1
|
Dinda S, Ghosh D, Govindaraju T. Cooperative dissolution of peptidomimetic vesicles and amyloid β fibrils. NANOSCALE 2024; 16:2993-3005. [PMID: 38259156 DOI: 10.1039/d3nr04847k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
The aggregation of amyloid proteins in the brain is a significant neurotoxic event that contributes to neurodegenerative disorders. The aggregation of amyloid beta (Aβ), particularly Aβ42 monomers, into various forms such as oligomers, protofibrils, fibrils, and amyloid plaques is a key pathological feature in Alzheimer's disease. As a result, Aβ42 is a primary target and the development of molecular strategies for the dissolution of Aβ42 aggregates is considered a promising approach to mitigating Alzheimer's disease pathology. A set of pyrene-conjugated peptidomimetics derived from Aβ14-23 (AkdcPy, AkdmPy, and AkdnPy) by incorporating an unnatural amino acid [kd: cyclo(Lys-Asp)] were studied for their ability to modulate Aβ42 aggregation. AkdcPy and AkdmPy formed vesicular structures in aqueous media. The vesicles of AkdmPy loaded with the neuroprotective compound berberine (Ber), dissipated mutually in the presence of preformed Aβ42 fibrils. During this process, the active drug Ber was released. This work is expected to inspire the development of drug-loaded peptidomimetic-based therapeutic formulations to modulate disorders associated with amyloid toxicity.
Collapse
Affiliation(s)
- Soumik Dinda
- Bioorganic Chemistry Laboratory, New Chemistry Unit and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P.O., Bengaluru 560064, Karnataka, India.
| | - Debasis Ghosh
- Bioorganic Chemistry Laboratory, New Chemistry Unit and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P.O., Bengaluru 560064, Karnataka, India.
| | - Thimmaiah Govindaraju
- Bioorganic Chemistry Laboratory, New Chemistry Unit and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P.O., Bengaluru 560064, Karnataka, India.
| |
Collapse
|
2
|
Kapat K, Kumbhakarn S, Sable R, Gondane P, Takle S, Maity P. Peptide-Based Biomaterials for Bone and Cartilage Regeneration. Biomedicines 2024; 12:313. [PMID: 38397915 PMCID: PMC10887361 DOI: 10.3390/biomedicines12020313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/21/2024] [Accepted: 01/23/2024] [Indexed: 02/25/2024] Open
Abstract
The healing of osteochondral defects (OCDs) that result from injury, osteochondritis, or osteoarthritis and bear lesions in the cartilage and bone, pain, and loss of joint function in middle- and old-age individuals presents challenges to clinical practitioners because of non-regenerative cartilage and the limitations of current therapies. Bioactive peptide-based osteochondral (OC) tissue regeneration is becoming more popular because it does not have the immunogenicity, misfolding, or denaturation problems associated with original proteins. Periodically, reviews are published on the regeneration of bone and cartilage separately; however, none of them addressed the simultaneous healing of these tissues in the complicated heterogeneous environment of the osteochondral (OC) interface. As regulators of cell adhesion, proliferation, differentiation, angiogenesis, immunomodulation, and antibacterial activity, potential therapeutic strategies for OCDs utilizing bone and cartilage-specific peptides should be examined and investigated. The main goal of this review was to study how they contribute to the healing of OCDs, either alone or in conjunction with other peptides and biomaterials.
Collapse
Affiliation(s)
- Kausik Kapat
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research Kolkata, 168, Maniktala Main Road, Kankurgachi, Kolkata 700054, West Bengal, India
| | - Sakshi Kumbhakarn
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research Kolkata, 168, Maniktala Main Road, Kankurgachi, Kolkata 700054, West Bengal, India
| | - Rahul Sable
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research Kolkata, 168, Maniktala Main Road, Kankurgachi, Kolkata 700054, West Bengal, India
| | - Prashil Gondane
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research Kolkata, 168, Maniktala Main Road, Kankurgachi, Kolkata 700054, West Bengal, India
| | - Shruti Takle
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research Kolkata, 168, Maniktala Main Road, Kankurgachi, Kolkata 700054, West Bengal, India
| | - Pritiprasanna Maity
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
3
|
Sugiura K, Sawada T, Hata Y, Tanaka H, Serizawa T. Distinguishing anti-PEG antibodies by specificity for the PEG terminus using nanoarchitectonics-based antibiofouling cello-oligosaccharide platforms. J Mater Chem B 2024; 12:650-657. [PMID: 38088066 DOI: 10.1039/d3tb01723k] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
The conjugation of poly(ethylene glycol) (PEG) to therapeutic proteins or nanoparticles is a widely used pharmaceutical strategy to improve their therapeutic efficacy. However, conjugation can make PEG immunogenic and induce the production of anti-PEG antibodies, which decreases both the therapeutic efficacy after repeated dosing and clinical safety. To address these concerns, it is essential to analyze the binding characteristics of anti-PEG antibodies to PEG. However, distinguishing anti-PEG antibodies is still a difficult task. Herein, we demonstrate the use of antibiofouling cello-oligosaccharide assemblies tethering one-terminal methoxy oligo(ethylene glycol) (OEG) ligands for distinguishing anti-PEG antibodies in a simple manner. The OEG ligand-tethering two-dimensional crystalline cello-oligosaccharide assemblies were stably dispersed in a buffer solution and had antibiofouling properties against nonspecific protein adsorption. These characteristics allowed enzyme-linked immunosorbent assays (ELISAs) to be simply performed by cycles of centrifugation/redispersion of aqueous dispersions of the assemblies. The simple assays revealed that the specific OEG ligand-tethering assemblies could distinguish anti-PEG antibodies to detect a specific antibody that preferentially binds to the methoxy terminus of the PEG chain with 3 repeating ethylene glycol units. Furthermore, quantitative detection of the antibodies was successfully performed with high sensitivity even in the presence of serum. The detectable and quantifiable range of antibody concentrations covered those required clinically. Our findings open a new avenue for analyzing the binding characteristics of anti-PEG antibodies in biological samples.
Collapse
Affiliation(s)
- Kai Sugiura
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan.
| | - Toshiki Sawada
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan.
| | - Yuuki Hata
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan.
| | - Hiroshi Tanaka
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan.
| | - Takeshi Serizawa
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan.
| |
Collapse
|
4
|
Matsumoto M, Sutrisno L, Ariga K. Covalent nanoarchitectonics: Polymer synthesis with designer structures and sequences. JOURNAL OF POLYMER SCIENCE 2023. [DOI: 10.1002/pol.20220755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Michio Matsumoto
- International Center for Materials Nanoarchitectonics (WPI‐MANA) National Institute for Materials Science (NIMS) Ibaraki Japan
| | - Linawati Sutrisno
- International Center for Materials Nanoarchitectonics (WPI‐MANA) National Institute for Materials Science (NIMS) Ibaraki Japan
| | - Katsuhiko Ariga
- International Center for Materials Nanoarchitectonics (WPI‐MANA) National Institute for Materials Science (NIMS) Ibaraki Japan
- Graduate School of Frontier Sciences The University of Tokyo Chiba Japan
| |
Collapse
|
5
|
Rizzo MG, Palermo N, D’Amora U, Oddo S, Guglielmino SPP, Conoci S, Szychlinska MA, Calabrese G. Multipotential Role of Growth Factor Mimetic Peptides for Osteochondral Tissue Engineering. Int J Mol Sci 2022; 23:ijms23137388. [PMID: 35806393 PMCID: PMC9266819 DOI: 10.3390/ijms23137388] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/28/2022] [Accepted: 06/30/2022] [Indexed: 12/25/2022] Open
Abstract
Articular cartilage is characterized by a poor self-healing capacity due to its aneural and avascular nature. Once injured, it undergoes a series of catabolic processes which lead to its progressive degeneration and the onset of a severe chronic disease called osteoarthritis (OA). In OA, important alterations of the morpho-functional organization occur in the cartilage extracellular matrix, involving all the nearby tissues, including the subchondral bone. Osteochondral engineering, based on a perfect combination of cells, biomaterials and biomolecules, is becoming increasingly successful for the regeneration of injured cartilage and underlying subchondral bone tissue. To this end, recently, several peptides have been explored as active molecules and enrichment motifs for the functionalization of biomaterials due to their ability to be easily chemically synthesized, as well as their tunable physico-chemical features, low immunogenicity issues and functional group modeling properties. In addition, they have shown a good aptitude to penetrate into the tissue due to their small size and stability at room temperature. In particular, growth-factor-derived peptides can play multiple functions in bone and cartilage repair, exhibiting chondrogenic/osteogenic differentiation properties. Among the most studied peptides, great attention has been paid to transforming growth factor-β and bone morphogenetic protein mimetic peptides, cell-penetrating peptides, cell-binding peptides, self-assembling peptides and extracellular matrix-derived peptides. Moreover, recently, phage display technology is emerging as a powerful selection technique for obtaining functional peptides on a large scale and at a low cost. In particular, these peptides have demonstrated advantages such as high biocompatibility; the ability to be immobilized directly on chondro- and osteoinductive nanomaterials; and improving the cell attachment, differentiation, development and regeneration of osteochondral tissue. In this context, the aim of the present review was to go through the recent literature underlining the importance of studying novel functional motifs related to growth factor mimetic peptides that could be a useful tool in osteochondral repair strategies. Moreover, the review summarizes the current knowledge of the use of phage display peptides in osteochondral tissue regeneration.
