Sur, Antigua Panamericana Sur km 19, Lima, 15067, Perú
| | | | - Jorge Del Rosario-Chavarri
- Plant Biology System Lab, Pontificia Universidad Católica de Chile, Libertador Bernardo O’higgins AV. 340, Santiago, 8331150, Chile
| | - Alexei Santiani
- Animal Reproduction Lab, Universidad Nacional Mayor de San Marcos, Circunvalación Av 28, San Borja, Lima, 15021, Perú
| | - Santiago Alvarez-Vega
- Cell Culture and Immunology Lab, Universidad Científica del Sur, Antigua Panamericana Sur km 19, Lima, 15067, Perú
| | - José Amiel-Pérez
- Cell Culture and Immunology Lab, Universidad Científica del Sur, Antigua Panamericana Sur km 19, Lima, 15067, Perú
| | - Ana Mayanga-Herrera
- Cell Culture and Immunology Lab, Universidad Científica del Sur, Antigua Panamericana Sur km 19, Lima, 15067, Perú
| |
Collapse
|
3
|
Zhang S, Ji L, Xu K, Xiong X, Ai B, Qian W, Dong J. Detection of redox potential evolution during the initial stage of an acute wound based on a redox-sensitive SERS-active optical fiber. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:3263-3270. [PMID: 38738477 DOI: 10.1039/d4ay00095a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
To detect redox potential evolution during the initial stage of an acute wound, a redox-sensitive SERS-active optical fiber was fabricated by integrating redox-sensitive SERS probes in a hole of an optical fiber. The redox-sensitive SERS-active optical fibers carried redox-sensitive SERS probes into the inside of a wound to sense its redox potential. The laser was transmitted to the redox-sensitive SERS probes in the body by optical fibers, and the SERS signals of the redox-sensitive SERS probes were transferred out of the body by optical fibers to indicate the redox potentials in the wound. The redox-sensitive SERS probes dynamically sensed the redox potential in vivo, and their SERS signals were collected constantly to indicate the redox potentials. The assessments in vivo and in vitro proved the responsiveness of redox-sensitive SERS-active optical fibers. The redox potential evolution during the initial stage of an acute wound with the treatments of different concentrations of glucose was detected to verify the feasibility of redox-sensitive SERS-active optical fibers to dynamically detect redox potentials in vivo. The redox-sensitive SERS-active optical fiber would be a versatile tool to explore the roles of redox potentials in living organisms.
Collapse
Affiliation(s)
- Shuyu Zhang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| | - Lingling Ji
- Department of Acupuncture-Moxibustion, Massage and Rehabilitation, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China.
- Department of Acupuncture and Moxibustion, Suzhou Chinese Medicine Hospital Affiliated to Nanjing Chinese Medicine University, Suzhou 215003, China
| | - Kun Xu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| | - Xiulei Xiong
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| | - Bingwei Ai
- Department of Acupuncture-Moxibustion, Massage and Rehabilitation, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China.
| | - Weiping Qian
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| | - Jian Dong
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
- Laboratory of Environment and Biosafety, Research Institute of Southeast University in Suzhou, Suzhou 215123, China
| |
Collapse
|
4
|
Jiang L, He Y, Lan M, Ding X, Lu Q, Song L, Huang Y, Li D. High-Resolution and Dynamic Visualization of Intracellular Redox Potential Using a Metal-Organic Framework-Functionalized Nanopotentiometer. Anal Chem 2024; 96:7497-7505. [PMID: 38687987 DOI: 10.1021/acs.analchem.4c00082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Redox potential plays a key role in regulating intracellular signaling pathways, with its quantitative analysis in individual cells benefiting our understanding of the underlying mechanism in the pathophysiological events. Here, a metal organic framework (MOF)-functionalized SERS nanopotentiometer has been developed for the dynamic monitoring of intracellular redox potential. The approach is based on the encapsulation of zirconium-based MOF (Uio-66-F4) on a surface of gold-silver nanorods (Au-Ag NRs) that is modified with the newly synthesized redox-sensitive probe ortho-mercaptohydroquinone (HQ). Thanks to size exclusion of MOF as the chemical protector, the nanopotentiometer can be adapted to long-term use and possess high anti-interference ability toward nonredox species. Combining the superior fingerprint identification of SERS with the electrochemical activity of the quinone/hydroquinone, the nanopotentiometer shows a reversible redox responsivity and can quantify redox potential with a relatively wide range of -250-100 mV. Furthermore, the nanopotentiometer allows for dynamic visualization of intracellular redox potential changes induced by drugs' stimulation in a high-resolution manner. The developed approach would be promising for offering new insights into the correlation between redox potential and tumor proliferation-involved processes such as oxidative stress and hypoxia.
Collapse
Affiliation(s)
- Lei Jiang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry & Chemical Engineering, Central South University, Changsha, Hunan 410083, China
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, Joint International Laboratory for Precision Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yue He
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, Joint International Laboratory for Precision Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Minhuan Lan
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry & Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Xin Ding
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Qiaoyi Lu
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Liping Song
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Youju Huang
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Dawei Li
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, Joint International Laboratory for Precision Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
5
|
Liu J, Cabral H, Mi P. Nanocarriers address intracellular barriers for efficient drug delivery, overcoming drug resistance, subcellular targeting and controlled release. Adv Drug Deliv Rev 2024; 207:115239. [PMID: 38437916 DOI: 10.1016/j.addr.2024.115239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/16/2024] [Accepted: 02/27/2024] [Indexed: 03/06/2024]
Abstract
The cellular barriers are major bottlenecks for bioactive compounds entering into cells to accomplish their biological functions, which limits their biomedical applications. Nanocarriers have demonstrated high potential and benefits for encapsulating bioactive compounds and efficiently delivering them into target cells by overcoming a cascade of intracellular barriers to achieve desirable therapeutic and diagnostic effects. In this review, we introduce the cellular barriers ahead of drug delivery and nanocarriers, as well as summarize recent advances and strategies of nanocarriers for increasing internalization with cells, promoting intracellular trafficking, overcoming drug resistance, targeting subcellular locations and controlled drug release. Lastly, the future perspectives of nanocarriers for intracellular drug delivery are discussed, which mainly focus on potential challenges and future directions. Our review presents an overview of intracellular drug delivery by nanocarriers, which may encourage the future development of nanocarriers for efficient and precision drug delivery into a wide range of cells and subcellular targets.
Collapse
Affiliation(s)
- Jing Liu
- Department of Radiology, Huaxi MR Research Center (HMRRC), State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No.17 South Renmin Road, Chengdu, Sichuan 610041, China
| | - Horacio Cabral
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Peng Mi
- Department of Radiology, Huaxi MR Research Center (HMRRC), State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No.17 South Renmin Road, Chengdu, Sichuan 610041, China.
| |
Collapse
|
6
|
Allison M, Caramés-Méndez P, Hofmann BJ, Pask CM, Phillips RM, Lord RM, McGowan PC. Cytotoxicity of Ruthenium(II) Arene Complexes Containing Functionalized Ferrocenyl β-Diketonate Ligands. Organometallics 2023; 42:1869-1881. [PMID: 37592952 PMCID: PMC10428205 DOI: 10.1021/acs.organomet.2c00553] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Indexed: 08/19/2023]
Abstract
The synthesis and characterization of 24 ruthenium(II) arene complexes of the type [(p-cym)RuCl(Fc-acac)] (where p-cym = p-cymene and Fc-acac = functionalized ferrocenyl β-diketonate ligands) are reported, including single-crystal X-ray diffraction for 21 new complexes. Chemosensitivity studies have been conducted against human pancreatic carcinoma (MIA PaCa-2), human colorectal adenocarcinoma p53-wildtype (HCT116 p53+/+) and normal human retinal epithelial cell lines (APRE-19). The most active complex, which contains a 2-furan-substituted ligand (4), is 5x more cytotoxic than the analogs 3-furan complex (5) against MIA PaCa-2. Several complexes were screened under hypoxic conditions and at shorter-time incubations, and their ability to damage DNA was determined by the comet assay. Compounds were also screened for their potential to inhibit the growth of both bacterial and fungal strains.
Collapse
Affiliation(s)
- Matthew Allison
- School
of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K.
| | - Pablo Caramés-Méndez
- School
of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K.
- Department
of Pharmacy, University of Huddersfield, Huddersfield HD1 3DH, U.K.
| | - Benjamin J. Hofmann
- School
of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, U.K.
| | - Christopher M. Pask
- School
of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K.
| | - Roger M. Phillips
- Department
of Pharmacy, University of Huddersfield, Huddersfield HD1 3DH, U.K.
| | - Rianne M. Lord
- School
of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, U.K.
- School
of Chemistry and Biosciences, University
of Bradford, Bradford BD7 1DP, U.K.
| | - Patrick C. McGowan
- School
of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K.
| |
Collapse
|
7
|
Xia Y, Duan S, Han C, Jing C, Xiao Z, Li C. Hypoxia-responsive nanomaterials for tumor imaging and therapy. Front Oncol 2022; 12:1089446. [PMID: 36591450 PMCID: PMC9798000 DOI: 10.3389/fonc.2022.1089446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Hypoxia is an important component of tumor microenvironment and plays a pivotal role in cancer progression. With the distinctive physiochemical properties and biological effects, various nanoparticles targeting hypoxia had raised great interest in cancer imaging, drug delivery, and gene therapy during the last decade. In the current review, we provided a comprehensive view on the latest progress of novel stimuli-responsive nanomaterials targeting hypoxia-tumor microenvironment (TME), and their applications in cancer diagnosis and therapy. Future prospect and challenges of nanomaterials are also discussed.
Collapse
Affiliation(s)
- Yifei Xia
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shao Duan
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chaozhe Han
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chengwei Jing
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zunyu Xiao
- Department of Nuclear Medicine, The Fourth Hospital of Harbin Medical University, Harbin, China,*Correspondence: Chao Li, ; Zunyu Xiao,
| | - Chao Li
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China,*Correspondence: Chao Li, ; Zunyu Xiao,
| |
Collapse
|
8
|
Xu G, Sun Y, Zhang Y, Xia L. Sulfite-triggered surface plasmon-catalyzed reduction of p-nitrothiophenol to p,p'-dimercaptoazobenzene. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 264:120282. [PMID: 34454131 DOI: 10.1016/j.saa.2021.120282] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 08/06/2021] [Accepted: 08/10/2021] [Indexed: 06/13/2023]
Abstract
The conversion of p-aminothiophenol (PATP) or p-nitrothiophenol (PNTP) to p,p'-dimercaptoazobenzene (DMAB) has been used as model reactions to study plasmon-catalyzed reaction on nanoparticles. Herein, we report the conversion of PNTP to DMAB which is triggered by SO32- ions on gold nanoparticles (AuNPs) for the first time. With the addition of SO32-, the Raman peaks at 1139, 1392, 1437 cm-1 appears, which indicates the formation of DMAB. The experiment results suggested that the synergistic effect of AuNPs and SO32- promoted the conversion of PNTP to DMAB. Besides, the proposed catalysis system is high selectivity to SO32- ions, which provides a new detection route to SO32- ions in the future. More importantly, the possible reaction mechanism has been put forward which is helpful to understand the surface plasmon-assisted catalytic reduction of PNTP on the surface of SERS substrate.
