1
|
Dhiman R, Kumar J, Singh M. Fluorescent carbon dots for sensing applications: a review. ANAL SCI 2024; 40:1387-1396. [PMID: 38981955 DOI: 10.1007/s44211-024-00609-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/30/2024] [Indexed: 07/11/2024]
Abstract
Luminescent carbon dots (CDs) are important class of nanomaterials with fantastic photoluminescence (PL) properties, great biocompatibility, extraordinary solubility in water, minimal expense, and so on. There are many methods for their preparation and they are mainly classed into two groups, top-down and bottom-up approaches. In order to understand the origin of fluorescence in quantum CDs, three mechanisms have been proposed namely molecular state, surface state, and quantum confinement phenomenon. Fluorescent CDs have significant application in the fields of biochemical sensing, photocatalysis, bioimaging, delivery of drugs, and other related fields. In this review article the application of quantum dots as detecting component, for the sensing of different targets, has been summed up. In fact, the detection of several analytes including, anions, cations, small molecules, polymers, cells, and microscopic organisms has been discoursed. Moreover, the future aspects of CDs as detecting resources have been explored.
Collapse
Affiliation(s)
- Rachna Dhiman
- Department of Chemistry, University Institute of Sciences, Chandigarh University, Mohali, Punjab, 140413, India
| | - Jagdeep Kumar
- Department of Chemistry, University Institute of Sciences, Chandigarh University, Mohali, Punjab, 140413, India.
| | - Mallika Singh
- Department of Chemistry, University Institute of Sciences, Chandigarh University, Mohali, Punjab, 140413, India
| |
Collapse
|
2
|
He X, Zheng Y, Hu C, Lei B, Zhang X, Liu Y, Zhuang J. The afterglow of carbon dots shining in inorganic matrices. MATERIALS HORIZONS 2024; 11:113-133. [PMID: 37856234 DOI: 10.1039/d3mh01034a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Carbon dots (CDs) are a new type of quasi-spherical and zero-dimension carbon nanomaterial with a diameter less than 10 nm. They exhibit a broad absorption spanning from the ultraviolet (UV) to visible light regions and inspire growing interests due to their excellent performance. In recent years, it was identified that the CDs embedded in various inorganic matrices (IMs) can effectively activate afterglow emission by suppressing the nonradiative transitions of molecules and protecting the triplet excitons of CDs, which hold broad application prospects. Herein, recent advances in CDs@IMs are reviewed in detail, and the interaction and luminescence mechanisms between CDs and IMs are also summarized. We highlight the synthetic strategies of constructing composites and the roles of IMs in facilitating the applications of CDs in diverse areas. Finally, some directions and challenges of future research in this field are proposed.
Collapse
Affiliation(s)
- Xiaoyan He
- Key Laboratory for Biobased Materials and Energy of Ministry of Education/Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China.
| | - Yihao Zheng
- Key Laboratory for Biobased Materials and Energy of Ministry of Education/Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China.
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau SAR 999078, China
| | - Chaofan Hu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education/Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China.
| | - Bingfu Lei
- Key Laboratory for Biobased Materials and Energy of Ministry of Education/Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China.
| | - Xingcai Zhang
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.
| | - Yingliang Liu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education/Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China.
| | - Jianle Zhuang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education/Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
3
|
Zhang HH, Wu CD. Creation and stabilization of carbon dots in silica-confined compartments with high thermal stability. Chem Commun (Camb) 2023; 59:1665-1668. [PMID: 36689204 DOI: 10.1039/d2cc06905a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Inspired by the formation procedures and high stability of ambers, we report herein a facile approach for the in situ creation and stabilization of carbon dots (CDs) in confined silica compartments by a solvothermal reaction and subsequent thermal treatment, and the endowed CDs exhibit the initial photoluminescence (PL) properties at 400 °C, which could be used to fabricate highly thermal-stable light-emitting diodes (LEDs) that work well at a current of 600 mA and temperature of 205 °C.