Collapse
Affiliation(s)
- Maria Giovanna Rizzo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres, 31, 98168 Messina, Italy; (M.G.R.); (N.P.); (S.O.); (S.P.P.G.)
| | - Nicoletta Palermo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres, 31, 98168 Messina, Italy; (M.G.R.); (N.P.); (S.O.); (S.P.P.G.)
| | - Ugo D’Amora
- Institute of Polymers, Composites and Biomaterials—National Research Council, Viale J. F. Kennedy 54, Mostra d’Oltremare, Pad. 20, 80125 Naples, Italy;
| | - Salvatore Oddo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres, 31, 98168 Messina, Italy; (M.G.R.); (N.P.); (S.O.); (S.P.P.G.)
| | - Salvatore Pietro Paolo Guglielmino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres, 31, 98168 Messina, Italy; (M.G.R.); (N.P.); (S.O.); (S.P.P.G.)
| | - Sabrina Conoci
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres, 31, 98168 Messina, Italy; (M.G.R.); (N.P.); (S.O.); (S.P.P.G.)
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy
- Correspondence: (S.C.); (G.C.)
| | - Marta Anna Szychlinska
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), University of Palermo, Via del Vespro, 129, 90127 Palermo, Italy;
| | - Giovanna Calabrese
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres, 31, 98168 Messina, Italy; (M.G.R.); (N.P.); (S.O.); (S.P.P.G.)
- Correspondence: (S.C.); (G.C.)
| |
Collapse
|
6
|
Ariga K. Biomimetic and Biological Nanoarchitectonics. Int J Mol Sci 2022; 23:3577. [PMID: 35408937 PMCID: PMC8998553 DOI: 10.3390/ijms23073577] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 03/21/2022] [Accepted: 03/24/2022] [Indexed: 12/13/2022] Open
Abstract
A post-nanotechnology concept has been assigned to an emerging concept, nanoarchitectonics. Nanoarchitectonics aims to establish a discipline in which functional materials are fabricated from nano-scale components such as atoms, molecules, and nanomaterials using various techniques. Nanoarchitectonics opens ways to form a more unified paradigm by integrating nanotechnology with organic chemistry, supramolecular chemistry, material chemistry, microfabrication technology, and biotechnology. On the other hand, biological systems consist of rational organization of constituent molecules. Their structures have highly asymmetric and hierarchical features that allow for chained functional coordination, signal amplification, and vector-like energy and signal flow. The process of nanoarchitectonics is based on the premise of combining several different processes, which makes it easier to obtain a hierarchical structure. Therefore, nanoarchitectonics is a more suitable methodology for creating highly functional systems based on structural asymmetry and hierarchy like biosystems. The creation of functional materials by nanoarchitectonics is somewhat similar to the creation of functional systems in biological systems. It can be said that the goal of nanoarchitectonics is to create highly functional systems similar to those found in biological systems. This review article summarizes the synthesis of biomimetic and biological molecules and their functional structure formation from various viewpoints, from the molecular level to the cellular level. Several recent examples are arranged and categorized to illustrate such a trend with sections of (i) synthetic nanoarchitectonics for bio-related units, (ii) self-assembly nanoarchitectonics with bio-related units, (iii) nanoarchitectonics with nucleic acids, (iv) nanoarchitectonics with peptides, (v) nanoarchitectonics with proteins, and (vi) bio-related nanoarchitectonics in conjugation with materials.
Collapse
Affiliation(s)
- Katsuhiko Ariga
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan;
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Chiba 277-8561, Japan
| |
Collapse
|
7
|
Liu C, Yang JC, Lam JWY, Feng HT, Tang BZ. Chiral assembly of organic luminogens with aggregation-induced emission. Chem Sci 2022; 13:611-632. [PMID: 35173927 PMCID: PMC8771491 DOI: 10.1039/d1sc02305e] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 05/24/2021] [Indexed: 12/21/2022] Open
Abstract
Chirality is important to chemistry, biology and optoelectronic materials. The study on chirality has lasted for more than 170 years since its discovery. Recently, chiral materials with aggregation-induced emission (AIE) have attracted increasing interest because of their fascinating photophysical properties. In this review, we discussed the recent development of chiral materials with AIE properties, including their molecular structures, self-assembly and functions. Generally, the most effective strategy to design a chiral AIE luminogen (AIEgen) is to attach a chiral scaffold to an AIE-active fluorophore through covalent bonds. Moreover, some propeller-like or shell-like AIEgens without chiral units exhibit latent chirality upon mirror image symmetry breaking. The chirality of achiral AIEgens can also be induced by some optically active molecules through non-covalent interactions. The introduction of an AIE unit into chiral materials can enhance the efficiency of their circularly polarized luminescence (CPL) in the solid state and the dissymmetric factors of their helical architectures formed through self-assembly. Thus, highly efficient circularly polarized organic light-emitting diodes (CPOLEDs) with AIE characteristics are developed and show great potential in 3D displays. Chiral AIEgens are also widely utilized as "turn on" sensors for rapid enantioselective determination of chiral reagents. It is anticipated that the present review can entice readers to realize the importance of chirality and attract much more chemists to contribute their efforts to chirality and AIE study.
Collapse
Affiliation(s)
- Chenchen Liu
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study and Department of Chemical and Biomedical Engineering, The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong China
| | - Jun-Cheng Yang
- AIE Research Center, Shaanxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences Baoji 721013 China
| | - Jacky W Y Lam
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study and Department of Chemical and Biomedical Engineering, The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong China
| | - Hai-Tao Feng
- AIE Research Center, Shaanxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences Baoji 721013 China
| | - Ben Zhong Tang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study and Department of Chemical and Biomedical Engineering, The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong China
- State Key Laboratory of Luminescent Materials and Devices, SCUT-HKUST Joint Research Institute, Center for Aggregation-Induced Emission China
- AIE Institute Guangzhou Development District Guangzhou 510530 China
- Shenzhen Institute of Aggregate Science and Technology, School of Science and Engineering, The Chinese University of Hong Kong Shenzhen Guangdong 518172 China
- Guangdong-Hong Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional Materials China
| |
Collapse
|
8
|
Antipin IS, Alfimov MV, Arslanov VV, Burilov VA, Vatsadze SZ, Voloshin YZ, Volcho KP, Gorbatchuk VV, Gorbunova YG, Gromov SP, Dudkin SV, Zaitsev SY, Zakharova LY, Ziganshin MA, Zolotukhina AV, Kalinina MA, Karakhanov EA, Kashapov RR, Koifman OI, Konovalov AI, Korenev VS, Maksimov AL, Mamardashvili NZ, Mamardashvili GM, Martynov AG, Mustafina AR, Nugmanov RI, Ovsyannikov AS, Padnya PL, Potapov AS, Selektor SL, Sokolov MN, Solovieva SE, Stoikov II, Stuzhin PA, Suslov EV, Ushakov EN, Fedin VP, Fedorenko SV, Fedorova OA, Fedorov YV, Chvalun SN, Tsivadze AY, Shtykov SN, Shurpik DN, Shcherbina MA, Yakimova LS. Functional supramolecular systems: design and applications. RUSSIAN CHEMICAL REVIEWS 2021. [DOI: 10.1070/rcr5011] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
9
|
Ariga K. Progress in Molecular Nanoarchitectonics and Materials Nanoarchitectonics. Molecules 2021; 26:1621. [PMID: 33804013 PMCID: PMC7998694 DOI: 10.3390/molecules26061621] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/12/2021] [Accepted: 03/12/2021] [Indexed: 11/24/2022] Open
Abstract
Although various synthetic methodologies including organic synthesis, polymer chemistry, and materials science are the main contributors to the production of functional materials, the importance of regulation of nanoscale structures for better performance has become clear with recent science and technology developments. Therefore, a new research paradigm to produce functional material systems from nanoscale units has to be created as an advancement of nanoscale science. This task is assigned to an emerging concept, nanoarchitectonics, which aims to produce functional materials and functional structures from nanoscale unit components. This can be done through combining nanotechnology with the other research fields such as organic chemistry, supramolecular chemistry, materials science, and bio-related science. In this review article, the basic-level of nanoarchitectonics is first presented with atom/molecular-level structure formations and conversions from molecular units to functional materials. Then, two typical application-oriented nanoarchitectonics efforts in energy-oriented applications and bio-related applications are discussed. Finally, future directions of the molecular and materials nanoarchitectonics concepts for advancement of functional nanomaterials are briefly discussed.