Collapse
Affiliation(s)
- Guangda Xu
- College of Chemistry, Liaoning University, Shenyang 110036, People's Republic of China
| | - Ye Sun
- College of Chemistry, Liaoning University, Shenyang 110036, People's Republic of China
| | - Yao Zhang
- College of Chemistry, Liaoning University, Shenyang 110036, People's Republic of China.
| | - Lixin Xia
- College of Chemistry, Liaoning University, Shenyang 110036, People's Republic of China.
| |
Collapse
|
9
|
Kozik A, Pavlova M, Petrov I, Bychkov V, Kim L, Dorozhko E, Cheng C, Rodriguez RD, Sheremet E. A review of surface-enhanced Raman spectroscopy in pathological processes. Anal Chim Acta 2021; 1187:338978. [PMID: 34753586 DOI: 10.1016/j.aca.2021.338978] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 08/18/2021] [Accepted: 08/20/2021] [Indexed: 12/17/2022]
Abstract
With the continuous growth of the human population and new challenges in the quality of life, it is more important than ever to diagnose diseases and pathologies with high accuracy, sensitivity and in different scenarios from medical implants to the operation room. Although conventional methods of diagnosis revolutionized healthcare, alternative analytical methods are making their way out of academic labs into clinics. In this regard, surface-enhanced Raman spectroscopy (SERS) developed immensely with its capability to achieve single-molecule sensitivity and high-specificity in the last two decades, and now it is well on its way to join the arsenal of physicians. This review discusses how SERS is becoming an essential tool for the clinical investigation of pathologies including inflammation, infections, necrosis/apoptosis, hypoxia, and tumors. We critically discuss the strategies reported so far in nanoparticle assembly, functionalization, non-metallic substrates, colloidal solutions and how these techniques improve SERS characteristics during pathology diagnoses like sensitivity, selectivity, and detection limit. Moreover, it is crucial to introduce the most recent developments and future perspectives of SERS as a biomedical analytical method. We finally discuss the challenges that remain as bottlenecks for a routine SERS implementation in the medical room from in vitro to in vivo applications. The review showcases the adaptability and versatility of SERS to resolve pathological processes by covering various experimental and analytical methods and the specific spectral features and analysis results achieved by these methods.
Collapse
Affiliation(s)
- Alexey Kozik
- Tomsk Polytechnic University, Lenin Ave, 30, Tomsk, 634050, Russia; Siberian Medical State University, Moskovskiy Trakt, 2, Tomsk, 634050, Russia
| | - Marina Pavlova
- Tomsk Polytechnic University, Lenin Ave, 30, Tomsk, 634050, Russia; Siberian Medical State University, Moskovskiy Trakt, 2, Tomsk, 634050, Russia
| | - Ilia Petrov
- Tomsk Polytechnic University, Lenin Ave, 30, Tomsk, 634050, Russia
| | - Vyacheslav Bychkov
- Tomsk National Research Medical Center of the Russian Academy of Sciences, Cancer Research Institute, 5 Kooperativny Street, Tomsk, 634009, Russia
| | - Larissa Kim
- Tomsk Polytechnic University, Lenin Ave, 30, Tomsk, 634050, Russia
| | - Elena Dorozhko
- Tomsk Polytechnic University, Lenin Ave, 30, Tomsk, 634050, Russia
| | - Chong Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Raul D Rodriguez
- Tomsk Polytechnic University, Lenin Ave, 30, Tomsk, 634050, Russia.
| | | |
Collapse
|
10
|
Mamnoon B, Feng L, Froberg J, Choi Y, Sathish V, Taratula O, Taratula O, Mallik S. Targeting Estrogen Receptor-Positive Breast Microtumors with Endoxifen-Conjugated, Hypoxia-Sensitive Polymersomes. ACS OMEGA 2021; 6:27654-27667. [PMID: 34722965 PMCID: PMC8552235 DOI: 10.1021/acsomega.1c02250] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 09/20/2021] [Indexed: 06/13/2023]
Abstract
Endoxifen is the primary active metabolite of tamoxifen, a nonsteroidal-selective estrogen receptor modulator (SERM) and widely used medication to treat estrogen receptor-positive (ER+) breast cancer. In this study, endoxifen was conjugated to the surface of polymeric nanoparticles (polymersomes) for targeted delivery of doxorubicin (DOX) to estrogen receptor-positive breast cancer cells (MCF7). Rapid cell growth and insufficient blood supply result in low oxygen concentration (hypoxia) within the solid breast tumors. The polymersomes developed here are prepared from amphiphilic copolymers of polylactic acid (PLA) and poly(ethylene glycol) (PEG) containing diazobenzene as the hypoxia-responsive linker. We prepared two nanoparticle formulations: DOX-encapsulated hypoxia-responsive polymersomes (DOX-HRPs) and endoxifen-conjugated, DOX-encapsulated hypoxia-responsive polymersomes (END-DOX-HRPs). Cellular internalization studies demonstrated eight times higher cytosolic and nuclear localization after incubating breast cancer cells with END-DOX-HRPs (targeted polymersomes) in contrast to DOX-HRPs (nontargeted polymersomes). Cytotoxicity studies on monolayer cell cultures exhibited that END-DOX-HRPs were three times more toxic to ER+ MCF7 cells than DOX-HRPs and free DOX in hypoxia. The cell viability studies on three-dimensional hypoxic cultures also demonstrated twice as much toxicity when the spheroids were treated with targeted polymersomes instead of nontargeted counterparts. This is the first report of surface-decorated polymeric nanoparticles with endoxifen ligands for targeted drug delivery to ER+ breast cancer microtumors. The newly designed endoxifen-conjugated, hypoxia-responsive polymersomes might have translational potential for ER+ breast cancer treatment.
Collapse
Affiliation(s)
- Babak Mamnoon
- Department
of Pharmaceutical Sciences, North Dakota
State University, Fargo, North Dakota 58102, United States
| | - Li Feng
- Department
of Pharmaceutical Sciences, North Dakota
State University, Fargo, North Dakota 58102, United States
| | - Jamie Froberg
- Department
of Physics, North Dakota State University, Fargo, North Dakota 58102, United States
| | - Yongki Choi
- Department
of Physics, North Dakota State University, Fargo, North Dakota 58102, United States
| | - Venkatachalem Sathish
- Department
of Pharmaceutical Sciences, North Dakota
State University, Fargo, North Dakota 58102, United States
| | - Oleh Taratula
- Department
of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, Oregon 97201, United States
| | - Olena Taratula
- Department
of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, Oregon 97201, United States
| | - Sanku Mallik
- Department
of Pharmaceutical Sciences, North Dakota
State University, Fargo, North Dakota 58102, United States
| |
Collapse
|
11
|
Hu B, Song N, Cao Y, Li M, Liu X, Zhou Z, Shi L, Yu Z. Noncanonical Amino Acids for Hypoxia-Responsive Peptide Self-Assembly and Fluorescence. J Am Chem Soc 2021; 143:13854-13864. [PMID: 34410694 DOI: 10.1021/jacs.1c06435] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Design of endogenous stimuli-responsive amino acids allows for precisely modulating proteins or peptides under a biological microenvironment and thereby regulating their performance. Herein we report a noncanonical amino acid 2-nitroimidazol-1-yl alanine and explore its functions in creation of the nitroreductase (NTR)-responsive peptide-based supramolecular probes for efficient hypoxia imaging. On the basis of the reduction potential of the nitroimidazole unit, the amino acid was synthesized via the Mitsunobu reaction between 2-nitroimidazole and a serine derivate. We elucidated the relationship between the NTR-responsiveness of the amino acid and the structural feature of peptides involving a series of peptides. This eventually facilitates development of aromatic peptides undergoing NTR-responsive self-assembly by rationally optimizing the sequences. Due to the intrinsic role of 2-nitroimidazole in the fluorescence quench, we created a morphology-transformable supramolecular probe for imaging hypoxic tumor cells based on NTR reduction. We found that the resulting supramolecular probes penetrated into solid tumors, thus allowing for efficient fluorescence imaging of tumor cells in hypoxic regions. Our findings demonstrate development of a readily synthesized and versatile amino acid with exemplified properties in creating fluorescent peptide nanostructures responsive to a biological microenvironment, thus providing a powerful toolkit for synthetic biology and development of novel biomaterials.
Collapse
Affiliation(s)
- Binbin Hu
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Na Song
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Yawei Cao
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Mingming Li
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Xin Liu
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Zhifei Zhou
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Linqi Shi
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Zhilin Yu
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China
| |
Collapse
|
12
|
Qin F, Zhou H, Li J, Liu J, Wang Y, Bai R, Liu S, Ma M, Liu T, Gao F, Du P, Lu X, Chen C. Hypoxia and pH co-triggered oxidative stress amplifier for tumor therapy. Eur J Pharmacol 2021; 905:174187. [PMID: 34048738 DOI: 10.1016/j.ejphar.2021.174187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 05/01/2021] [Accepted: 05/12/2021] [Indexed: 11/19/2022]
Abstract
To keep fast proliferation, tumor cells are exposed to higher oxidative stress than normal cells and they upregulate the amount of some antioxidants such as glutathione (GSH) against reactive oxygen species to maintain the balance. This phenomenon is severe in hypoxic tumor cells. Although researchers have proposed a series of treatment strategies based on regulating the intracellular reactive oxygen species level, few of them are related to the hypoxic tumor. Herein, a novel organic compound (PLC) was designed by using lysine as a bridge to connect two functional small molecules, a hypoxia-responsive nitroimidazole derivative (pimonidazole) and a pH-responsive cinnamaldehyde (CA) derivative. Then, the oxidative stress amplifying ability of PLC in hypoxic tumor cells was evaluated. The acidic microenvironment of tumor can trigger the release of CA to produce reactive oxygen species. Meanwhile, large amount of nicotinamide adenine dinucleotide phosphate (NADPH) can be consumed to decrease the synthesis of GSH during the bio-reduction process of the nitro group in PLC under hypoxic conditions. Therefore, the lethal effect of CA can be amplified for the decrease of GSH. Our results prove that this strategy can significantly enhance the therapeutic effect of CA in the hypoxic tumor cells.
Collapse
Affiliation(s)
- Fenglan Qin
- Tianjin Key Laboratory of Molecular Optoelectronic, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, PR China; CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, PR China
| | - Huige Zhou
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, PR China; Research Unit of Nanoscience and Technology, Chinese Academy of Medical Sciences, Beijing, 100021, PR China
| | - Jiayang Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, PR China; Research Unit of Nanoscience and Technology, Chinese Academy of Medical Sciences, Beijing, 100021, PR China
| | - Jing Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, PR China
| | - Yaling Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, PR China; Research Unit of Nanoscience and Technology, Chinese Academy of Medical Sciences, Beijing, 100021, PR China
| | - Ru Bai
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, PR China
| | - Shihui Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, PR China
| | - Manman Ma
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, PR China
| | - Tao Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, PR China
| | - Fene Gao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, PR China
| | - Peiyao Du
- Tianjin Key Laboratory of Molecular Optoelectronic, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, PR China.
| | - Xiaoquan Lu
- Tianjin Key Laboratory of Molecular Optoelectronic, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, PR China.