Collapse
Affiliation(s)
- Huan-Huan Zhang
- Key Laboratory of Excited-State Material of Zhejiang Province and State Key Laboratory of Silicon Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China.
| | - Chuan-De Wu
- Key Laboratory of Excited-State Material of Zhejiang Province and State Key Laboratory of Silicon Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China.
| |
Collapse
|
4
|
Stepanidenko EA, Skurlov ID, Khavlyuk PD, Onishchuk DA, Koroleva AV, Zhizhin EV, Arefina IA, Kurdyukov DA, Eurov DA, Golubev VG, Baranov AV, Fedorov AV, Ushakova EV, Rogach AL. Carbon Dots with an Emission in the Near Infrared Produced from Organic Dyes in Porous Silica Microsphere Templates. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:543. [PMID: 35159888 PMCID: PMC8838831 DOI: 10.3390/nano12030543] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 01/31/2022] [Accepted: 02/02/2022] [Indexed: 11/30/2022]
Abstract
Carbon dots (CDs) with an emission in the near infrared spectral region are attractive due to their promising applications in bio-related areas, while their fabrication still remains a challenging task. Herein, we developed a template-assisted method using porous silica microspheres for the formation of CDs with optical transitions in the near infrared. Two organic dyes, Rhodamine 6G and IR1061 with emission in the yellow and near infrared spectral regions, respectively, were used as precursors for CDs. Correlation of morphology and chemical composition with optical properties of obtained CDs revealed the origin of their emission, which is related to the CDs' core optical transitions and dye-derivatives within CDs. By varying annealing temperature, different kinds of optical centers as derivatives of organic dyes are formed in the microsphere's pores. The template-assisted method allows us to synthesize CDs with an emission peaked at 1085 nm and photoluminescence quantum yield of 0.2%, which is the highest value reported so far for CDs emitting at wavelengths longer than 1050 nm.
Collapse
Affiliation(s)
- Evgeniia A. Stepanidenko
- Center of Information Optical Technologies, ITMO University, Kronverksky Pr. 49, 197101 Saint Petersburg, Russia; (E.A.S.); (I.D.S.); (D.A.O.); (I.A.A.); (A.V.B.); (A.V.F.)
| | - Ivan D. Skurlov
- Center of Information Optical Technologies, ITMO University, Kronverksky Pr. 49, 197101 Saint Petersburg, Russia; (E.A.S.); (I.D.S.); (D.A.O.); (I.A.A.); (A.V.B.); (A.V.F.)
| | - Pavel D. Khavlyuk
- Chair of Physical Chemistry, TU Dresden, Zellescher Weg 19, 01069 Dresden, Germany;
| | - Dmitry A. Onishchuk
- Center of Information Optical Technologies, ITMO University, Kronverksky Pr. 49, 197101 Saint Petersburg, Russia; (E.A.S.); (I.D.S.); (D.A.O.); (I.A.A.); (A.V.B.); (A.V.F.)
| | - Aleksandra V. Koroleva
- Centre for Physical Methods of Surface Investigation, Saint Petersburg State University, Universitetskaya emb. 7-9, 199034 Saint Petersburg, Russia; (A.V.K.); (E.V.Z.)
| | - Evgeniy V. Zhizhin
- Centre for Physical Methods of Surface Investigation, Saint Petersburg State University, Universitetskaya emb. 7-9, 199034 Saint Petersburg, Russia; (A.V.K.); (E.V.Z.)
| | - Irina A. Arefina
- Center of Information Optical Technologies, ITMO University, Kronverksky Pr. 49, 197101 Saint Petersburg, Russia; (E.A.S.); (I.D.S.); (D.A.O.); (I.A.A.); (A.V.B.); (A.V.F.)
| | - Dmitry A. Kurdyukov
- Laboratory of Amorphous Semiconductors, Ioffe Institute, 26 Politekhnicheskaya Str., 194021 Saint Petersburg, Russia; (D.A.K.); (D.A.E.); (V.G.G.)
| | - Daniil A. Eurov
- Laboratory of Amorphous Semiconductors, Ioffe Institute, 26 Politekhnicheskaya Str., 194021 Saint Petersburg, Russia; (D.A.K.); (D.A.E.); (V.G.G.)
| | - Valery G. Golubev
- Laboratory of Amorphous Semiconductors, Ioffe Institute, 26 Politekhnicheskaya Str., 194021 Saint Petersburg, Russia; (D.A.K.); (D.A.E.); (V.G.G.)
| | - Alexander V. Baranov
- Center of Information Optical Technologies, ITMO University, Kronverksky Pr. 49, 197101 Saint Petersburg, Russia; (E.A.S.); (I.D.S.); (D.A.O.); (I.A.A.); (A.V.B.); (A.V.F.)
| | - Anatoly V. Fedorov
- Center of Information Optical Technologies, ITMO University, Kronverksky Pr. 49, 197101 Saint Petersburg, Russia; (E.A.S.); (I.D.S.); (D.A.O.); (I.A.A.); (A.V.B.); (A.V.F.)