Collapse
Affiliation(s)
- Katsuhiko Ariga
- WPI Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan;
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| |
Collapse
|
10
|
Moorthy H, Datta LP, Govindaraju T. Molecular Architectonics-guided Design of Biomaterials. Chem Asian J 2021; 16:423-442. [PMID: 33449445 DOI: 10.1002/asia.202001445] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/12/2021] [Indexed: 11/09/2022]
Abstract
The quest for mastering the controlled engineering of dynamic molecular assemblies is the basis of molecular architectonics. The rational use of noncovalent interactions to programme the molecular assemblies allow the construction of diverse molecular and material architectures with novel functional properties and applications. Understanding and controlling the assembly of molecular systems are daunting tasks owing to the complex factors that govern at the molecular level. Molecular architectures depend on the design of functional molecular modules through the judicious selection of functional core and auxiliary units to guide the precise molecular assembly and co-assembly patterns. Biomolecules with built-in information for molecular recognition are the ultimate examples of evolutionary guided molecular recognition systems that define the structure and functions of living organisms. Explicit use of biomolecules as auxiliary units to command the molecular assemblies of functional molecules is an intriguing exercise in the scheme of molecular architectonics. In this minireview, we discuss the implementation of the principles of molecular architectonics for the development of novel biomaterials with functional properties and applications ranging from sensing, drug delivery to neurogeneration and tissue engineering. We present the molecular designs pioneered by our group owing to the requirement and scope of the article while acknowledging the designs pursued by several research groups that befit the concept.
Collapse
Affiliation(s)
- Hariharan Moorthy
- Bioorganic Chemistry Laboratory, New Chemistry Unit and the School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P. O., Bengaluru, 560064, Karnataka, India
| | - Lakshmi Priya Datta
- Bioorganic Chemistry Laboratory, New Chemistry Unit and the School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P. O., Bengaluru, 560064, Karnataka, India
| | - Thimmaiah Govindaraju
- Bioorganic Chemistry Laboratory, New Chemistry Unit and the School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P. O., Bengaluru, 560064, Karnataka, India
| |
Collapse
|
11
|
Pratihar S, Suseela YV, Govindaraju T. Threading Intercalator-Induced Nanocondensates and Role of Endogenous Metal Ions in Decondensation for DNA Delivery. ACS APPLIED BIO MATERIALS 2020; 3:6979-6991. [PMID: 35019357 DOI: 10.1021/acsabm.0c00870] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The interplay of condensation and decondensation of DNA plays a crucial role in chromosome maintenance and gene expression. The molecular architectonics governing the chromatin condensation-decondensation cycle are worth studying, as DNA performs unique and distinct roles in each state and switches between two states without the loss of structural and functional integrity. This phenomenon has been adapted and implemented in transfection studies. Effective gene delivery into the cells to achieve respectable transfection efficiency has remained a challenge and emphasizes the need for understanding the steps involved in DNA delivery and transfection. Especially, recognizing the factors that effectively regulate DNA decondensation can provide logical solutions to the hurdles affecting the transfection efficiency. We designed a set of small molecule-based threading intercalation ligands as model condensing agents to study various factors influencing the DNA condensation and decondensation process. This study revealed condensation of DNA into nanocondensate by the threading intercalator and endogenous stimuli induced effective decondensation. Further, DNA nanocondensates are tracked using the intrinsic fluorescence in the lower pH of endocytic pathway and were evaluated as nonviral vectors for in cellulo delivery of plasmids. The correlation of decondensation of DNA nanocondensate with endogenous metal ions at their physiological concentrations provided valuable insights and implications for intracellular DNA delivery.
Collapse
Affiliation(s)
- Sumon Pratihar
- Bioorganic Chemistry Laboratory, New Chemistry Unit and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, P.O., Bengaluru, Karnataka 560064, India
| | - Yelisetty Venkata Suseela
- Bioorganic Chemistry Laboratory, New Chemistry Unit and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, P.O., Bengaluru, Karnataka 560064, India
| | - Thimmaiah Govindaraju
- Bioorganic Chemistry Laboratory, New Chemistry Unit and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, P.O., Bengaluru, Karnataka 560064, India
| |
Collapse
|
12
|
Hu Y, Shen P, Zeng N, Wang L, Yan D, Cui L, Yang K, Zhai C. Hybrid Hydrogel Electrolyte Based on Metal-Organic Supermolecular Self-Assembly and Polymer Chemical Cross-Linking for Rechargeable Aqueous Zn-MnO 2 Batteries. ACS APPLIED MATERIALS & INTERFACES 2020; 12:42285-42293. [PMID: 32838531 DOI: 10.1021/acsami.0c10321] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Multifunctional metal-organic supramolecular hydrogels have achieved great progress nowadays. However, their applications in aqueous batteries for flexible energy storage devices remain limited due to their unsatisfactory mechanical properties. Here, we report a rapid formation of supramolecular hydrogel by adenosine 5'-monophosphate (AMP) and manganese ions (Mn2+). Additionally, the AMP-Mn hydrogel is combined with chemical cross-linking poly(vinyl alcohol) (PVA) polymer networks to form an AMP-Mn/PVA hybrid hydrogel, which effectively solves the problems with regard to the mechanical properties and stability of metal-organic supramolecular hydrogels as well as self-healing of tough chemical cross-linking polymer networks. The AMP-Mn/PVA hybrid hydrogel served as the hydrogel electrolyte to fabricate flexible Zn-MnO2 batteries, which exhibit fast ion conductivity, excellent electrochemical stability, and robust mechanical strength, indicating feasible practical application prospects. This investigation provides a promising opportunity for the application of metal-organic supramolecular hydrogels in the field of energy storage.
Collapse
Affiliation(s)
- Yuanyuan Hu
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China
| | - Ping Shen
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China
| | - Na Zeng
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China
| | - Lulu Wang
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China
| | - Di Yan
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China
| | - Lulu Cui
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China
| | - Kai Yang
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China
| | - Cuiping Zhai
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China
| |
Collapse
|
13
|
Pandurangan K, Roy B, Rajasekhar K, Suseela YV, Nagendra P, Chaturvedi A, Satwik UR, Murugan NA, Ramamurty U, Govindaraju T. Molecular Architectonics of Cyclic Dipeptide Amphiphiles and Their Application in Drug Delivery. ACS APPLIED BIO MATERIALS 2020; 3:3413-3422. [DOI: 10.1021/acsabm.0c00340] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Komala Pandurangan
- Bioorganic Chemistry Laboratory, New Chemistry Unit and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bengaluru, Karnataka 560064, India
| | - Bappaditya Roy
- Bioorganic Chemistry Laboratory, New Chemistry Unit and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bengaluru, Karnataka 560064, India
| | - Kolla Rajasekhar
- Bioorganic Chemistry Laboratory, New Chemistry Unit and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bengaluru, Karnataka 560064, India
| | - Yelisetty Venkata Suseela
- Bioorganic Chemistry Laboratory, New Chemistry Unit and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bengaluru, Karnataka 560064, India
| | - Prachitha Nagendra
- Bioorganic Chemistry Laboratory, New Chemistry Unit and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bengaluru, Karnataka 560064, India
| | - Abhishek Chaturvedi
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Upadrasta R. Satwik
- Bioorganic Chemistry Laboratory, New Chemistry Unit and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bengaluru, Karnataka 560064, India
| | - N. Arul Murugan
- Division of Theoretical Chemistry and Biology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, S-106 91 Stockholm, Sweden
| | - Upadrasta Ramamurty
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Thimmaiah Govindaraju
- Bioorganic Chemistry Laboratory, New Chemistry Unit and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bengaluru, Karnataka 560064, India
| |
Collapse
|
14
|
Roy B, Pal S, Govindaraju T. Intrinsic Role of Molecular Architectonics in Enhancing the Catalytic Activity of Lead in Glucose Hydrolysis. ACS APPLIED MATERIALS & INTERFACES 2020; 12:14057-14063. [PMID: 32134618 DOI: 10.1021/acsami.0c01803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Lewis acidity plays a key role in the catalytic activity of lead ion (PbII) in the hydrolysis of glucose in solution under harsh synthetic conditions. We report a number of structurally similar d-gluconamide amphiphiles as functional organic ligands with active an -NH center capable of coordinating PbII (viz., PbII-N-C) in basic condition to enhance the catalytic efficiency through the scheme of molecular architectonics. Amphiphiles with different hydrophobic unit form assembly-architectures with a varying second coordination sphere around the active metal ion center. As a result, the active PbII center in each architecture exhibits substantially different efficiency toward catalyzing the glucose hydrolysis under ambient temperature. The catalytic performance of the dynamic and reversible gluconamide-PbII assembly-architectures are highly dependent on their chemical environments in solution. Further, the active PbII center of gluconamide-PbII complex in the assembly architecture and dispersed states exhibits distinct outcomes with the former being a superior catalyst than the latter as well as PbII alone. The current study demonstrates the potential of molecular architectonics that relies on the hydrophobic units of designer functional amphiphiles to enrich surface electron density with enhanced σ-donation ability through space which substantially improves the catalytic efficiency of PbII toward glucose hydrolysis at ambient temperature.