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China; Research Unit of Nanoscience and Technology, Chinese Academy of Medical Sciences, Beijing, 100021, PR China.
| |
Collapse
|
13
|
Prosser KE, Xie D, Chu A, MacNeil GA, Varju BR, Kadakia RT, Que EL, Walsby CJ. Copper(II) Pyridyl Aminophenolates: Hypoxia-Selective, Nucleus-Targeting Cytotoxins, and Magnetic Resonance Probes. Chemistry 2021; 27:9839-9849. [PMID: 33878230 DOI: 10.1002/chem.202100603] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Indexed: 11/10/2022]
Abstract
Targeting the low-oxygen (hypoxic) environments found in many tumours by using redox-active metal complexes is a strategy that can enhance efficacy and reduce the side effects of chemotherapies. We have developed a series of CuII complexes with tridentate pyridine aminophenolate-based ligands for preferential activation in the reduction window provided by hypoxic tissues. Furthermore, ligand functionalization with a pendant CF3 group provides a 19 F spectroscopic handle for magnetic-resonance studies of redox processes at the metal centre and behaviour in cellular environments. The phenol group in the ligand backbone was substituted at the para position with H, Cl, and NO2 to modulate the reduction potential of the CuII centre, giving a range of values below the window expected for hypoxic tissues. The NO2 -substituted complex, which has the highest reduction potential, showed enhanced cytotoxic selectivity towards HeLa cells grown under hypoxic conditions. Cell death occurs by apoptosis, as determined by analysis of the cell morphology. A combination of 19 F NMR and ICP-OES indicates localization of the NO2 complex in HeLa cell nuclei and increased cellular accumulation under hypoxia. This correlates with DNA nuclease activity being the likely origin of cytotoxic activity, as demonstrated by cleavage of DNA plasmids in the presence of the CuII nitro complex and a reducing agent. Selective detection of the paramagnetic CuII complexes and their diamagnetic ligands by 19 F MRI suggests hypoxia-targeting theranostic applications by redox activation.
Collapse
Affiliation(s)
- Kathleen E Prosser
- Department of Chemistry, Simon Fraser University, 8888 University Dr., Burnaby, BC V5A 1S6, Canada.,Department of Chemistry, The University of Texas at Austin, 105 E. 24th Street Stop A5300, Austin, TX 78712, USA
| | - Da Xie
- Department of Chemistry, The University of Texas at Austin, 105 E. 24th Street Stop A5300, Austin, TX 78712, USA
| | - Annica Chu
- Department of Chemistry, Simon Fraser University, 8888 University Dr., Burnaby, BC V5A 1S6, Canada
| | - Gregory A MacNeil
- Department of Chemistry, Simon Fraser University, 8888 University Dr., Burnaby, BC V5A 1S6, Canada
| | - Bryton R Varju
- Department of Chemistry, Simon Fraser University, 8888 University Dr., Burnaby, BC V5A 1S6, Canada
| | - Rahul T Kadakia
- Department of Chemistry, The University of Texas at Austin, 105 E. 24th Street Stop A5300, Austin, TX 78712, USA
| | - Emily L Que
- Department of Chemistry, The University of Texas at Austin, 105 E. 24th Street Stop A5300, Austin, TX 78712, USA
| | - Charles J Walsby
- Department of Chemistry, Simon Fraser University, 8888 University Dr., Burnaby, BC V5A 1S6, Canada
| |
Collapse
|
14
|
Jiang L, Wang L, Zhan DS, Jiang WR, Fodjo EK, Hafez ME, Zhang YM, Zhao H, Qian RC, Li DW. Electrochemically renewable SERS sensor: A new platform for the detection of metabolites involved in peroxide production. Biosens Bioelectron 2021; 175:112918. [PMID: 33383430 DOI: 10.1016/j.bios.2020.112918] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 12/15/2020] [Accepted: 12/17/2020] [Indexed: 12/12/2022]
Abstract
The accurate detection of hydrogen peroxide (H2O2)-involved metabolites plays a significant role in the early diagnosis of metabolism-associated diseases, whereas most of current metabolite-sensing systems are often hindered by low sensitivity, interference of coexisting species, or tedious preparation. Herein, an electrochemistry-regenerated surface-enhanced Raman scattering (SERS) sensor was developed to serve as a universal platform for detecting H2O2-involved metabolites. The SERS sensor was constructed by modifying newly synthesized 2-mercaptohydroquinone (2-MHQ) molecules on the surface of gold nanoparticles (AuNPs) that were electrochemically predeposited on an ITO electrode. Metabolites were detected through the changes in the SERS spectrum as a result of the reaction of 2-MHQ with H2O2 induced by the metabolites. Combining the superiority of SERS fingerprint identification and the specificity of the related enzymatic reactions producing H2O2, the designed SERS sensor was highly selective in detecting glucose and uric acid as models of H2O2-involved metabolite with limits of detection (LODs) of 0.159 μM and 0.0857 μM, respectively. Moreover, the sensor maintained a high SERS activity even after more than 10 electrochemical regenerations within 2 min, demonstrating its effectiveness for the rapid detection of various metabolites with electrochemistry-driven regulation. Importantly, the presented SERS sensor showed considerable practicability for the detection of metabolites in real serum samples. Accordingly, the SERS sensor is a new detection platform for H2O2-involved metabolites detection in biological fluids, which may aid the early diagnosis of metabolism-related diseases.
Collapse
Affiliation(s)
- Lei Jiang
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, Joint International Laboratory for Precision Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Lu Wang
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, Joint International Laboratory for Precision Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - De-Sheng Zhan
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, Joint International Laboratory for Precision Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Wen-Rong Jiang
- Department of Laboratory Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, PR China
| | - Essy Kouadio Fodjo
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, Joint International Laboratory for Precision Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Mahmoud Elsayed Hafez
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, Joint International Laboratory for Precision Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Yan-Mei Zhang
- Department of Laboratory Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, PR China
| | - Hu Zhao
- Department of Laboratory Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, PR China
| | - Ruo-Can Qian
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, Joint International Laboratory for Precision Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, PR China.
| | - Da-Wei Li
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, Joint International Laboratory for Precision Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, PR China.
| |
Collapse
|
15
|
Zhou H, Qin F, Chen C. Designing Hypoxia-Responsive Nanotheranostic Agents for Tumor Imaging and Therapy. Adv Healthc Mater 2021; 10:e2001277. [PMID: 32985141 DOI: 10.1002/adhm.202001277] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/06/2020] [Indexed: 12/15/2022]
Abstract
Hypoxia, a common feature of most solid tumors, plays an important role in tumor proliferation, metastasis, and invasion, leading to drug, radiation, and photodynamic therapy resistance, and resulting in a sharp reduction in the disease-free survival rate of tumor patients. The lack of sufficient blood supply to the interior regions of tumors hinders the delivery of traditional drugs and contrast agents, interfering with their accumulation in the hypoxic region, and preventing efficient theranostics. Thus, there is a need for the fabrication of novel tumor theranostic agents that overcome these obstacles. Reports, in recent years, of hypoxia-responsive nanomaterials may provide with such means. In this review, a comprehensive description of the physicochemical and biological characteristics of hypoxic tumor tissues is provided, the principles of designing the hypoxia-responsive tumor theranostic agents are discussed, and the recent research into hypoxia-triggered nanomaterials is examined. Additionally, other hypoxia-associated responsive strategies, the current limitations, and future prospects for hypoxia-responsive nanotheranostic agents in tumor treatment are discussed.
Collapse
Affiliation(s)
- Huige Zhou
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology (NCNST) Beijing 100190 China
- College of Materials Sciences and Opto‐Electronic Technology University of Chinese Academy of Sciences Beijing 100049 China
- Research Unit of Nanoscience and Technology Chinese Academy of Medical Sciences Beijing 100190 China
| | - Fenglan Qin
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology (NCNST) Beijing 100190 China
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology (NCNST) Beijing 100190 China
- College of Materials Sciences and Opto‐Electronic Technology University of Chinese Academy of Sciences Beijing 100049 China
- Research Unit of Nanoscience and Technology Chinese Academy of Medical Sciences Beijing 100190 China
| |
Collapse
|
16
|
Kozsup M, Zhou X, Farkas E, Bényei AC, Bonnet S, Patonay T, Kónya K, Buglyó P. Synthesis, characterization and cytotoxicity studies of Co(III)-flavonolato complexes. J Inorg Biochem 2021; 217:111382. [PMID: 33588278 DOI: 10.1016/j.jinorgbio.2021.111382] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/27/2021] [Accepted: 01/27/2021] [Indexed: 11/29/2022]
Abstract
Hypoxia activated Co(III) complexes as prodrugs may provide with a selective delivery of cytotoxic or antibacterial compounds. Whithin this field sixteen novel Co(III) ternary complexes with the general formula [Co(4N)(flav)](ClO4)2, where 4N = tris(2-aminoethyl)amine (tren) or tris(2-pyridylmethyl)amine (tpa) and flav = deprotonated form of differently substituted flavonols have been synthesized, characterized, and their cytotoxicity assayed under both normoxic and hypoxic conditions. Molecular structures of two free flavonols and seven complexes are also reported. In all the complexes the bioligands exhibited the expected (O,O) coordination mode and the complexes showed a slightly distorted octahedral geometry. Cyclic voltammetric studies revealed that both the substituents of the flavonoles and the type of 4N donor ligands had an impact on the reduction potential of the complex. The ones containing tren demonstrated significantly higher stability than the tpa analogues, making these former compounds promising candidates for the development of hypoxia-activated prodrug complexes. Tpa complexes showed higher activity against both selected human cancer cell lines (A549, A431) than their free ligand flavonols, indicating that the anticancer activity of the bioligand can be enhanced upon complexation. However, slight hypoxia-selectivity was found only for a tren complex (11) with moderate cytotoxicity.
Collapse
Affiliation(s)
- Máté Kozsup
- Department of Inorganic and Analytical Chemistry, University of Debrecen, H-4032 Debrecen, Egyetem tér 1, Hungary
| | - XueQuan Zhou
- Leiden Institute of Chemistry, Universiteit Leiden, Einsteinweg 55, 2333 CC Leiden, the Netherlands
| | - Etelka Farkas
- Department of Inorganic and Analytical Chemistry, University of Debrecen, H-4032 Debrecen, Egyetem tér 1, Hungary
| | - Attila Cs Bényei
- Department of Physical Chemistry, University of Debrecen, H-4032 Debrecen, Egyetem tér 1, Hungary
| | - Sylvestre Bonnet
- Leiden Institute of Chemistry, Universiteit Leiden, Einsteinweg 55, 2333 CC Leiden, the Netherlands
| | - Tamás Patonay
- Department of Organic Chemistry, University of Debrecen, H-4032 Debrecen, Egyetem tér 1, Hungary
| | - Krisztina Kónya
- Department of Organic Chemistry, University of Debrecen, H-4032 Debrecen, Egyetem tér 1, Hungary
| | - Péter Buglyó
- Department of Inorganic and Analytical Chemistry, University of Debrecen, H-4032 Debrecen, Egyetem tér 1, Hungary.
| |
Collapse
|
17
|
Nagy S, Tóth E, Kacsir I, Makai A, Bényei AC, Buglyó P. Effect of the replacement of tripodal 4N donors by two 2N chelators on the redox and cytotoxic activity of maltolato and deferipronato containing Co(III) complexes. J Inorg Biochem 2021; 220:111372. [PMID: 33962134 DOI: 10.1016/j.jinorgbio.2021.111372] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 11/17/2022]
Abstract
Fourteen novel CoIII ternary complexes with the general formula [Co(4N)(2O)]X2 or [Co(2N)2(2O)]X2 where 4N = tris(2-aminoethyl)amine (tren) or tris(2-pyridylmethyl)amine (tpa); 2N = 1,10-phenantroline (phen), 2,2'-bipyridine (bipy), 1,2-diaminoethane (en) or 2-(aminomethyl)pyridine (ampy) and 2O = 1,2-dimethyl-3-hydroxy-4(1H)-pyridinone (dhpH), 3-hydroxy-2-methyl-4-pyrone (maltH) or 2-ethyl-3-hydroxy-4H-pyran-4-one (etmaltH) were synthesized, characterized and their redox features explored. Molecular structure of some selected [Co(2N)2(2O)](ClO4)2 (2N = phen, bipy, en; 2O = dhp, malt) or [Co(4N)(2O)](ClO4)2 (4N = tpa; 2O = etmalt) type complexes were assessed by X-ray diffraction and showed the expected octahedral geometry. Replacement of the 4N donor ligands by two 2N donor ligands resulted in the decrease of the cathodic peak potential of the complexes indicating easier reduction and allowing therefore the tailoring of the redox properties of the complexes. Screening of selected compounds against a human derived cancer cell line, HeLa, showed that, unlike the [Co(4N)(2O)]X2 derivatives, the complexes containing 2N = bipy or phen ligands have better anticancer activity than cisplatin or carboplatin.