Collapse
Affiliation(s)
- Bappaditya Roy
- Bioorganic Chemistry Laboratory, New Chemistry Unit and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bengaluru 560064, Karnataka, India
| | - Satyajit Pal
- Bioorganic Chemistry Laboratory, New Chemistry Unit and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bengaluru 560064, Karnataka, India
| | - Thimmaiah Govindaraju
- Bioorganic Chemistry Laboratory, New Chemistry Unit and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bengaluru 560064, Karnataka, India
| |
Collapse
|
15
|
Vangala M, Yousf S, Chugh J, Hotha S. Solid‐Phase Synthesis of Clickable Psicofuranose Glycocarbamates and Application of Their Self‐Assembled Nanovesicles for Curcumin Encapsulation. ChemistrySelect 2020. [DOI: 10.1002/slct.201904430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Madhuri Vangala
- Department of ChemistryIndian Institute of Science Education and Research Pune 411008 India
| | - Saleem Yousf
- Department of ChemistryIndian Institute of Science Education and Research Pune 411008 India
| | - Jeetender Chugh
- Department of ChemistryIndian Institute of Science Education and Research Pune 411008 India
| | - Srinivas Hotha
- Department of ChemistryIndian Institute of Science Education and Research Pune 411008 India
| |
Collapse
|
16
|
Datta LP, Manchineella S, Govindaraju T. Biomolecules-derived biomaterials. Biomaterials 2020; 230:119633. [DOI: 10.1016/j.biomaterials.2019.119633] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 11/12/2019] [Accepted: 11/14/2019] [Indexed: 12/22/2022]
|
17
|
Ghosh D, Datta LP, Govindaraju T. Molecular architectonics of DNA for functional nanoarchitectures. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2020; 11:124-140. [PMID: 31976202 PMCID: PMC6964666 DOI: 10.3762/bjnano.11.11] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 12/09/2019] [Indexed: 05/08/2023]
Abstract
DNA is the key biomolecule central to almost all processes in living organisms. The eccentric idea of utilizing DNA as a material building block in molecular and structural engineering led to the creation of numerous molecular-assembly systems and materials at the nanoscale. The molecular structure of DNA is believed to have evolved over billions of years, with structure and stability optimizations that allow life forms to sustain through the storage and transmission of genetic information with fidelity. The nanoscale structural characteristics of DNA (2 nm thickness and ca. 40-50 nm persistence length) have inspired the creation of numerous functional patterns and architectures through noncovalent conventional and unconventional base pairings as well as through mutual templating-interactions with small organic molecules and metal ions. The recent advancements in structural DNA nanotechnology allowed researchers to design new DNA-based functional materials with chemical and biological properties distinct from their parent components. The modulation of structural and functional properties of hybrid DNA ensembles of small functional molecules (SFMs) and short oligonucleotides by adapting the principles of molecular architectonics enabled the creation of novel DNA nanoarchitectures with potential applications, which has been termed as templated DNA nanotechnology or functional DNA nanoarchitectonics. This review highlights the molecular architectonics-guided design principles and applications of the derived DNA nanoarchitectures. The advantages and ability of functional DNA nanoarchitectonics to overcome the trivial drawbacks of classical DNA nanotechnology to fulfill realistic and practical applications are highlighted, and an outlook on future developments is presented.
Collapse
Affiliation(s)
- Debasis Ghosh
- Bioorganic Chemistry Laboratory, New Chemistry Unit and The School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P. O., Bengaluru 560064, Karnataka, India
| | - Lakshmi P Datta
- Bioorganic Chemistry Laboratory, New Chemistry Unit and The School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P. O., Bengaluru 560064, Karnataka, India
| | - Thimmaiah Govindaraju
- Bioorganic Chemistry Laboratory, New Chemistry Unit and The School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P. O., Bengaluru 560064, Karnataka, India
| |
Collapse
|
18
|
Xu S, Jia X, Lu J, Zheng L, Lv K, Shu Y, Sun J. Pteridine derivatives: novel low-molecular-weight organogelators and their piezofluorochromism. NEW J CHEM 2020. [DOI: 10.1039/c9nj05922a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Here, π-conjugated compounds based on pteridine derivatives were synthesized and their self-assembling behaviors in a variety of organic solvents and piezofluorochromism were studied.
Collapse
Affiliation(s)
- Shenzheng Xu
- State Key Laboratory of Supramolecular Structure and Materials
- College of Chemistry
- Jilin University
- Changchun 130021
- P. R. China
| | - Xiaoyu Jia
- State Key Laboratory of Supramolecular Structure and Materials
- College of Chemistry
- Jilin University
- Changchun 130021
- P. R. China
| | - Jiaxin Lu
- Department of Chemistry
- College of Science
- Northeast Forestry University
- Harbin 150040
- P. R. China
| | - Lianyou Zheng
- The Center for Combinatorial Chemistry and Drug Discovery of Jilin University
- The College of Chemistry and The School of Pharmaceutical Sciences
- Jilin University
- Changchun 130021
- P. R. China
| | - Kuo Lv
- State Key Laboratory of Supramolecular Structure and Materials
- College of Chemistry
- Jilin University
- Changchun 130021
- P. R. China
| | - Yuanhong Shu
- State Key Laboratory of Supramolecular Structure and Materials
- College of Chemistry
- Jilin University
- Changchun 130021
- P. R. China
| | - Jingbo Sun
- State Key Laboratory of Supramolecular Structure and Materials
- College of Chemistry
- Jilin University
- Changchun 130021
- P. R. China
| |
Collapse
|
19
|
Roy B, Govindaraju T. Amino Acids and Peptides as Functional Components in Arylenediimide-Based Molecular Architectonics. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2019. [DOI: 10.1246/bcsj.20190215] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Bappaditya Roy
- Bioorganic Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P. O., Bengaluru-560064, Karnataka, India
| | - Thimmaiah Govindaraju
- Bioorganic Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P. O., Bengaluru-560064, Karnataka, India
| |
Collapse
|
20
|
Majerle A, Schmieden DT, Jerala R, Meyer AS. Synthetic Biology for Multiscale Designed Biomimetic Assemblies: From Designed Self-Assembling Biopolymers to Bacterial Bioprinting. Biochemistry 2019; 58:2095-2104. [PMID: 30957491 DOI: 10.1021/acs.biochem.8b00922] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Nature is based on complex self-assembling systems that span from the nanoscale to the macroscale. We have already begun to design biomimetic systems with properties that have not evolved in nature, based on designed molecular interactions and regulation of biological systems. Synthetic biology is based on the principle of modularity, repurposing diverse building modules to design new types of molecular and cellular assemblies. While we are currently able to use techniques from synthetic biology to design self-assembling molecules and re-engineer functional cells, we still need to use guided assembly to construct biological assemblies at the macroscale. We review the recent strategies for designing biological systems ranging from molecular assemblies based on self-assembly of (poly)peptides to the guided assembly of patterned bacteria, spanning 7 orders of magnitude.
Collapse
Affiliation(s)
- Andreja Majerle
- Department of Synthetic Biology and Immunology , National Institute of Chemistry , Hajdrihova 19 , 1000 Ljubljana , Slovenia
| | - Dominik T Schmieden
- Department of Bionanoscience, Kavli Institute of Nanoscience , Delft University of Technology , 2629 HZ Delft , The Netherlands
| | - Roman Jerala
- Department of Synthetic Biology and Immunology , National Institute of Chemistry , Hajdrihova 19 , 1000 Ljubljana , Slovenia
| | - Anne S Meyer
- Department of Biology , University of Rochester , Rochester , New York 14627 , United States
| |
Collapse
|
21
|
Ariga K, Nishikawa M, Mori T, Takeya J, Shrestha LK, Hill JP. Self-assembly as a key player for materials nanoarchitectonics. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2019; 20:51-95. [PMID: 30787960 PMCID: PMC6374972 DOI: 10.1080/14686996.2018.1553108] [Citation(s) in RCA: 226] [Impact Index Per Article: 45.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 11/23/2018] [Accepted: 11/25/2018] [Indexed: 05/07/2023]
Abstract
The development of science and technology of advanced materials using nanoscale units can be conducted by a novel concept involving combination of nanotechnology methodology with various research disciplines, especially supramolecular chemistry. The novel concept is called 'nanoarchitectonics' where self-assembly processes are crucial in many cases involving a wide range of component materials. This review of self-assembly processes re-examines recent progress in materials nanoarchitectonics. It is composed of three main sections: (1) the first short section describes typical examples of self-assembly research to outline the matters discussed in this review; (2) the second section summarizes self-assemblies at interfaces from general viewpoints; and (3) the final section is focused on self-assembly processes at interfaces. The examples presented demonstrate the strikingly wide range of possibilities and future potential of self-assembly processes and their important contribution to materials nanoarchitectonics. The research examples described in this review cover variously structured objects including molecular machines, molecular receptors, molecular pliers, molecular rotors, nanoparticles, nanosheets, nanotubes, nanowires, nanoflakes, nanocubes, nanodisks, nanoring, block copolymers, hyperbranched polymers, supramolecular polymers, supramolecular gels, liquid crystals, Langmuir monolayers, Langmuir-Blodgett films, self-assembled monolayers, thin films, layer-by-layer structures, breath figure motif structures, two-dimensional molecular patterns, fullerene crystals, metal-organic frameworks, coordination polymers, coordination capsules, porous carbon spheres, mesoporous materials, polynuclear catalysts, DNA origamis, transmembrane channels, peptide conjugates, and vesicles, as well as functional materials for sensing, surface-enhanced Raman spectroscopy, photovoltaics, charge transport, excitation energy transfer, light-harvesting, photocatalysts, field effect transistors, logic gates, organic semiconductors, thin-film-based devices, drug delivery, cell culture, supramolecular differentiation, molecular recognition, molecular tuning, and hand-operating (hand-operated) nanotechnology.
Collapse
Affiliation(s)
- Katsuhiko Ariga
- WPI-MANA, National Institute for Materials Science (NIMS), Ibaraki, Japan
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| | | | - Taizo Mori
- WPI-MANA, National Institute for Materials Science (NIMS), Ibaraki, Japan
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| | - Jun Takeya
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| | - Lok Kumar Shrestha
- WPI-MANA, National Institute for Materials Science (NIMS), Ibaraki, Japan
| | - Jonathan P. Hill
- WPI-MANA, National Institute for Materials Science (NIMS), Ibaraki, Japan
| |
Collapse
|
22
|
Zhao L, Zou Q, Yan X. Self-Assembling Peptide-Based Nanoarchitectonics. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2019. [DOI: 10.1246/bcsj.20180248] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Luyang Zhao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Qianli Zou
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
- Center for Mesoscience, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Xuehai Yan
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
- Center for Mesoscience, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
| |
Collapse
|
23
|
Fagnani DE, Bou Zerdan R, Castellano RK. Synthesis, Optoelectronic Properties, Self-Association, and Base Pairing of Nucleobase-Functionalized Oligothiophenes. J Org Chem 2018; 83:12711-12721. [PMID: 30230836 DOI: 10.1021/acs.joc.8b02138] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Device-relevant π-conjugated oligothiophenes with the canonical nucleobases directly embedded into the π-framework have been designed, synthesized, and characterized. These oligomers offer the ability to tune optoelectronic properties via the intimate merging of the nucleobase molecular electronic structure with base-pairing fidelity. Analysis of their optical and electronic properties in a hydrogen-bond-disrupting solvent (DMF) indicates that the nucleobase identity influences the intrinsic electronic properties of the semiconductors. These differences are supported by DFT calculations which demonstrate that the HOMO/LUMO orbitals are distributed differently for each compound. The solubility and competition between self-association and base pairing in a hydrogen-bond-supporting solvent (chloroform) was studied to better understand the oligomer behavior under conditions relevant for downstream solution processing into thin-film devices. These solution studies reveal that in each case base-pairing is preferred to self-aggregation; the relatively weak heteroassociation of 1A-1U (35 ± 5 M-1) should be amenable to facile solution processing and successive hydrogen bond formation in the solid state, while the strong heteroassociation between 1G and 1C (>104 M-1) should enable assemblies to be preformed in solution. These results are expected to enable the synthesis of more complex π-conjugated architectures and facilitate their extension to optoelectronic devices.
Collapse
Affiliation(s)
- Danielle E Fagnani
- Department of Chemistry , University of Florida , P.O. Box 117200, Gainesville , Florida 32611 , United States
| | - Raghida Bou Zerdan
- Department of Chemistry , University of Florida , P.O. Box 117200, Gainesville , Florida 32611 , United States
| | - Ronald K Castellano
- Department of Chemistry , University of Florida , P.O. Box 117200, Gainesville , Florida 32611 , United States
| |
Collapse
|
24
|
Avinash MB, Govindaraju T. Architectonics: Design of Molecular Architecture for Functional Applications. Acc Chem Res 2018; 51:414-426. [PMID: 29364649 DOI: 10.1021/acs.accounts.7b00434] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The term architectonics has its roots in the architectural and philosophical (as early as 1600s) literature that refers to "the theory of structure" and "the structure of theory", respectively. The concept of architectonics has been adapted to advance the field of molecular self-assembly and termed as molecular architectonics. In essence, the methodology of organizing molecular units in the required and controlled configurations to develop advanced functional systems for materials and biological applications comprises the field of molecular architectonics. This concept of designing noncovalent systems enables to focus on different functional aspects of designer molecules for biological and nonbiological applications and also strengthens our efforts toward the mastery over the art of controlled molecular self-assemblies. Programming complex molecular interactions and assemblies for specific functions has been one of the most challenging tasks in the modern era. Meticulously ordered molecular assemblies can impart remarkable developments in several areas spanning energy, health, and environment. For example, the well-defined nano-, micro-, and macroarchitectures of functional molecules with specific molecular ordering possess potential applications in flexible electronics, photovoltaics, photonic crystals, microreactors, sensors, drug delivery, biomedicine, and superhydrophobic coatings, among others. The functional molecular architectures having unparalleled properties are widely evident in various designs of Nature. By drawing inspirations from Nature, intended molecular architectures can be designed and developed to harvest various functions, as there is an inexhaustible resource and scope. In this Account, we present exquisite designer molecules developed by our group and others with an objective to master the art of molecular recognition and self-assembly for functional applications. We demonstrate the tailor-ability of molecular self-assemblies by employing biomolecules like amino acids and nucleobases as auxiliaries. Naphthalenediimide (NDI), perylenediimide (PDI), and few other molecular systems serve as functional modules. The effects of stereochemistry and minute structural modifications in the molecular designs on the supramolecular interactions, and construction of self-assembled zero-dimensional (OD), one-dimensional (1D), and two-dimensional (2D) nano- and microarchitectures like particles, spheres, cups, bowls, fibers, belts, helical belts, supercoiled helices, sheets, fractals, and honeycomb-like arrays are discussed in extensive detail. Additionally, we present molecular systems that showcase the elegant designs of coassembly, templated assembly, hierarchical assembly, transient self-assembly, chiral denaturation, retentive helical memory, self-replication, supramolecular regulation, supramolecular speciation, supernon linearity, dynamic pathway complexity, supramolecular heterojunction, living supramolecular polymerization, and molecular machines. Finally, we describe the molecular engineering principles learnt over the years that have led to several applications, namely, organic electronics, self-cleaning, high-mechanical strength, and tissue engineering.
Collapse
Affiliation(s)
- M. B. Avinash
- Bioorganic Chemistry Laboratory,
New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru 560064, India
| | - Thimmaiah Govindaraju
- Bioorganic Chemistry Laboratory,
New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru 560064, India
| |
Collapse
|
25
|
Pu F, Ren J, Qu X. Nucleobases, nucleosides, and nucleotides: versatile biomolecules for generating functional nanomaterials. Chem Soc Rev 2017; 47:1285-1306. [PMID: 29265140 DOI: 10.1039/c7cs00673j] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The incorporation of biomolecules into nanomaterials generates functional nanosystems with novel and advanced properties, presenting great potential for applications in various fields. Nucleobases, nucleosides and nucleotides, as building blocks of nucleic acids and biological coenzymes, constitute necessary components of the foundation of life. In recent years, as versatile biomolecules for the construction or regulation of functional nanomaterials, they have stimulated interest in researchers, due to their unique properties such as structural diversity, multiplex binding sites, self-assembly ability, stability, biocompatibility, and chirality. In this review, strategies for the synthesis of nanomaterials and the regulation of their morphologies and functions using nucleobases, nucleosides, and nucleotides as building blocks, templates or modulators are summarized alongside selected applications. The diverse applications range from sensing, bioimaging, and drug delivery to mimicking light-harvesting antenna, the construction of logic gates, and beyond. Furthermore, some perspectives and challenges in this emerging field are proposed. This review is directed toward the broader scientific community interested in biomolecule-based functional nanomaterials.
Collapse
Affiliation(s)
- Fang Pu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resources Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| | - Jinsong Ren
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resources Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| | - Xiaogang Qu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resources Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| |
Collapse
|
26
|
Reja A, Biswas A, Yadav J, Dev D, Das AK. Induction of Supramolecular Helical Handedness in a Chemical Reaction Directed Self-Healable Soft Material. ChemistrySelect 2017. [DOI: 10.1002/slct.201702212] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Antara Reja
- Department of Chemistry; Indian Institute of Technology Indore; Khandwa Road Indore 453552 India
| | - Ankan Biswas
- Department of Chemistry; Indian Institute of Technology Indore; Khandwa Road Indore 453552 India
| | - Jonu Yadav
- Department of Chemistry; Indian Institute of Technology Indore; Khandwa Road Indore 453552 India
| | - Dharm Dev
- Department of Chemistry; Indian Institute of Technology Indore; Khandwa Road Indore 453552 India
| | - Apurba K. Das
- Department of Chemistry; Indian Institute of Technology Indore; Khandwa Road Indore 453552 India
| |
Collapse
|
27
|
Ariga K, Mori T, Shrestha LK. Nanoarchitectonics from Molecular Units to Living-Creature-Like Motifs. CHEM REC 2017; 18:676-695. [PMID: 29205796 DOI: 10.1002/tcr.201700070] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Accepted: 11/14/2017] [Indexed: 01/20/2023]
Abstract
Important points for the fabrication of functional materials are the creation of nanoscale/molecular-scale units and architecting them into functional materials and systems. Recently, a new conceptual paradigm, nanoarchitectonics, has been proposed to combine nanotechnology and other methodologies including supramolecular chemistry, self-assembly and self-organization to satisfy major features of nanoscience and promote the creation of functional materials and systems. In this account article, our recent research results in materials development based on the nanoarchitectonics concept are summarized in two stories, (i) nanoarchitectonics from fullerenes as the simplest nano-units and (ii) dimension-dependent nanoarchitectonics from various structural units. The former demonstrates creativity of the nanoarchitectonics concept only with simple construction stuffs on materials fabrications, and a wide range of material applicability for the nanoarchitectonics strategy is realized in the latter ones.