Collapse
Affiliation(s)
- Sándor Nagy
- Department of Inorganic and Analytical Chemistry, University of Debrecen, H-4032 Debrecen, Egyetem tér 1, Hungary
| | - Emese Tóth
- Department of Medical Chemistry, University of Debrecen, H-4032 Debrecen, Egyetem tér 1, Hungary
| | - István Kacsir
- Department of Inorganic and Analytical Chemistry, University of Debrecen, H-4032 Debrecen, Egyetem tér 1, Hungary
| | - Attila Makai
- Department of Inorganic and Analytical Chemistry, University of Debrecen, H-4032 Debrecen, Egyetem tér 1, Hungary
| | - Attila Csaba Bényei
- Department of Physical Chemistry, University of Debrecen, H-4032 Debrecen, Egyetem tér 1, Hungary
| | - Péter Buglyó
- Department of Inorganic and Analytical Chemistry, University of Debrecen, H-4032 Debrecen, Egyetem tér 1, Hungary.
| |
Collapse
|
18
|
|
19
|
Zou R, Gong Q, Shi Z, Zheng J, Xing J, Liu C, Jiang Z, Wu A. A ZIF-90 nanoplatform loaded with an enzyme-responsive organic small-molecule probe for imaging the hypoxia status of tumor cells. NANOSCALE 2020; 12:14870-14881. [PMID: 32638794 DOI: 10.1039/d0nr02580a] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Hypoxia is one of the most common and important features occurring across a wide variety of malignancies, which can have adverse effects on the therapeutic outcomes of chemotherapy and radiotherapy. Therefore, the characterization of tumor hypoxia is of great importance in clinical tumor treatment. Herein, we firstly develop a new spectroscopic off-on probe with high sensitivity (detection limit: 5.8 ng mL-1) and good selectivity for fluorescence imaging the hypoxic status of tumor cells via its enzymatic reaction with nitroreductase in vitro and in vivo in the presence of dimethyl sulfoxide (DMSO) as a co-solvent. Inspired by the recent investigations on metal-organic frameworks (MOFs), a dual pH and ATP-responsive ZIF-90 nanoplatform was synthesized, and then PEG was post-modified through a Schiff base reaction. This allows the platform to serve as a carrier to load the hypoxia-responsive probe to investigate its response to enzyme in cells and in mice without using dimethyl sulfoxide as a co-solvent. Consequently, the two probes we synthesized here can successfully respond to nitroreductase for turn-on fluorescence imaging at a cellular level and in tumor-bearing mice. This is the first time that an enzyme-responsive organic small-molecule probe has been mounted on one of the MOFs. Our results open up a promising way for the design and application of both enzyme-responsive probes and MOFs.
Collapse
Affiliation(s)
- Ruifen Zou
- Cixi Institute of Biomedical Engineering, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices & Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Zhang Y, Cao Y, Gao T, Kuang Y, An Z, Mao Z, He Y, Yan J, Lu Z, Pei R. Tumor Microenvironment-Responsive and Catalytic Cascade-Enhanced Nanocomposite for Tumor Thermal Ablation Synergizing with Chemodynamic and Chemotherapy. ACS APPLIED BIO MATERIALS 2020; 3:3880-3893. [DOI: 10.1021/acsabm.0c00042] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Ye Zhang
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Yi Cao
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Tian Gao
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Ye Kuang
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Fujian Medical University, Fuzhou 350004, China
| | - Zhen An
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Zheng Mao
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Yilin He
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Jincong Yan
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Zhongzhong Lu
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Renjun Pei
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| |
Collapse
|
21
|
Synthesis, characterization and albumin binding capabilities of quinizarin containing ternary cobalt(III) complexes. J Inorg Biochem 2020; 204:110963. [DOI: 10.1016/j.jinorgbio.2019.110963] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 12/11/2019] [Accepted: 12/15/2019] [Indexed: 01/24/2023]
|
22
|
Wang J, Guo X, Li H, Qi H, Qian J, Yan S, Shi J, Niu W. Hydrogen Sulfide From Cysteine Desulfurase, Not 3-Mercaptopyruvate Sulfurtransferase, Contributes to Sustaining Cell Growth and Bioenergetics in E. coli Under Anaerobic Conditions. Front Microbiol 2019; 10:2357. [PMID: 31681220 PMCID: PMC6797615 DOI: 10.3389/fmicb.2019.02357] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Accepted: 09/27/2019] [Indexed: 01/09/2023] Open
Abstract
Endogenous hydrogen sulfide (H2S), which is primarily generated by 3-mercaptopyruvate sulfurtransferase (3-MST) in Escherichia coli (E. coli) under aerobic conditions, renders bacteria highly resistant to oxidative stress. However, the biosynthetic pathway and physiological role of this gas under anaerobic conditions remains largely unknown. In the present study, we demonstrate that cysteine desulfurase (IscS), not 3-MST, is the primary source of endogenous H2S in E. coli under anaerobic conditions. A significant decrease in H2S production under anaerobic conditions was observed in E. coli upon deletion of IscS, but not in 3-MST-deficient bacteria (ΔmstA). Furthermore, the H2S-producing activity of recombinant IscS using L-cysteine as a substrate exhibited an approximately 2.6-fold increase in the presence of dithiothreitol (DTT), indicating that H2S production catalyzed by IscS was greatly increased under reducing conditions. The activity of IscS was regulated under the different redox conditions and the midpoint redox potential was determined to be −329 ± 1.6 mV. Moreover, in E. coli cells H2S production from IscS is regulated under oxidative and reductive stress. A mutant E. coli (ΔiscS) strain lacking a chromosomal copy of the IscS-encoding gene iscS showed significant growth defects and low levels of ATP under both aerobic and anaerobic conditions. The growth defects could be fully restored after addition of 500 μM Na2S (an H2S donor) under anaerobic conditions, but not by the addition of cysteine, sodium sulfite or sodium sulfate. We also showed that the addition of 500 μM Na2S to culture medium stimulates ATP synthesis in the mutant E. coli (ΔiscS) strain in the logarithmic growth phase but suppresses ATP synthesis in wild-type E. coli. Our results reveal a new H2S-producing pathway in E. coli under anaerobic conditions and show that hydrogen sulfide from IscS contributes to sustaining cell growth and bioenergetics under oxygen-deficient conditions.
Collapse
Affiliation(s)
- Jun Wang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Xin Guo
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Heng Li
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Haizhen Qi
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Jing Qian
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Shasha Yan
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Junling Shi
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Weining Niu
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| |
Collapse
|
23
|
Intracellular redox potential is correlated with miRNA expression in MCF7 cells under hypoxic conditions. Proc Natl Acad Sci U S A 2019; 116:19753-19759. [PMID: 31506353 DOI: 10.1073/pnas.1909455116] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Hypoxia is a ubiquitous feature of cancers, encouraging glycolytic metabolism, proliferation, and resistance to therapy. Nonetheless, hypoxia is a poorly defined term with confounding features described in the literature. Redox biology provides an important link between the external cellular microenvironment and the cell's response to changing oxygen pressures. In this paper, we demonstrate a correlation between intracellular redox potential (measured using optical nanosensors) and the concentrations of microRNAs (miRNAs) involved in the cell's response to changes in oxygen pressure. The correlations were established using surprisal analysis (an approach derived from thermodynamics and information theory). We found that measured redox potential changes reflect changes in the free energy computed by surprisal analysis of miRNAs. Furthermore, surprisal analysis identified groups of miRNAs, functionally related to changes in proliferation and metastatic potential that played the most significant role in the cell's response to changing oxygen pressure.
Collapse
|
24
|
Taylor J, Milton J, Willett M, Wingfield J, Mahajan S. What do we actually see in intracellular SERS? Investigating nanosensor-induced variation. Faraday Discuss 2019; 205:409-428. [PMID: 28901362 DOI: 10.1039/c7fd00156h] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Plasmonic nanoparticles (NPs), predominantly gold (AuNPs), are easily internalised into cells and commonly employed as nanosensors for reporter-based and reporter-free intracellular SERS applications. While AuNPs are generally considered non-toxic to cells, many biological and toxicity studies report that exposure to NPs induces cell stress through the generation of reactive oxygen species (ROS) and the upregulated transcription of pro-inflammatory genes, which can result in severe genotoxicity and apoptosis. Despite this, the extent to which normal cellular metabolism is affected by AuNP internalisation remains a relative unknown along with the contribution of the uptake itself to the SERS spectra obtained from within so called 'healthy' cells, as indicated by traditional viability tests. This work aims to interrogate the perturbation created by treatment with AuNPs under different conditions and the corresponding effect on the SERS spectra obtained. We characterise the changes induced by varying AuNP concentrations and medium serum compositions using biochemical assays and correlate them to the corresponding intracellular reporter-free SERS spectra. The different serum conditions lead to different extents of nanoparticle internalisation. We observe that changes in SERS spectra are correlated to an increasing amount of internalisation, confirmed qualitatively and quantitatively by confocal imaging and ICP-MS analysis, respectively. We analyse spectra and characterise changes that can be attributed to nanoparticle induced changes. Thus, our study highlights a need for understanding condition-dependent NP-cell interactions and standardisation of nanoparticle treatments in order to establish the validity of intracellular SERS experiments for use in all arising applications.
Collapse
Affiliation(s)
- J Taylor
- Department of Chemistry, Institute of Life Sciences (IfLS), University of Southampton, SO17 1BJ, UK.
| | | | | | | | | |
Collapse
|
25
|
Wang T, Zhang H, Han Y, Liu H, Ren F, Zeng J, Sun Q, Li Z, Gao M. Light-Enhanced O 2-Evolving Nanoparticles Boost Photodynamic Therapy To Elicit Antitumor Immunity. ACS APPLIED MATERIALS & INTERFACES 2019; 11:16367-16379. [PMID: 30994323 DOI: 10.1021/acsami.9b03541] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Breast cancer remains to show high mortality and poor prognosis in women despite of significant progress in recent diagnosis and treatment. Herein, we report the rational design of a highly efficient ultrasmall nanotheranostic agent with excellent photodynamic therapy (PDT) performance to against breast cancer and its metastasis by eliciting antitumor immunity. The ultrasmall nanoagent (3.1 ± 0.4 nm) was fabricated from polyethylene glycol modified Cu2- xSe nanoparticles, β-cyclodextrin, and chlorin e6 under ambient conditions. The resultant nanoplatform (CS-CD-Ce6 NPs) can be passively accumulated into the tumor to exhibit dramatic antitumor efficacy through the excellent PDT effect under near-infrared irradiation. The excellent PDT performance of this nanoplatform is owing to its role as a Fenton-like Haber-Weiss catalyst for the efficient degradation of H2O2 within the tumor to release hydroxyl radicals (·OH) and very toxic singlet oxygen (1O2) under irradiation. The generated vast amounts of reactive oxygen species not only killed primary tumor cells but also elicited immunogenic cell death (ICD) to release damage-associated molecular patterns (DAMPs) and induced proinflammatory M1-macrophages polarization. Thereby, antitumor immune responses against the metastasis of breast cancer were robustly evoked. Our work demonstrates that ultrasmall Cu2- xSe nanoparticle-based nanoplatform offers a promising way to prevent cancer metastasis via immunogenic effects through its excellent PDT performance.