Collapse
Affiliation(s)
- Katsuhiko Ariga
- World Premier International (WPI) Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS) 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan.,Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, 277-0827, Japan
| | - Taizo Mori
- World Premier International (WPI) Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS) 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Lok Kumar Shrestha
- World Premier International (WPI) Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS) 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| |
Collapse
|
28
|
Hu Y, Xie D, Wu Y, Lin N, Song A, Hao J. Hydrogels Based on Ag + -Modulated Assembly of 5'-Adenosine Monophosphate for Enriching Biomolecules. Chemistry 2017; 23:15721-15728. [PMID: 28833801 DOI: 10.1002/chem.201703180] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Indexed: 12/18/2022]
Abstract
Supramolecular hydrogels obtained by combining 5'-adenosine monophosphate (AMP) with Ag+ were fabricated in this work. Their gelation capability was enhanced by increasing the concentration of Ag+ or decreasing the pH. The gels are very sensitive to light, which endows them with potential applications as visible-light photosensitive materials. Coordination between the nucleobase of AMP and Ag+ , as well as π-π stacking of nucleobases, are considered to be the main driving forces for self-assembly. The hydrogels successfully achieved the encapsulation and enrichment of biomolecules. Hydrogen bonding between the amino group of guest molecules and silver nanoparticles along the nanofibers drives the enrichment and is considered to be a crucial interaction.
Collapse
Affiliation(s)
- Yuanyuan Hu
- Key Laboratory of Colloid and Interface Chemistry, & Key Laboratory of Special Aggregated Materials, Shandong University, Ministry of Education, Jinan, 250100, P.R. China
| | - Dong Xie
- Key Laboratory of Colloid and Interface Chemistry, & Key Laboratory of Special Aggregated Materials, Shandong University, Ministry of Education, Jinan, 250100, P.R. China
| | - Yang Wu
- Key Laboratory of Colloid and Interface Chemistry, & Key Laboratory of Special Aggregated Materials, Shandong University, Ministry of Education, Jinan, 250100, P.R. China
| | - Nangui Lin
- Key Laboratory of Colloid and Interface Chemistry, & Key Laboratory of Special Aggregated Materials, Shandong University, Ministry of Education, Jinan, 250100, P.R. China
| | - Aixin Song
- Key Laboratory of Colloid and Interface Chemistry, & Key Laboratory of Special Aggregated Materials, Shandong University, Ministry of Education, Jinan, 250100, P.R. China
| | - Jingcheng Hao
- Key Laboratory of Colloid and Interface Chemistry, & Key Laboratory of Special Aggregated Materials, Shandong University, Ministry of Education, Jinan, 250100, P.R. China
| |
Collapse
|
29
|
Komiyama M, Yoshimoto K, Sisido M, Ariga K. Chemistry Can Make Strict and Fuzzy Controls for Bio-Systems: DNA Nanoarchitectonics and Cell-Macromolecular Nanoarchitectonics. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2017. [DOI: 10.1246/bcsj.20170156] [Citation(s) in RCA: 238] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Makoto Komiyama
- World Premier International (WPI) Research Centre for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044
- Life Science Center of Tsukuba Advanced Research Alliance, University of Tsukuba, 1-1-1 Ten-noudai, Tsukuba, Ibaraki 305-8577
| | - Keitaro Yoshimoto
- Department of Life Sciences, Graduate School of Arts and Science, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902
| | - Masahiko Sisido
- Professor Emeritus, Research Core for Interdisciplinary Sciences, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530
| | - Katsuhiko Ariga
- World Premier International (WPI) Research Centre for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-0827
| |
Collapse
|
30
|
Wu Z, Sun J, Zhang Z, Yang H, Xue P, Lu R. Nontraditional π Gelators Based on β-Iminoenolate and Their Difluoroboron Complexes: Effect of Halogens on Gelation and Their Fluorescent Sensory Properties Towards Acids. Chemistry 2017; 23:1901-1909. [DOI: 10.1002/chem.201604573] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Indexed: 01/26/2023]
Affiliation(s)
- Zhu Wu
- State Key Laboratory of Supramolecular Structure and Materials; College of Chemistry; Jilin University; No. 2699 Qianjin Street Changchun P.R. China
| | - Jingbo Sun
- State Key Laboratory of Supramolecular Structure and Materials; College of Chemistry; Jilin University; No. 2699 Qianjin Street Changchun P.R. China
| | - Zhenqi Zhang
- State Key Laboratory of Supramolecular Structure and Materials; College of Chemistry; Jilin University; No. 2699 Qianjin Street Changchun P.R. China
| | - Hao Yang
- State Key Laboratory of Supramolecular Structure and Materials; College of Chemistry; Jilin University; No. 2699 Qianjin Street Changchun P.R. China
| | - Pengchong Xue
- State Key Laboratory of Supramolecular Structure and Materials; College of Chemistry; Jilin University; No. 2699 Qianjin Street Changchun P.R. China
| | - Ran Lu
- State Key Laboratory of Supramolecular Structure and Materials; College of Chemistry; Jilin University; No. 2699 Qianjin Street Changchun P.R. China
| |
Collapse
|
31
|
Manchineella S, Govindaraju T. Molecular Self-Assembly of Cyclic Dipeptide Derivatives and Their Applications. Chempluschem 2016; 82:88-106. [PMID: 31961506 DOI: 10.1002/cplu.201600450] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 10/20/2016] [Indexed: 01/08/2023]
Abstract
Cyclic dipeptides (CDPs) are heterocyclic 2,5-diketopiperazines with exceptional structural rigidity, enzymatic stability, and biological activity, exhibiting a substantial tendency to take part in intermolecular interactions. Strong intermolecular interactions driven by unique hydrogen bonding patterns render CDPs with a high propensity to undergo molecular self-assembly. In this Review, the aim is to provide a comprehensive summary of design strategies used to engineer the molecular self-assembly of CDPs into functional nano- and micro-architectures and molecular gels with potential applications in biomedical and materials engineering fields.
Collapse
Affiliation(s)
- Shivaprasad Manchineella
- Bioorganic Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bengaluru, Karnataka, 560064, India
| | - T Govindaraju
- Bioorganic Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bengaluru, Karnataka, 560064, India
| |
Collapse
|
32
|
Deng M, Zhang L, Jiang Y, Liu M. Role of Achiral Nucleobases in Multicomponent Chiral Self-Assembly: Purine-Triggered Helix and Chirality Transfer. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201608638] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Ming Deng
- Beijing National Laboratory for Molecular Sciences; CAS Key Laboratory of Colloid Interface and Chemical Thermodynamics Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 P.R. China
- University of Chinese Academy of Sciences; Beijing, 1 00049 P.R. China
| | - Li Zhang
- Beijing National Laboratory for Molecular Sciences; CAS Key Laboratory of Colloid Interface and Chemical Thermodynamics Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 P.R. China
| | - Yuqian Jiang
- Laboratory for Nanosystem and Hierarchy Fabrication, CAS Center for Excellence in Nanoscience; National Center for Nanoscience and Technology; Beijing 100190 P.R. China
| | - Minghua Liu
- Beijing National Laboratory for Molecular Sciences; CAS Key Laboratory of Colloid Interface and Chemical Thermodynamics Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 P.R. China
- University of Chinese Academy of Sciences; Beijing, 1 00049 P.R. China
- Laboratory for Nanosystem and Hierarchy Fabrication, CAS Center for Excellence in Nanoscience; National Center for Nanoscience and Technology; Beijing 100190 P.R. China
- Collaborative Innovation Center of Chemical Science and Engineering; Tianjin 300072 P.R. China
| |
Collapse
|
33
|
Deng M, Zhang L, Jiang Y, Liu M. Role of Achiral Nucleobases in Multicomponent Chiral Self-Assembly: Purine-Triggered Helix and Chirality Transfer. Angew Chem Int Ed Engl 2016; 55:15062-15066. [DOI: 10.1002/anie.201608638] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Revised: 10/05/2016] [Indexed: 12/21/2022]
Affiliation(s)
- Ming Deng
- Beijing National Laboratory for Molecular Sciences; CAS Key Laboratory of Colloid Interface and Chemical Thermodynamics Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 P.R. China
- University of Chinese Academy of Sciences; Beijing, 1 00049 P.R. China
| | - Li Zhang
- Beijing National Laboratory for Molecular Sciences; CAS Key Laboratory of Colloid Interface and Chemical Thermodynamics Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 P.R. China
| | - Yuqian Jiang
- Laboratory for Nanosystem and Hierarchy Fabrication, CAS Center for Excellence in Nanoscience; National Center for Nanoscience and Technology; Beijing 100190 P.R. China
| | - Minghua Liu
- Beijing National Laboratory for Molecular Sciences; CAS Key Laboratory of Colloid Interface and Chemical Thermodynamics Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 P.R. China
- University of Chinese Academy of Sciences; Beijing, 1 00049 P.R. China
- Laboratory for Nanosystem and Hierarchy Fabrication, CAS Center for Excellence in Nanoscience; National Center for Nanoscience and Technology; Beijing 100190 P.R. China
- Collaborative Innovation Center of Chemical Science and Engineering; Tianjin 300072 P.R. China
| |
Collapse
|
34
|
Avinash MB, Sandeepa KV, Govindaraju T. Emergent Behaviors in Kinetically Controlled Dynamic Self-Assembly of Synthetic Molecular Systems. ACS OMEGA 2016; 1:378-387. [PMID: 31457135 PMCID: PMC6640818 DOI: 10.1021/acsomega.6b00155] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 09/05/2016] [Indexed: 05/29/2023]
Abstract
Living systems are categorically a kinetic state of matter that exhibits complex functions and emergent behaviors. By contrast, synthetic systems are relatively simple and are typically controlled by the thermodynamic parameters. To understand this inherent difference between the biological and synthetic systems, novel approaches are of vital importance. In this regard, we have designed a three-component molecular system (a triad) by conjugating an amino acid with two functional molecules (naphthalenediimide and pyrene), which facilitates kinetically controlled self-assemblies. Herein, we describe three different molecular aggregation states of triads (entitled State I, State II, and State III) and also the dynamic pathway complexities associated with their transformations from one state to another. By meticulously employing the triads of different molecular aggregation states and the stereochemical information of the amino acid, we report emergent behaviors termed "supramolecular speciation" and "supramolecular regulation". Further, we present a hitherto unknown emergent property in a self-assembled state under the majority-rules experiment, which has been termed "super-nonlinearity". This work provides novel insights into complex synthetic systems having unprecedented functions and properties. Such emergent behaviors of synthetic triads that involve an interplay among complex interactions may find relevance in the context of prebiotic chemical evolution.