Collapse
Affiliation(s)
- Tingting Wang
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) , Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions , Suzhou 215123 , China
| | - Hao Zhang
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) , Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions , Suzhou 215123 , China
| | - Yaobao Han
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) , Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions , Suzhou 215123 , China
| | - Hanghang Liu
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) , Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions , Suzhou 215123 , China
| | - Feng Ren
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) , Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions , Suzhou 215123 , China
| | - Jianfeng Zeng
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) , Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions , Suzhou 215123 , China
| | - Qiao Sun
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) , Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions , Suzhou 215123 , China
| | - Zhen Li
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) , Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions , Suzhou 215123 , China
| | - Mingyuan Gao
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) , Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions , Suzhou 215123 , China
| |
Collapse
|
26
|
Kozsup M, Farkas E, Bényei AC, Kasparkova J, Crlikova H, Brabec V, Buglyó P. Synthesis, characterization and biological evaluation of Co(III) complexes with quinolone drugs. J Inorg Biochem 2019; 193:94-105. [DOI: 10.1016/j.jinorgbio.2019.01.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 01/10/2019] [Accepted: 01/11/2019] [Indexed: 11/27/2022]
|
27
|
Pan C, Li X, Sun J, Li Z, Zhang L, Qian W, Wang P, Dong J. A Multiplexed SERS-Active Microneedle for Simultaneous Redox Potential and pH Measurements in Rat Joints. ACS APPLIED BIO MATERIALS 2019; 2:2102-2108. [DOI: 10.1021/acsabm.9b00117] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Chenyan Pan
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Xiaochen Li
- Department of Orthopedics and Traumatology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Jie Sun
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Zhe Li
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Li Zhang
- Department of Orthopedics and Traumatology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Weiping Qian
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Peimin Wang
- Department of Orthopedics and Traumatology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Jian Dong
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
- Laboratory of Environment and Biosafety, Research Institute of Southeast University in Suzhou, Suzhou, 215123, China
| |
Collapse
|
28
|
Vanden-Hehir S, Tipping WJ, Lee M, Brunton VG, Williams A, Hulme AN. Raman Imaging of Nanocarriers for Drug Delivery. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E341. [PMID: 30832394 PMCID: PMC6474004 DOI: 10.3390/nano9030341] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 02/18/2019] [Accepted: 02/19/2019] [Indexed: 12/31/2022]
Abstract
The efficacy of pharmaceutical agents can be greatly improved through nanocarrier delivery. Encapsulation of pharmaceutical agents into a nanocarrier can enhance their bioavailability and biocompatibility, whilst also facilitating targeted drug delivery to specific locations within the body. However, detailed understanding of the in vivo activity of the nanocarrier-drug conjugate is required prior to regulatory approval as a safe and effective treatment strategy. A comprehensive understanding of how nanocarriers travel to, and interact with, the intended target is required in order to optimize the dosing strategy, reduce potential off-target effects, and unwanted toxic effects. Raman spectroscopy has received much interest as a mechanism for label-free, non-invasive imaging of nanocarrier modes of action in vivo. Advanced Raman imaging techniques, including coherent anti-Stokes Raman scattering (CARS) and stimulated Raman scattering (SRS), are paving the way for rigorous evaluation of nanocarrier activity at the single-cell level. This review focuses on the development of Raman imaging techniques to study organic nanocarrier delivery in cells and tissues.
Collapse
Affiliation(s)
- Sally Vanden-Hehir
- EaStCHEM School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh EH9 3FJ, UK.
| | - William J Tipping
- EaStCHEM School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh EH9 3FJ, UK.
| | - Martin Lee
- Edinburgh Cancer Research UK Centre, University of Edinburgh, Western General Hospital, Crewe Road South, Edinburgh EH4 2XR, UK.
| | - Valerie G Brunton
- Edinburgh Cancer Research UK Centre, University of Edinburgh, Western General Hospital, Crewe Road South, Edinburgh EH4 2XR, UK.
| | - Anna Williams
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh BioQuarter, 5 Little France Drive, Edinburgh EH16 4UU, UK.
| | - Alison N Hulme
- EaStCHEM School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh EH9 3FJ, UK.
| |
Collapse
|
29
|
Nguyen TD, Song MS, Ly NH, Lee SY, Joo S. Nanostars on Nanopipette Tips: A Raman Probe for Quantifying Oxygen Levels in Hypoxic Single Cells and Tumours. Angew Chem Int Ed Engl 2019; 58:2710-2714. [DOI: 10.1002/anie.201812677] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 12/05/2018] [Indexed: 12/31/2022]
Affiliation(s)
- Thanh Danh Nguyen
- Department of Information Communication, Materials, and Chemistry Convergence TechnologySoongsil University Seoul Korea
| | - Min Seok Song
- Laboratory of Veterinary PharmacologyCollege of Veterinary MedicineSeoul National University Seoul Korea
| | - Nguyễn Hoàng Ly
- Department of Information Communication, Materials, and Chemistry Convergence TechnologySoongsil University Seoul Korea
| | - So Yeong Lee
- Laboratory of Veterinary PharmacologyCollege of Veterinary MedicineSeoul National University Seoul Korea
| | - Sang‐Woo Joo
- Department of Information Communication, Materials, and Chemistry Convergence TechnologySoongsil University Seoul Korea
| |
Collapse
|
30
|
Nguyen TD, Song MS, Ly NH, Lee SY, Joo S. Nanostars on Nanopipette Tips: A Raman Probe for Quantifying Oxygen Levels in Hypoxic Single Cells and Tumours. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201812677] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Thanh Danh Nguyen
- Department of Information Communication, Materials, and Chemistry Convergence TechnologySoongsil University Seoul Korea
| | - Min Seok Song
- Laboratory of Veterinary PharmacologyCollege of Veterinary MedicineSeoul National University Seoul Korea
| | - Nguyễn Hoàng Ly
- Department of Information Communication, Materials, and Chemistry Convergence TechnologySoongsil University Seoul Korea
| | - So Yeong Lee
- Laboratory of Veterinary PharmacologyCollege of Veterinary MedicineSeoul National University Seoul Korea
| | - Sang‐Woo Joo
- Department of Information Communication, Materials, and Chemistry Convergence TechnologySoongsil University Seoul Korea
| |
Collapse
|
31
|
Gunda V, Kumar S, Dasgupta A, Singh PK. Hypoxia-Induced Metabolomic Alterations in Pancreatic Cancer Cells. Methods Mol Biol 2019; 1742:95-105. [PMID: 29330793 DOI: 10.1007/978-1-4939-7665-2_9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Hypoxic conditions in the pancreatic tumor microenvironment lead to the stabilization of hypoxia-inducible factor-1 alpha (HIF-1α), which acts as the master regulator of cancer cell metabolism. HIF-1α-mediated metabolic reprogramming results in large-scale metabolite perturbations. Characterization of the metabolic intermediates and the corresponding metabolic pathways altered by HIF-1α would facilitate the identification of therapeutic targets for hypoxic microenvironments prevalent in pancreatic ductal adenocarcinoma and other solid tumors. Targeted metabolomic approaches are versatile in quantifying multiple metabolite levels in a single platform and, thus, enable the characterization of multiple metabolite alterations regulated by HIF-1α. In this chapter, we describe a detailed metabolomic approach for characterizing the hypoxia-induced metabolomic alterations using pancreatic cancer cell lines cultured in normoxic and hypoxic conditions. We elaborate the methodology of cell culture, hypoxic exposure, metabolite extraction, and relative quantification of polar metabolites from normoxia- and hypoxia-exposed cell extracts, using a liquid chromatography-coupled tandem mass spectrometry approach. Herein, using our metabolomic data, we also present the methods for metabolomic data representation.
Collapse
Affiliation(s)
- Venugopal Gunda
- The Eppley Institute for Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - Sushil Kumar
- The Eppley Institute for Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - Aneesha Dasgupta
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Pankaj K Singh
- The Eppley Institute for Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA. .,Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA. .,Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA. .,Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
32
|
Mennerich D, Kellokumpu S, Kietzmann T. Hypoxia and Reactive Oxygen Species as Modulators of Endoplasmic Reticulum and Golgi Homeostasis. Antioxid Redox Signal 2019; 30:113-137. [PMID: 29717631 DOI: 10.1089/ars.2018.7523] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
SIGNIFICANCE Eukaryotic cells execute various functions in subcellular compartments or organelles for which cellular redox homeostasis is of importance. Apart from mitochondria, hypoxia and stress-mediated formation of reactive oxygen species (ROS) were shown to modulate endoplasmic reticulum (ER) and Golgi apparatus (GA) functions. Recent Advances: Research during the last decade has improved our understanding of disulfide bond formation, protein glycosylation and secretion, as well as pH and redox homeostasis in the ER and GA. Thus, oxygen (O2) itself, NADPH oxidase (NOX) formed ROS, and pH changes appear to be of importance and indicate the intricate balance of intercompartmental communication. CRITICAL ISSUES Although the interplay between hypoxia, ER stress, and Golgi function is evident, the existence of more than 20 protein disulfide isomerase family members and the relative mild phenotypes of, for example, endoplasmic reticulum oxidoreductin 1 (ERO1)- and NOX4-knockout mice clearly suggest the existence of redundant and alternative pathways, which remain largely elusive. FUTURE DIRECTIONS The identification of these pathways and the key players involved in intercompartmental communication needs suitable animal models, genome-wide association, as well as proteomic studies in humans. The results of those studies will be beneficial for the understanding of the etiology of diseases such as type 2 diabetes, Alzheimer's disease, and cancer, which are associated with ROS, protein aggregation, and glycosylation defects.
Collapse
Affiliation(s)
- Daniela Mennerich
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu , Oulu, Finland
| | - Sakari Kellokumpu
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu , Oulu, Finland
| | - Thomas Kietzmann
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu , Oulu, Finland
| |
Collapse
|
33
|
Liang H, Zhou Z, Luo R, Sang M, Liu B, Sun M, Qu W, Feng F, Liu W. Tumor-specific activated photodynamic therapy with an oxidation-regulated strategy for enhancing anti-tumor efficacy. Am J Cancer Res 2018; 8:5059-5071. [PMID: 30429886 PMCID: PMC6217056 DOI: 10.7150/thno.28344] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 08/29/2018] [Indexed: 12/11/2022] Open
Abstract
Photodynamic therapy relies on photosensitizers to generate cytotoxic reactive oxygen species (ROS) resulting in the apoptois of tumor cells. However, there is an antioxidant system that impedes the elevation of oxidation levels in tumor cells. Thus, photodynamic therapy may exhibit insufficient curative effects due to ungenerous reactive oxygen species levels. Herein, we describe tumor-specific activated photodynamic therapy using an oxidation-regulating strategy. Methods: We first synthesised a reactive oxygen species-sensitive amphipathic prodrug of gambogic acid-grafted hyaluronic acid (HA-GA). The hydrophobic photosensitizer chlorin e6 (Ce6) was then loaded into HA-GA by hydrophobic interactions between GA and Ce6, forming amphipathic nanomicelles (HA-GA@Ce6). The ROS-responsive behavior, cytotoxicity, cell uptake, tumor cell killing, in vivo biodistribution and in vivo anti-tumor efficacy of HA-GA@Ce6 were investigated. The in vitro and in vivo experiments were performed on 4T1 murine breast cancer cells and 4T1 tumor model. Results: We validated that the micelles of HA-GA@Ce6 showed stronger cell uptake in 4T1 tumor cells and lower cytotoxicity in normal cells compared with free Ce6 and GA, which exhibited the benefits of nanomicelles on enhancing the tumor cell acumulation and reducing the side effects on normal cells synchronously. Additionally, the cytotoxic free radicals of photodynamic therapy were generated after irradiation and the high oxidation levels activated the ROS-sensitive GA prodrug efficiently, which killed the tumor cells and depleted intracellular glutathione (GSH), thereby impairing antioxidant levels and enhancing photodynamic therapy. Conclusion: With the successfully eradicated tumor growth in vivo. Our work represents a new photodynamic therapy concept, achieving superior anti-tumor efficacy by reducing intracellular antioxidant levels.