Collapse
|
35
|
Ariga K, Malgras V, Ji Q, Zakaria MB, Yamauchi Y. Coordination nanoarchitectonics at interfaces between supramolecular and materials chemistry. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2016.01.015] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
36
|
Avinash MB, Swathi K, Narayan KS, Govindaraju T. Molecular Architectonics of Naphthalenediimides for Efficient Structure-Property Correlation. ACS APPLIED MATERIALS & INTERFACES 2016; 8:8678-8685. [PMID: 27002593 DOI: 10.1021/acsami.6b00011] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We present a bioinspired design strategy to effectively tailor the assembly of naphthalenediimides (NDIs) into a wide variety of architectures by functionalizing with amino acid derivatives. This bioinspired process of custom designing and engineering molecular assemblies is termed "bioinspired architectonics". By employing minute structural mutations in the form of α-substituents of amino acids, we successfully engineered molecular assembly of NDIs into zero-dimensional (0D, spheres), one-dimensional (1D, fibers), and two-dimensional (2D, sheets) architectures. The 2D sheets of phenylalanine methylester appended NDI 1 showed remarkable bulk electron mobility of up to 1 cm(2) V(-1)s(-1). With the aid of photophysical, diffraction, and microscopy techniques we rationalize the effect of molecular structure with their ordering and electronic properties in an effort to find structure-property correlations via a bioinspired modular approach.
Collapse
Affiliation(s)
- M B Avinash
- Bioorganic Chemistry Laboratory, New Chemistry Unit (NCU), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) , Jakkur P.O., Bengaluru 560064, India
| | - K Swathi
- Molecular Electronics Lab, Chemistry and Physics of Materials Unit (CPMU), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) , Jakkur P.O., Bengaluru 560064, India
| | - K S Narayan
- Molecular Electronics Lab, Chemistry and Physics of Materials Unit (CPMU), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) , Jakkur P.O., Bengaluru 560064, India
| | - T Govindaraju
- Bioorganic Chemistry Laboratory, New Chemistry Unit (NCU), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) , Jakkur P.O., Bengaluru 560064, India
| |
Collapse
|
37
|
Molla MR, Levkin PA. Combinatorial Approach to Nanoarchitectonics for Nonviral Delivery of Nucleic Acids. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:1159-1175. [PMID: 26608939 DOI: 10.1002/adma.201502888] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 09/01/2015] [Indexed: 06/05/2023]
Abstract
Nanoparticles based on cationic polymers, lipids or lipidoids are of great interest in the field of gene delivery applications. The research on these nanosystems is rapidly growing as they hold promise to treat wide variety of human diseases ranging from viral infections to genetic disorders and cancer. Recently, combinatorial design principles have been adopted for rapid generation of large numbers of chemically diverse polymers and lipids capable of forming multifunctional nanocarriers for the use in gene delivery applications. At the same time, current high-throughput screening systems as well as convenient cell assays and readout techniques allow for fast evaluation of cell transfection efficiencies and toxicities of libraries of novel gene delivery agents. This allows for a rapid evaluation of structure-function relationship as well as identification of novel efficient nanocarriers for cell transfection and gene therapy. Here, the recent contribution of high-throughput synthesis to the development of novel nanocarriers for gene delivery applications is described.
Collapse
Affiliation(s)
- Mijanur Rahaman Molla
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Pavel A Levkin
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
- University of Heidelberg, Department of Applied Physical Chemistry, 69120, Heidelberg, Germany
| |
Collapse
|
38
|
Ariga K, Li J, Fei J, Ji Q, Hill JP. Nanoarchitectonics for Dynamic Functional Materials from Atomic-/Molecular-Level Manipulation to Macroscopic Action. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:1251-86. [PMID: 26436552 DOI: 10.1002/adma.201502545] [Citation(s) in RCA: 295] [Impact Index Per Article: 36.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 07/27/2015] [Indexed: 05/21/2023]
Abstract
Objects in all dimensions are subject to translational dynamism and dynamic mutual interactions, and the ability to exert control over these events is one of the keys to the synthesis of functional materials. For the development of materials with truly dynamic functionalities, a paradigm shift from "nanotechnology" to "nanoarchitectonics" is proposed, with the aim of design and preparation of functional materials through dynamic harmonization of atomic-/molecular-level manipulation and control, chemical nanofabrication, self-organization, and field-controlled organization. Here, various examples of dynamic functional materials are presented from the atom/molecular-level to macroscopic dimensions. These systems, including atomic switches, molecular machines, molecular shuttles, motional crystals, metal-organic frameworks, layered assemblies, gels, supramolecular assemblies of biomaterials, DNA origami, hollow silica capsules, and mesoporous materials, are described according to their various dynamic functions, which include short-term plasticity, long-term potentiation, molecular manipulation, switchable catalysis, self-healing properties, supramolecular chirality, morphological control, drug storage and release, light-harvesting, mechanochemical transduction, molecular tuning molecular recognition, hand-operated nanotechnology.
Collapse
Affiliation(s)
- Katsuhiko Ariga
- World Premier International (WPI) Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, 305-0044, Japan
| | - Junbai Li
- Beijing National Laboratory for Molecular Science, CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Science, Beijing, 100190, P. R. China
| | - Jinbo Fei
- Beijing National Laboratory for Molecular Science, CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Science, Beijing, 100190, P. R. China
| | - Qingmin Ji
- World Premier International (WPI) Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, 305-0044, Japan
| | - Jonathan P Hill
- World Premier International (WPI) Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, 305-0044, Japan
| |
Collapse
|
39
|
Aono M, Ariga K. The Way to Nanoarchitectonics and the Way of Nanoarchitectonics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:989-92. [PMID: 26331278 DOI: 10.1002/adma.201502868] [Citation(s) in RCA: 141] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Revised: 06/30/2015] [Indexed: 05/20/2023]
Abstract
The critical differences between microtechnology and nanotechnology are discussed, and the necessity of a new paradigm, nanoarchitectonics, is proposed for the future development of nanotechnology. An important task in material fabrication is to harmonize various factors and effects, and to combine them into functional nanomaterials and nanosystems. It is the way of architectonics rather than that of an individual technology. Therefore, a novel terminology, nanoarchitectonics (nano + architecto +nics) has been proposed as a new paradigm of materials science and technology on the nanoscale. The statement by Feynman that "there's plenty of room at the bottom" is really true. With nanoarchitectonics in our hands, we can re-open the door to Feynman's huge room.
Collapse
Affiliation(s)
- Masakazu Aono
- World Premier International (WPI) Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, 305-0044, Japan
| | - Katsuhiko Ariga
- World Premier International (WPI) Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, 305-0044, Japan
| |
Collapse
|
40
|
Ariga K, Minami K, Shrestha LK. Nanoarchitectonics for carbon-material-based sensors. Analyst 2016; 141:2629-38. [DOI: 10.1039/c6an00057f] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Recently, the nanoarchitectonics concept has been proposed to fabricate functional materials on the basis of concerted harmonization actions to control materials organization.