Collapse
|
34
|
Liang D, Wu X, Hasinoff BB, Herbert DE, Tranmer GK. Evaluation of Nitrobenzyl Derivatives of Camptothecin as Anti-Cancer Agents and Potential Hypoxia Targeting Prodrugs. Molecules 2018; 23:molecules23082041. [PMID: 30111719 PMCID: PMC6222813 DOI: 10.3390/molecules23082041] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 08/14/2018] [Accepted: 08/14/2018] [Indexed: 12/12/2022] Open
Abstract
As part of our initial efforts into developing a tumor-targeting therapy, C-10 substituted derivatives of a camptothecin analog (SN-38) have been synthesized (2-, 3- and 4-nitrobenzyl) for use as potential hypoxia-activated prodrugs and evaluated for their cytotoxicity, topoisomerase I inhibition and electrochemical (reductive) properties. All three derivatives were found to possess reduced toxicity towards human leukemia K562 cells compared to SN-38, validating a condition for prodrug action. Using an MTS assay, IC50's were found to be 3.0, 25.9, 12.2 and 58.0 nM for SN-38, 2-nitro-, 3-nitro- and 4-nitrobenzyl-C10-substituted-SN-38, respectively, representing an 8-, 4- and 19-fold decrease in cytotoxicity. Using a topoisomerase I assay, one of the analogs (4-nitrobenzyl) was shown to inhibit the ability of this enzyme to relax supercoiled pBR322 DNA, at a similar concentration to the clinically-approved active metabolite SN-38. Cyclic voltammetry detailed the reductive nature of the analogs, and was used to infer the potential of these compounds to serve as hypoxia-targeting prodrugs. The electrochemical results also validated the quasi-reversible nature of the first reduction step, and served as a proof-of-principle that hypoxia-targeting prodrugs of SN-38 can participate in a redox-futile cycle, the proposed mechanism of activation and targeting. Chemical reduction of the 4-nitrobenzyl analog led to the formation/release of SN-38 and validated the prodrug ability of the C-10 substituted derivative.
Collapse
Affiliation(s)
- Dinghua Liang
- College of Pharmacy, Faculty of Health Science, University of Manitoba, Winnipeg, MB R3E 0T5, Canada.
| | - Xing Wu
- College of Pharmacy, Faculty of Health Science, University of Manitoba, Winnipeg, MB R3E 0T5, Canada.
| | - Brian B Hasinoff
- College of Pharmacy, Faculty of Health Science, University of Manitoba, Winnipeg, MB R3E 0T5, Canada.
| | - David E Herbert
- Department of Chemistry, Faculty of Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
| | - Geoffrey K Tranmer
- College of Pharmacy, Faculty of Health Science, University of Manitoba, Winnipeg, MB R3E 0T5, Canada.
- Department of Chemistry, Faculty of Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
| |
Collapse
|
35
|
Sun J, Han S, Wang Y, Zhao G, Qian W, Dong J. Detection of Redox State Evolution during Wound Healing Process Based on a Redox-Sensitive Wound Dressing. Anal Chem 2018; 90:6660-6665. [PMID: 29757626 DOI: 10.1021/acs.analchem.8b00471] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
To detect the redox state evolution during wound healing process, a redox-sensitive surface-enhanced Raman scattering (SERS) probe was constructed by attaching anthraquinone as a redox-sensitive molecule onto gold nanoshells, and the redox-sensitive SERS probes were loaded on one surface of a chitosan membrane as a redox-sensitive wound dressing. The redox-sensitive wound dressing covered an acute wound as both a wound dressing and a redox state sensor. The spatiotemporal evolution of the redox states of the healing wound was obtained by collecting the SERS spectra of the SERS probes in situ and noninvasively. The domains with the lowest redox potential moved from the edge to the center of a wound during normal wound healing process, and high concentration of glucose blocked the movement of the domains and the healing process. The redox-sensitive wound dressing and the method of detecting redox states of the wound provide a new path for detection in vivo, which would benefit the understanding and therapy of wound healing and other pathophysiological processes.
Collapse
Affiliation(s)
- Jie Sun
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education , Southeast University , Nanjing , 210018 China
| | - Shuyan Han
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education , Southeast University , Nanjing , 210018 China
| | - Ying Wang
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education , Southeast University , Nanjing , 210018 China
| | - Guanyu Zhao
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education , Southeast University , Nanjing , 210018 China
| | - Weiping Qian
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education , Southeast University , Nanjing , 210018 China
| | - Jian Dong
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education , Southeast University , Nanjing , 210018 China.,Laboratory of Environment and Biosafety , Research Institute of Southeast University in Suzhou , Suzhou , 215123 China
| |
Collapse
|
36
|
Zhang YH, Qiu WX, Zhang M, Zhang L, Zhang XZ. MnO 2 Motor: A Prospective Cancer-Starving Therapy Promoter. ACS APPLIED MATERIALS & INTERFACES 2018; 10:15030-15039. [PMID: 29633614 DOI: 10.1021/acsami.8b01818] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Here, a tumor-targeted MnO2 motor nanosystem (designed as MG/HA) was constructed by the assembly of glucose oxidase (GOD), manganese dioxide (MnO2), and glycoprotein CD44-targeting polymer hyaluronic acid (HA) to elevate cancer-starving therapy efficacy in solid tumor. Upon the specific uptake of MG/HA by CD44 overexpressed cancer cells, GOD catalyzed the oxidation of glucose into gluconic acid and hydrogen peroxide (H2O2) accompanying the consumption of oxygen (O2). Meanwhile, MnO2 would react with H2O2 and acid to generate O2, which is in turn supplied to the glucose-depletion process, running like a loop. As a result, MnO2 is displayed as a motor to promote the rate of glucose depletion that contributed to the starving therapy. In contrast to G/HA, MG/HA could not only achieve effective glucose consumption to depress cancer progression, but also alleviate hypoxia and reduce the expression of Glut1 to inhibit the metabolism for further restraining the tumor aggressiveness and metastasis. The concept of MnO2 motor shows a promising prospect to overcome the restriction of the starving therapy.
Collapse
Affiliation(s)
- Yao-Hui Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry , Wuhan University , Wuhan 430072 , P. R. China
| | - Wen-Xiu Qiu
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry , Wuhan University , Wuhan 430072 , P. R. China
| | - Mingkang Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry , Wuhan University , Wuhan 430072 , P. R. China
| | - Lu Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry , Wuhan University , Wuhan 430072 , P. R. China
| | - Xian-Zheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry , Wuhan University , Wuhan 430072 , P. R. China
| |
Collapse
|
37
|
He S, Kyaw YME, Tan EKM, Bekale L, Kang MWC, Kim SSY, Tan I, Lam KP, Kah JCY. Quantitative and Label-Free Detection of Protein Kinase A Activity Based on Surface-Enhanced Raman Spectroscopy with Gold Nanostars. Anal Chem 2018; 90:6071-6080. [PMID: 29697974 DOI: 10.1021/acs.analchem.7b05417] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The activity of extracellular protein kinase A (PKA) is known to be a biomarker for cancer. However, conventional PKA assays based on colorimetric, radioactive, and fluorometric techniques suffer from intensive labeling-related preparations, background interference, photobleaching, and safety concerns. While surface-enhanced Raman spectroscopy (SERS)-based assays have been developed for various enzymes to address these limitations, their use in probing PKA activity is limited due to subtle changes in the Raman spectrum with phosphorylation. Here, we developed a robust colloidal SERS-based scheme for label-free quantitative measurement of PKA activity using gold nanostars (AuNS) as a SERS substrate functionalized with bovine serum albumin (BSA)-kemptide (Kem) bioconjugate (AuNS-BSA-Kem), where BSA conferred colloidal stability and Kem is a high-affinity peptide substrate for PKA. By performing principle component analysis (PCA) on the SERS spectrum, we identified two Raman peaks at 725 and 1395 cm-1, whose ratiometric intensity change provided a quantitative measure of Kem phosphorylation by PKA in vitro and allowed us to distinguish MDA-MB-231 and MCF-7 breast cancer cells known to overexpress extracellular PKA catalytic subunits from noncancerous human umbilical vein endothelial cells (HUVEC) based on their PKA activity in cell culture supernatant. The outcome demonstrated potential application of AuNS-BSA-Kem as a SERS probe for cancer screening based on PKA activity.
Collapse
Affiliation(s)
- Shuai He
- Department of Biomedical Engineering , National University of Singapore , Singapore 117583
| | - Yi Mon Ei Kyaw
- Department of Biomedical Engineering , National University of Singapore , Singapore 117583
| | | | - Laurent Bekale
- Department of Biomedical Engineering , National University of Singapore , Singapore 117583
| | - Malvin Wei Cherng Kang
- Department of Biomedical Engineering , National University of Singapore , Singapore 117583
| | - Susana Soo-Yeon Kim
- Bioprocessing Technology Institute, Agency for Science, Technology and Research , Singapore 138668
| | - Ivan Tan
- Bioprocessing Technology Institute, Agency for Science, Technology and Research , Singapore 138668
| | - Kong-Peng Lam
- Bioprocessing Technology Institute, Agency for Science, Technology and Research , Singapore 138668
| | - James Chen Yong Kah
- Department of Biomedical Engineering , National University of Singapore , Singapore 117583.,NUS Graduate School for Integrative Sciences and Engineering , National University of Singapore , Singapore 117456
| |
Collapse
|
38
|
Fisher KM, McLeish JA, Jamieson LE, Jiang J, Hopgood JR, McLaughlin S, Donaldson K, Campbell CJ. SERS as a tool for in vitro toxicology. Faraday Discuss 2018; 187:501-20. [PMID: 27032696 DOI: 10.1039/c5fd00216h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Measuring markers of stress such as pH and redox potential are important when studying toxicology in in vitro models because they are markers of oxidative stress, apoptosis and viability. While surface enhanced Raman spectroscopy is ideally suited to the measurement of redox potential and pH in live cells, the time-intensive nature and perceived difficulty in signal analysis and interpretation can be a barrier to its broad uptake by the biological community. In this paper we detail the development of signal processing and analysis algorithms that allow SERS spectra to be automatically processed so that the output of the processing is a pH or redox potential value. By automating signal processing we were able to carry out a comparative evaluation of the toxicology of silver and zinc oxide nanoparticles and correlate our findings with qPCR analysis. The combination of these two analytical techniques sheds light on the differences in toxicology between these two materials from the perspective of oxidative stress.