Collapse
Affiliation(s)
- Katsuhiko Ariga
- World Premier International Center for Materials Nanoarchitectonics (WPI-MANA)
- National Institute for Materials Science (NIMS)
- Tsukuba 305-0044
- Japan
| | - Kosuke Minami
- World Premier International Center for Materials Nanoarchitectonics (WPI-MANA)
- National Institute for Materials Science (NIMS)
- Tsukuba 305-0044
- Japan
| | - Lok Kumar Shrestha
- World Premier International Center for Materials Nanoarchitectonics (WPI-MANA)
- National Institute for Materials Science (NIMS)
- Tsukuba 305-0044
- Japan
| |
Collapse
|
41
|
Ariga K, Naito M, Ji Q, Payra D. Molecular cavity nanoarchitectonics for biomedical application and mechanical cavity manipulation. CrystEngComm 2016. [DOI: 10.1039/c6ce00432f] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
42
|
Ariga K, Ishihara S, Abe H. Atomic architectonics, nanoarchitectonics and microarchitectonics for strategies to make junk materials work as precious catalysts. CrystEngComm 2016. [DOI: 10.1039/c6ce00986g] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
43
|
Wu Z, Sun J, Zhang Z, Gong P, Xue P, Lu R. Organogelation of cyanovinylcarbazole with terminal benzimidazole: AIE and response for gaseous acid. RSC Adv 2016. [DOI: 10.1039/c6ra20910f] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The intense emission of carbazole-modified benzimidazole in xerogel-based film can be quenched rapidly by gaseous acid due to protonation.
Collapse
Affiliation(s)
- Zhu Wu
- State Key Laboratory of Supramolecular Structure and Materials
- College of Chemistry
- Jilin University
- Changchun
- P. R. China
| | - Jingbo Sun
- State Key Laboratory of Supramolecular Structure and Materials
- College of Chemistry
- Jilin University
- Changchun
- P. R. China
| | - Zhenqi Zhang
- State Key Laboratory of Supramolecular Structure and Materials
- College of Chemistry
- Jilin University
- Changchun
- P. R. China
| | - Peng Gong
- State Key Laboratory of Supramolecular Structure and Materials
- College of Chemistry
- Jilin University
- Changchun
- P. R. China
| | - Pengcong Xue
- State Key Laboratory of Supramolecular Structure and Materials
- College of Chemistry
- Jilin University
- Changchun
- P. R. China
| | - Ran Lu
- State Key Laboratory of Supramolecular Structure and Materials
- College of Chemistry
- Jilin University
- Changchun
- P. R. China
| |
Collapse
|
44
|
Two-Dimensional Peptide and Protein Assemblies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 940:29-60. [PMID: 27677508 DOI: 10.1007/978-3-319-39196-0_3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Two-dimensional nanoscale assemblies (nanosheets) represent a promising structural platform to arrange molecular and supramolecular substrates with precision for integration into devices. This nanoarchitectonic approach has gained significant traction over the last decade, as a general concept to guide the fabrication of functional nanoscale devices. Sequence-specific biomolecules, e.g., peptides and proteins, may be considered excellent substrates for the fabrication of two-dimensional nanoarchitectonics. Molecular level instructions can be encoded within the sequence of monomers, which allows for control over supramolecular structure if suitable design principles could be elaborated. Due to the complexity of interactions between protomers, the development of principles aimed toward rational design of peptide and protein nanosheets is at a nascent stage. This review discusses the known two-dimensional peptide and protein assemblies to further our understanding of how to control the arrangement of molecules in two-dimensions.
Collapse
|
45
|
Avinash MB, Raut D, Mishra MK, Ramamurty U, Govindaraju T. Bioinspired Reductionistic Peptide Engineering for Exceptional Mechanical Properties. Sci Rep 2015; 5:16070. [PMID: 26525957 PMCID: PMC4630637 DOI: 10.1038/srep16070] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 10/06/2015] [Indexed: 12/31/2022] Open
Abstract
A simple solution-processing and self-assembly approach that exploits the synergistic interactions between multiple hydrogen bonded networks and aromatic interactions was utilized to synthesize molecular crystals of cyclic dipeptides (CDPs), whose molecular weights (~0.2 kDa) are nearly three orders of magnitude smaller than that of natural structural proteins (50–300 kDa). Mechanical properties of these materials, measured using the nanoindentation technique, indicate that the stiffness and strength are comparable and sometimes better than those of natural fibres. The measured mechanical responses were rationalized by recourse to the crystallographic structural analysis and intermolecular interactions in the self-assembled single crystals. With this work we highlight the significance of developing small molecule based bioinspired design strategies to emulate biomechanical properties. A particular advantage of the successfully demonstrated reductionistic strategy of the present work is its amenability for realistic industrial scale manufacturing of designer biomaterials with desired mechanical properties.
Collapse
Affiliation(s)
- M B Avinash
- Bioorganic Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P. O., Bengaluru 560064, India
| | - Devaraj Raut
- Department of Materials Engineering, Indian Institute of Science, Bengaluru 560012, India
| | - Manish Kumar Mishra
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bengaluru 560012, India
| | - Upadrasta Ramamurty
- Department of Materials Engineering, Indian Institute of Science, Bengaluru 560012, India.,Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - T Govindaraju
- Bioorganic Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P. O., Bengaluru 560064, India
| |
Collapse
|
46
|
Kameta N, Masuda M, Shimizu T. Qualitative/chiral sensing of amino acids by naked-eye fluorescence change based on morphological transformation and hierarchizing in supramolecular assemblies of pyrene-conjugated glycolipids. Chem Commun (Camb) 2015; 51:11104-7. [PMID: 26065855 DOI: 10.1039/c5cc03843j] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Supramolecular assemblies of fluorescent glycolipids exhibited molecular packing rearrangement as well as morphological transformation, in response to amino acid analytes. Naked-eye detectable fluorescence color changes and hydrogel formation as the result of the amplification of the molecular- and nanometer-scaled changes enabled not only qualitative analysis but also chiral sensing of a specific amino acid among 20 amino acids.
Collapse
Affiliation(s)
- Naohiro Kameta
- Research Institute for Sustainable Chemistry, Department of Materials and Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan.
| | | | | |
Collapse
|
47
|
Peng HQ, Niu LY, Chen YZ, Wu LZ, Tung CH, Yang QZ. Biological Applications of Supramolecular Assemblies Designed for Excitation Energy Transfer. Chem Rev 2015; 115:7502-42. [DOI: 10.1021/cr5007057] [Citation(s) in RCA: 327] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Hui-Qing Peng
- Key
Laboratory of Photochemical Conversion and Optoelectronic Materials,
Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
| | - Li-Ya Niu
- Key
Laboratory of Photochemical Conversion and Optoelectronic Materials,
Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
- Key
Laboratory of Radiopharmaceuticals, Ministry of Education, College
of Chemistry, Beijing Normal University, Beijing 100875, People’s Republic of China
| | - Yu-Zhe Chen
- Key
Laboratory of Photochemical Conversion and Optoelectronic Materials,
Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
| | - Li-Zhu Wu
- Key
Laboratory of Photochemical Conversion and Optoelectronic Materials,
Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
| | - Chen-Ho Tung
- Key
Laboratory of Photochemical Conversion and Optoelectronic Materials,
Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
- Collaborative
Innovation Center of Functionalized Probes for Chemical Imaging in
Universities of Shandong, Shandong Normal University, Jinan 250014, People’s Republic of China
| | - Qing-Zheng Yang
- Key
Laboratory of Photochemical Conversion and Optoelectronic Materials,
Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
- Key
Laboratory of Radiopharmaceuticals, Ministry of Education, College
of Chemistry, Beijing Normal University, Beijing 100875, People’s Republic of China
| |
Collapse
|
48
|
|
49
|
Pandeeswar M, Khare H, Ramakumar S, Govindaraju T. Crystallographic insight-guided nanoarchitectonics and conductivity modulation of an n-type organic semiconductor through peptide conjugation. Chem Commun (Camb) 2015; 51:8315-8. [DOI: 10.1039/c5cc01996f] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Crystallographic insight-guided and bio-inspired molecular nanoarchitectonics of an n-type organic semiconductor is described to understand the structure–property correlation, for modulation of functional properties.
Collapse
Affiliation(s)
- M. Pandeeswar
- Bioorganic Chemistry Laboratory
- New Chemistry Unit
- Jawaharlal Nehru Centre for Advanced Scientific Research
- Bengaluru 560064
- India
| | | | | | - T. Govindaraju
- Bioorganic Chemistry Laboratory
- New Chemistry Unit
- Jawaharlal Nehru Centre for Advanced Scientific Research
- Bengaluru 560064
- India
| |
Collapse
|
50
|
Pandeeswar M, Govindaraju T. Bioinspired Nanoarchitectonics of Naphthalene Diimide to Access 2D Sheets of Tunable Size, Shape, and Optoelectronic Properties. J Inorg Organomet Polym Mater 2014. [DOI: 10.1007/s10904-014-0144-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|