Collapse
Affiliation(s)
- Kate M Fisher
- EaStCHEM, School of Chemistry, University of Edinburgh, EH9 3FJ, UK.
| | - Jennifer A McLeish
- MRC Centre for Inflammation Research, ELEGI Colt Laboratory, Queen's Medical Research Institute, University of Edinburgh, EH16 4TJ, UK
| | - Lauren E Jamieson
- EaStCHEM, School of Chemistry, University of Edinburgh, EH9 3FJ, UK.
| | - Jing Jiang
- EaStCHEM, School of Chemistry, University of Edinburgh, EH9 3FJ, UK.
| | - James R Hopgood
- Institute for Digital Communications, Joint Research Institute for Signal and Image Processing, School of Engineering, University of Edinburgh, EH9 3JL, UK
| | - Stephen McLaughlin
- School of Engineering and Physical Sciences, Heriot Watt University, Edinburgh, EH14 4AS, UK
| | - Ken Donaldson
- MRC Centre for Inflammation Research, ELEGI Colt Laboratory, Queen's Medical Research Institute, University of Edinburgh, EH16 4TJ, UK
| | - Colin J Campbell
- EaStCHEM, School of Chemistry, University of Edinburgh, EH9 3FJ, UK.
| |
Collapse
|
39
|
Cialla-May D, Zheng XS, Weber K, Popp J. Recent progress in surface-enhanced Raman spectroscopy for biological and biomedical applications: from cells to clinics. Chem Soc Rev 2018. [PMID: 28639667 DOI: 10.1039/c7cs00172j] [Citation(s) in RCA: 311] [Impact Index Per Article: 44.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The application of surface-enhanced Raman spectroscopy (SERS) in biological and biomedical detection schemes is feasible due to its excellent molecular specificity and high sensitivity as well as the capability of SERS to be performed in complex biological compositions. SERS-based investigation of cells, which are the basic structure and functional unit of organisms, represents the starting point of this review. It is demonstrated that SERS provides a deep understanding of living cells as well as their microenvironment which is needed to assess the development of diseases. The clinical relevance of SERS is proved by its application for the detection of cancer cells and tumour margins under in vivo conditions and examples for theranostic approaches are discussed. This review article provides a comprehensive overview of the recent progress within the last 3 years.
Collapse
Affiliation(s)
- D Cialla-May
- Friedrich Schiller University Jena, Institute of Physical Chemical and Abbe Center of Photonics, Helmholtzweg 4, 07745 Jena, Germany.
| | | | | | | |
Collapse
|
40
|
Niu W, Wang J, Qian J, Wang M, Wu P, Chen F, Yan S. Allosteric control of human cystathionine β-synthase activity by a redox active disulfide bond. J Biol Chem 2018; 293:2523-2533. [PMID: 29298893 PMCID: PMC5818181 DOI: 10.1074/jbc.ra117.000103] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 12/27/2017] [Indexed: 01/10/2023] Open
Abstract
Cystathionine β-synthase (CBS) is the central enzyme in the trans-sulfuration pathway that converts homocysteine to cysteine. It is also one of the three major enzymes involved in the biogenesis of H2S. CBS is a complex protein with a modular three-domain architecture, the central domain of which contains a 272CXXC275 motif whose function has yet to be determined. In the present study, we demonstrated that the CXXC motif exists in oxidized and reduced states in the recombinant enzyme by mass spectroscopic analysis and a thiol labeling assay. The activity of reduced CBS is ∼2-3-fold greater than that of the oxidized enzyme, and substitution of either cysteine in CXXC motif leads to a loss of redox sensitivity. The Cys272-Cys275 disulfide bond in CBS has a midpoint potential of -314 mV at pH 7.4. Additionally, the CXXC motif also exists in oxidized and reduced states in HEK293 cells under oxidative and reductive conditions, and stressing these cells with DTT results in more reduced enzyme and a concomitant increase in H2S production in live HEK293 cells as determined using a H2S fluorescent probe. By contrast, incubation of cells with aminooxyacetic acid, an inhibitor of CBS and cystathionine γ-lyase, eliminated the increase of H2S production after the cells were exposed to DTT. These findings indicate that CBS is post-translationally regulated by a redox-active disulfide bond in the CXXC motif. The results also demonstrate that CBS-derived H2S production is increased in cells under reductive stress conditions.
Collapse
Affiliation(s)
- Weining Niu
- From the School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Jun Wang
- From the School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Jing Qian
- From the School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Mengying Wang
- From the School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Ping Wu
- From the School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Fei Chen
- From the School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Shasha Yan
- From the School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
41
|
Shen Y, Liang L, Zhang S, Huang D, Zhang J, Xu S, Liang C, Xu W. Organelle-targeting surface-enhanced Raman scattering (SERS) nanosensors for subcellular pH sensing. NANOSCALE 2018; 10:1622-1630. [PMID: 29239454 DOI: 10.1039/c7nr08636a] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The pH value of subcellular organelles in living cells is a significant parameter in the physiological activities of cells. Its abnormal fluctuations are commonly believed to be associated with cancers and other diseases. Herein, a series of surface-enhanced Raman scattering (SERS) nanosensors with high sensitivity and targeting function was prepared for the quantification and monitoring of pH values in mitochondria, nucleus, and lysosome. The nanosensors were composed of gold nanorods (AuNRs) functionalized with a pH-responsive molecule (4-mercaptopyridine, MPy) and peptides that could specifically deliver the AuNRs to the targeting subcellular organelles. The localization of our prepared nanoprobes in specific organelles was confirmed by super-high resolution fluorescence imaging and bio-transmission electron microscopy (TEM) methods. By the targeting ability, the pH values of the specific organelles can be determined by monitoring the vibrational spectral changes of MPy with different pH values. Compared to the cases of reported lysosome and cytoplasm SERS pH sensors, more accurate pH values of mitochondria and nucleus, which could be two additional intracellular tracers for subcellular microenvironments, were disclosed by this SERS approach, further improving the accuracy of discrimination of related diseases. Our sensitive SERS strategy can also be employed to explore crucial physiological and biological processes that are related to subcellular pH fluctuations.
Collapse
Affiliation(s)
- Yanting Shen
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, Jilin University, Changchun 130012, China.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Prodrug-embedded angiogenic vessel-targeting nanoparticle: A positive feedback amplifier in hypoxia-induced chemo-photo therapy. Biomaterials 2017; 144:188-198. [DOI: 10.1016/j.biomaterials.2017.08.032] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 08/15/2017] [Accepted: 08/16/2017] [Indexed: 12/19/2022]
|
43
|
Kuku G, Altunbek M, Culha M. Surface-Enhanced Raman Scattering for Label-Free Living Single Cell Analysis. Anal Chem 2017; 89:11160-11166. [DOI: 10.1021/acs.analchem.7b03211] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Gamze Kuku
- Department of Genetics and
Bioengineering, Yeditepe University, 34755, Istanbul, Turkey
| | - Mine Altunbek
- Department of Genetics and
Bioengineering, Yeditepe University, 34755, Istanbul, Turkey
| | - Mustafa Culha
- Department of Genetics and
Bioengineering, Yeditepe University, 34755, Istanbul, Turkey
| |
Collapse
|
44
|
Liu LH, Zhang YH, Qiu WX, Zhang L, Gao F, Li B, Xu L, Fan JX, Li ZH, Zhang XZ. Dual-Stage Light Amplified Photodynamic Therapy against Hypoxic Tumor Based on an O 2 Self-Sufficient Nanoplatform. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13:1701621. [PMID: 28783253 DOI: 10.1002/smll.201701621] [Citation(s) in RCA: 169] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 06/19/2017] [Indexed: 05/23/2023]
Abstract
Tumor hypoxia severely limits the efficacy of traditional photodynamic therapy (PDT). Here, a liposome-based nanoparticle (designated as LipoMB/CaO2 ) with O2 self-sufficient property for dual-stage light-driven PDT is demonstrated to address this problem. Through a short time irradiation, 1 O2 activated by the photosensitizer methylene blue (MB) can induce lipid peroxidation to break the liposome, and enlarge the contact area of CaO2 with H2 O, resulting in accelerated O2 production. Accelerated O2 level further regulates hypoxic tumor microenvironment and in turn improves 1 O2 generation by MB under another long time irradiation. In vitro and in vivo experiments also demonstrate the superior competence of LipoMB/CaO2 to alleviate tumor hypoxia, suppress tumor growth and antitumor metastasis with low side-effect. The O2 self-sufficient LipoMB/CaO2 nanoplatform with dual-stage light manipulation is a successful attempt for PDT against hypoxic tumor.
Collapse
Affiliation(s)
- Li-Han Liu
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Yao-Hui Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Wen-Xiu Qiu
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Lu Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Fan Gao
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Bin Li
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Lu Xu
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Jin-Xian Fan
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Zi-Hao Li
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Xian-Zheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, P. R. China
| |
Collapse
|
45
|
Jin X, Khlebtsov BN, Khanadeev VA, Khlebtsov NG, Ye J. Rational Design of Ultrabright SERS Probes with Embedded Reporters for Bioimaging and Photothermal Therapy. ACS APPLIED MATERIALS & INTERFACES 2017; 9:30387-30397. [PMID: 28825458 DOI: 10.1021/acsami.7b08733] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Plasmonic nanoparticles can be utilized as surface-enhanced Raman scattering (SERS) probes for bioimaging and as photothermal (PT) agents for cancer therapy. Typically, their SERS and PT efficiencies reach maximal values under the on-resonant condition, when the excitation wavelength overlaps the localized surface plasmon resonance (LSPR) wavelength preferably in the near-infrared (NIR) biological window. However, the photogenerated heat may inevitably disturb or even destroy biological samples during the imaging process. Herein, we develop ultrabright SERS probes composed of metallic Au@Ag core-shell rodlike nanomatryoshkas (RNMs) with embedded Raman reporters. By rationally controlling the Ag shell thickness, the LSPR of RNMs can be tuned from UV to NIR range, resulting in highly tunable SERS and PT properties. As bright NIR SERS imaging nanoprobes, RNMs with a thick Ag shell are designed for minimal PT damage to the biological targets under the off-resonance condition, as illustrated through monitoring the changes in mitochondrial membrane potential of cancer cells during SERS imaging procedure. By contrast, RNMs with a thin Ag shell are designed as multifunctional NIR theranostic probes that combine enhanced photothermal therapy capability, as exemplified by efficient PT killing of cancer cells, with reduced yet still efficient imaging properties at the on-resonance excitation.
Collapse
Affiliation(s)
| | - Boris N Khlebtsov
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences , 13 Prospekt Entuziastov, Saratov 410049, Russia
| | - Vitaly A Khanadeev
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences , 13 Prospekt Entuziastov, Saratov 410049, Russia
| | - Nikolai G Khlebtsov
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences , 13 Prospekt Entuziastov, Saratov 410049, Russia
- Saratov National Research State University , 83 Ulitsa Astrakhanskaya, Saratov 410012, Russia
| | | |
Collapse
|
46
|
Jamieson LE, Asiala SM, Gracie K, Faulds K, Graham D. Bioanalytical Measurements Enabled by Surface-Enhanced Raman Scattering (SERS) Probes. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2017; 10:415-437. [PMID: 28301754 DOI: 10.1146/annurev-anchem-071015-041557] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Since its discovery in 1974, surface-enhanced Raman scattering (SERS) has gained momentum as an important tool in analytical chemistry. SERS is used widely for analysis of biological samples, ranging from in vitro cell culture models, to ex vivo tissue and blood samples, and direct in vivo application. New insights have been gained into biochemistry, with an emphasis on biomolecule detection, from small molecules such as glucose and amino acids to larger biomolecules such as DNA, proteins, and lipids. These measurements have increased our understanding of biological systems, and significantly, they have improved diagnostic capabilities. SERS probes display unique advantages in their detection sensitivity and multiplexing capability. We highlight key considerations that are required when performing bioanalytical SERS measurements, including sample preparation, probe selection, instrumental configuration, and data analysis. Some of the key bioanalytical measurements enabled by SERS probes with application to in vitro, ex vivo, and in vivo biological environments are discussed.
Collapse
Affiliation(s)
- Lauren E Jamieson
- Centre for Molecular Nanometrology, WestCHEM, Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, Glasgow, G1 1RD, United Kingdom;
| | - Steven M Asiala
- Centre for Molecular Nanometrology, WestCHEM, Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, Glasgow, G1 1RD, United Kingdom;
| | - Kirsten Gracie
- Centre for Molecular Nanometrology, WestCHEM, Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, Glasgow, G1 1RD, United Kingdom;
| | - Karen Faulds
- Centre for Molecular Nanometrology, WestCHEM, Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, Glasgow, G1 1RD, United Kingdom;
| | - Duncan Graham
- Centre for Molecular Nanometrology, WestCHEM, Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, Glasgow, G1 1RD, United Kingdom;
| |
Collapse
|
47
|
Investigating the Origins of Toxic Response in TiO₂ Nanoparticle-Treated Cells. NANOMATERIALS 2017; 7:nano7040083. [PMID: 28398241 PMCID: PMC5408175 DOI: 10.3390/nano7040083] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 04/03/2017] [Accepted: 04/05/2017] [Indexed: 01/08/2023]
Abstract
Titanium dioxide nanoparticles (TiO2 NPs) are widely used in sunscreens, cosmetics and body implants, and this raises toxicity concerns. Although a large number of reports claim that they are safe to use, others claim that they induce reactive oxygen species formation and can be carcinogenic. In this study, the origins of toxic response to TiO2 NPs were investigated by using Surface-enhanced Raman spectroscopy (SERS) which provides multidimensional information on the cellular dynamics at single cell level without any requirement for cell fixation. Three cell lines of vein (HUVEC), lung carcinoma (A549) and skin (L929) origin were tested for their toxic response upon exposure to 20, 40, 80 and 160 µg/mL anatase-TiO2 NPs for 24 h. It was demonstrated that the level of toxic response is both cell line and dose-dependent. L929 fibroblasts were the most resistant cell line to oxidative stress whereas in HUVEC and A549, cell lines collagen and lipid deformation were observed, respectively.
Collapse
|
48
|
Ember KJI, Hoeve MA, McAughtrie SL, Bergholt MS, Dwyer BJ, Stevens MM, Faulds K, Forbes SJ, Campbell CJ. Raman spectroscopy and regenerative medicine: a review. NPJ Regen Med 2017; 2:12. [PMID: 29302348 PMCID: PMC5665621 DOI: 10.1038/s41536-017-0014-3] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 02/27/2017] [Accepted: 03/06/2017] [Indexed: 01/22/2023] Open
Abstract
The field of regenerative medicine spans a wide area of the biomedical landscape-from single cell culture in laboratories to human whole-organ transplantation. To ensure that research is transferrable from bench to bedside, it is critical that we are able to assess regenerative processes in cells, tissues, organs and patients at a biochemical level. Regeneration relies on a large number of biological factors, which can be perturbed using conventional bioanalytical techniques. A versatile, non-invasive, non-destructive technique for biochemical analysis would be invaluable for the study of regeneration; and Raman spectroscopy is a potential solution. Raman spectroscopy is an analytical method by which chemical data are obtained through the inelastic scattering of light. Since its discovery in the 1920s, physicists and chemists have used Raman scattering to investigate the chemical composition of a vast range of both liquid and solid materials. However, only in the last two decades has this form of spectroscopy been employed in biomedical research. Particularly relevant to regenerative medicine are recent studies illustrating its ability to characterise and discriminate between healthy and disease states in cells, tissue biopsies and in patients. This review will briefly outline the principles behind Raman spectroscopy and its variants, describe key examples of its applications to biomedicine, and consider areas of regenerative medicine that would benefit from this non-invasive bioanalytical tool.
Collapse
Affiliation(s)
- Katherine J. I. Ember
- 0000 0004 1936 7988grid.4305.2School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ UK
- 0000 0004 1936 7988grid.4305.2MRC Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh, EH16 4UU UK
| | - Marieke A. Hoeve
- 0000 0004 1936 7988grid.4305.2MRC Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh, EH16 4UU UK
| | - Sarah L. McAughtrie
- 0000 0004 1936 7988grid.4305.2School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ UK
| | - Mads S. Bergholt
- 0000 0001 2113 8111grid.7445.2Department of Materials, Imperial College London, London, SW7 2AZ UK
- 0000 0001 2113 8111grid.7445.2Department of Bioengineering, Imperial College London, London, SW7 2AZ UK
- 0000 0001 2113 8111grid.7445.2Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ UK
| | - Benjamin J. Dwyer
- 0000 0004 1936 7988grid.4305.2MRC Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh, EH16 4UU UK
| | - Molly M. Stevens
- 0000 0001 2113 8111grid.7445.2Department of Materials, Imperial College London, London, SW7 2AZ UK
- 0000 0001 2113 8111grid.7445.2Department of Bioengineering, Imperial College London, London, SW7 2AZ UK
- 0000 0001 2113 8111grid.7445.2Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ UK
| | - Karen Faulds
- 0000000121138138grid.11984.35Department of Pure and Applied Chemistry, University of Strathclyde, Technology and Innovation Building, 99 George Street, Glasgow, G1 1RD UK
| | - Stuart J. Forbes
- 0000 0004 1936 7988grid.4305.2MRC Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh, EH16 4UU UK
| | - Colin J. Campbell
- 0000 0004 1936 7988grid.4305.2School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ UK
| |
Collapse
|
49
|
Zheng DW, Li B, Li CX, Fan JX, Lei Q, Li C, Xu Z, Zhang XZ. Carbon-Dot-Decorated Carbon Nitride Nanoparticles for Enhanced Photodynamic Therapy against Hypoxic Tumor via Water Splitting. ACS NANO 2016; 10:8715-22. [PMID: 27532320 DOI: 10.1021/acsnano.6b04156] [Citation(s) in RCA: 429] [Impact Index Per Article: 47.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Hypoxia, a typical feature of solid tumors, remarkably restricts the efficiency of photodynamic therapy (PDT). Here, a carbon nitride (C3N4)-based multifunctional nanocomposite (PCCN) for light-driven water splitting was used to solve this problem. Carbon dots were first doped with C3N4 to enhance its red region absorption because red light could be used to trigger the in vivo water splitting process. Then, a polymer containing a protoporphyrin photosensitizer, a polyethylene glycol segment, and a targeting Arg-Gly-Asp motif was synthesized and introduced to carbon-dot-doped C3N4 nanoparticles. In vitro study showed that PCCN, thus obtained, could increase the intracellular O2 concentration and improve the reactive oxygen species generation in both hypoxic and normoxic environments upon light irradiation. Cell viability assay demonstrated that PCCN fully reversed the hypoxia-triggered PDT resistance, presenting a satisfactory growth inhibition of cancer cells in an O2 concentration of 1%. In vivo experiments also indicated that PCCN had superior ability to overcome tumor hypoxia. The use of water splitting materials exhibited great potential to improve the intratumoral oxygen level and ultimately reverse the hypoxia-triggered PDT resistance and tumor metastasis.
Collapse
Affiliation(s)
- Di-Wei Zheng
- Key Laboratory of Biomedical Polymers of Ministry of Education, Institute for Advanced Studies (IAS), Department of Chemistry, Wuhan University , Wuhan 430072, P.R. China
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory for the Green Preparation and Application of Functional Materials of Ministry of Education, Hubei University , Wuhan, Hubei 430062, P.R. China
| | - Bin Li
- Key Laboratory of Biomedical Polymers of Ministry of Education, Institute for Advanced Studies (IAS), Department of Chemistry, Wuhan University , Wuhan 430072, P.R. China
| | - Chu-Xin Li
- Key Laboratory of Biomedical Polymers of Ministry of Education, Institute for Advanced Studies (IAS), Department of Chemistry, Wuhan University , Wuhan 430072, P.R. China
| | - Jin-Xuan Fan
- Key Laboratory of Biomedical Polymers of Ministry of Education, Institute for Advanced Studies (IAS), Department of Chemistry, Wuhan University , Wuhan 430072, P.R. China
| | - Qi Lei
- Key Laboratory of Biomedical Polymers of Ministry of Education, Institute for Advanced Studies (IAS), Department of Chemistry, Wuhan University , Wuhan 430072, P.R. China
| | - Cao Li
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory for the Green Preparation and Application of Functional Materials of Ministry of Education, Hubei University , Wuhan, Hubei 430062, P.R. China
| | - Zushun Xu
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory for the Green Preparation and Application of Functional Materials of Ministry of Education, Hubei University , Wuhan, Hubei 430062, P.R. China
| | - Xian-Zheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education, Institute for Advanced Studies (IAS), Department of Chemistry, Wuhan University , Wuhan 430072, P.R. China
| |
Collapse
|
50
|
Jamieson LE, Camus VL, Bagnaninchi PO, Fisher KM, Stewart GD, Nailon WH, McLaren DB, Harrison DJ, Campbell CJ. Targeted SERS nanosensors measure physicochemical gradients and free energy changes in live 3D tumor spheroids. NANOSCALE 2016; 8:16710-16718. [PMID: 27714168 DOI: 10.1039/c6nr06031e] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Use of multicellular tumor spheroids (MTS) to investigate therapies has gained impetus because they have potential to mimic factors including zonation, hypoxia and drug-resistance. However, analysis remains difficult and often destroys 3D integrity. Here we report an optical technique using targeted nanosensors that allows in situ 3D mapping of redox potential gradients whilst retaining MTS morphology and function. The magnitude of the redox potential gradient can be quantified as a free energy difference (ΔG) and used as a measurement of MTS viability. We found that by delivering different doses of radiotherapy to MTS we could correlate loss of ΔG with increasing therapeutic dose. In addition, we found that resistance to drug therapy was indicated by an increase in ΔG. This robust and reproducible technique allows interrogation of an in vitro tumor-model's bioenergetic response to therapy, indicating its potential as a tool for therapy development.
Collapse
Affiliation(s)
- Lauren E Jamieson
- EaStCHEM, School of Chemistry, University of Edinburgh, Edinburgh, EH9 3FJ, UK.
| | - Victoria L Camus
- EaStCHEM, School of Chemistry, University of Edinburgh, Edinburgh, EH9 3FJ, UK.
| | | | - Kate M Fisher
- EaStCHEM, School of Chemistry, University of Edinburgh, Edinburgh, EH9 3FJ, UK.
| | - Grant D Stewart
- Academic Urology Group, University of Cambridge, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| | - William H Nailon
- Edinburgh Radiation Research Collaborative, Department of Oncology Physics, Western General Hospital, Edinburgh EH4 2U, UK and School of Engineering, University of Edinburgh, Edinburgh, EH9 3JL, UK
| | - Duncan B McLaren
- Edinburgh Radiation Research Collaborative, Edinburgh Cancer Centre, Western General Hospital, Edinburgh EH4 2U, UK
| | | | - Colin J Campbell
- EaStCHEM, School of Chemistry, University of Edinburgh, Edinburgh, EH9 3FJ, UK.
| |
Collapse
|