| | - Elena V. Ushakova
- Center of Information Optical Technologies, ITMO University, Kronverksky Pr. 49, 197101 Saint Petersburg, Russia; (E.A.S.); (I.D.S.); (D.A.O.); (I.A.A.); (A.V.B.); (A.V.F.)
| | - Andrey L. Rogach
- Centre for Functional Photonics (CFP), Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong 999077, China;
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, China
| |
Collapse
|
5
|
Wang FT, Wang LN, Xu J, Huang KJ, Wu X. Synthesis and modification of carbon dots for advanced biosensing application. Analyst 2021; 146:4418-4435. [PMID: 34195700 DOI: 10.1039/d1an00466b] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
There has been an explosion of interest in the use of nanomaterials for biosensing applications, and carbonaceous nanomaterials in particular are at the forefront of this explosion. Carbon dots (CDs), a new type of carbon material, have attracted extensive attention due to their fascinating properties, such as small particle size, tunable optical properties, good conductivity, low cytotoxicity, and good biocompatibility. These properties have enabled them to be highly promising candidates for the fabrication of various high-performance biosensors. In this review, we summarize the top-down and bottom-up synthesis routes of CDs, highlight their modification strategies, and discuss their applications in the fields of photoluminescence biosensors, electrochemiluminescence biosensors, chemiluminescence biosensors, electrochemical biosensors and fluorescence biosensors. In addition, the challenges and future prospects of the application of CDs for biosensors are also proposed.
Collapse
Affiliation(s)
- Fu-Ting Wang
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China.
| | - Li-Na Wang
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China.
| | - Jing Xu
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China.
| | - Ke-Jing Huang
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China.
| | - Xu Wu
- College of Physics and Electronic Engineering, Xinyang Normal University, Xinyang 464000, China
| |
Collapse
|
6
|
Omori N, Candeo A, Mosca S, Lezcano-Gonzalez I, Robinson IK, Li L, Greenaway AG, Collier P, Beale AM. Multimodal Imaging of Autofluorescent Sites Reveals Varied Chemical Speciation in SSZ-13 Crystals. Angew Chem Int Ed Engl 2021; 60:5125-5131. [PMID: 33332715 DOI: 10.1002/anie.202015016] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 11/30/2020] [Indexed: 12/15/2022]
Abstract
A multimodal imaging study of chabazite is used to show the distribution of and discriminate between different emissive deposits arising as a result of the detemplation process. Confocal imaging, 3D fluorescence lifetime imaging, 3D multispectral fluorescence imaging, and Raman mapping are used to show three different types of emissive behaviours each characterised by different spatial distributions, trends in lifetime, spectral signals, and Raman signatures. A notable difference is seen in the morphology of agglomerated surface deposits and larger subsurface deposits, which experience lifetime augmentation due to spatial confinement. The distribution of organic residue throughout the crystal volume is comparable to XRF mapping that shows Si enrichment on the outer edges and higher Al content through the centre, demonstrating that a fluorescence-based technique can also be used to indirectly comment on the compositional chemistry of the inorganic framework.
Collapse
Affiliation(s)
- Naomi Omori
- Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK.,The Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Campus, Didcot, Oxfordshire, OX11 0FA, UK
| | - Alessia Candeo
- Central Laser Facility-Science & Technology Facility Council, The Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Campus, Didcot, Oxfordshire, OX11 0FA, UK
| | - Sara Mosca
- Central Laser Facility-Science & Technology Facility Council, The Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Campus, Didcot, Oxfordshire, OX11 0FA, UK
| | - Ines Lezcano-Gonzalez
- Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK.,The Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Campus, Didcot, Oxfordshire, OX11 0FA, UK
| | - Ian K Robinson
- London Centre for Nanotechnology, University College London, London, WC1E 6BT, UK.,Brookhaven National Laboratory, Upton, NY, USA
| | - Luxi Li
- Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL, 60439, USA
| | - Alex G Greenaway
- Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK.,The Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Campus, Didcot, Oxfordshire, OX11 0FA, UK
| | - Paul Collier
- Johnson Matthey Technology Centre, Blounts Court Road, Sonning Common, Reading, RG4 9NH, UK
| | - Andrew M Beale
- Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK.,The Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Campus, Didcot, Oxfordshire, OX11 0FA, UK
| |
Collapse
|
7
|
Omori N, Candeo A, Mosca S, Lezcano‐Gonzalez I, Robinson IK, Li L, Greenaway AG, Collier P, Beale AM. Multimodal Imaging of Autofluorescent Sites Reveals Varied Chemical Speciation in SSZ‐13 Crystals. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Naomi Omori
- Department of Chemistry University College London 20 Gordon Street London WC1H 0AJ UK
- The Research Complex at Harwell Rutherford Appleton Laboratory Harwell Campus Didcot Oxfordshire OX11 0FA UK
| | - Alessia Candeo
- Central Laser Facility-Science & Technology Facility Council The Research Complex at Harwell Rutherford Appleton Laboratory Harwell Campus Didcot Oxfordshire OX11 0FA UK
| | - Sara Mosca
- Central Laser Facility-Science & Technology Facility Council The Research Complex at Harwell Rutherford Appleton Laboratory Harwell Campus Didcot Oxfordshire OX11 0FA UK
| | - Ines Lezcano‐Gonzalez
- Department of Chemistry University College London 20 Gordon Street London WC1H 0AJ UK
- The Research Complex at Harwell Rutherford Appleton Laboratory Harwell Campus Didcot Oxfordshire OX11 0FA UK
| | - Ian K. Robinson
- London Centre for Nanotechnology University College London London WC1E 6BT UK
- Brookhaven National Laboratory Upton NY USA
| | - Luxi Li
- Advanced Photon Source Argonne National Laboratory 9700 South Cass Avenue Lemont IL 60439 USA
| | - Alex G. Greenaway
- Department of Chemistry University College London 20 Gordon Street London WC1H 0AJ UK
- The Research Complex at Harwell Rutherford Appleton Laboratory Harwell Campus Didcot Oxfordshire OX11 0FA UK
| | - Paul Collier
- Johnson Matthey Technology Centre Blounts Court Road Sonning Common, Reading RG4 9NH UK
| | - Andrew M. Beale
- Department of Chemistry University College London 20 Gordon Street London WC1H 0AJ UK
- The Research Complex at Harwell Rutherford Appleton Laboratory Harwell Campus Didcot Oxfordshire OX11 0FA UK
| |
Collapse
|
8
|
Tao Y, Jiang Y, Huang Y, Liu J, Zhang P, Chen X, Fan Y, Wang L, Xu J. Carbon dots@metal–organic frameworks as dual-functional fluorescent sensors for Fe 3+ ions and nitro explosives. CrystEngComm 2021. [DOI: 10.1039/d1ce00392e] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two novel dual-functional fluorescent composites were prepared, which exhibit excellent fluorescence sensing capabilities for Fe3+, p-NT and 2,4-DNP.
Collapse
Affiliation(s)
- Yufang Tao
- College of Chemistry
- Jilin University
- Changchun 130012
- P. R. China
- Shanghai New Epoch High School
| | - Yansong Jiang
- College of Chemistry
- Jilin University
- Changchun 130012
- P. R. China
| | - Yating Huang
- College of Chemistry
- Jilin University
- Changchun 130012
- P. R. China
| | - Junning Liu
- State Key Laboratory of Supramolecular Structure and Materials
- College of Chemistry
- Jilin University
- Changchun 130012
- P. R. China
| | - Ping Zhang
- College of Chemistry
- Jilin University
- Changchun 130012
- P. R. China
| | - Xiaodong Chen
- College of Chemistry
- Jilin University
- Changchun 130012
- P. R. China
| | - Yong Fan
- College of Chemistry
- Jilin University
- Changchun 130012
- P. R. China
| | - Li Wang
- College of Chemistry
- Jilin University
- Changchun 130012
- P. R. China
| | - Jianing Xu
- College of Chemistry
- Jilin University
- Changchun 130012
- P. R. China
| |
Collapse
|
9
|
Dong L, Hu D, Wang Y, Sheng Z, Hong M, Yang S. A zeolite-based ship-in-a-bottle route to ultrasmall carbon dots for live cell labeling and bioimaging. NANOSCALE ADVANCES 2020; 2:5803-5809. [PMID: 36133869 PMCID: PMC9417422 DOI: 10.1039/d0na00664e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 10/10/2020] [Indexed: 05/12/2023]
Abstract
Fluorescent carbon quantum dots (CQDs) are a new class of carbon nanomaterials that have excellent biocompatibility and low toxicity, useful for cell labeling and bioimaging. However, it is challenging to reproducibly create CQDs that are uniform and small in size with controlled toxicity and fluorescence properties, and this status quo hinders the practical application of CQDs, especially in vivo. In this report, CQDs with a uniform size of ∼1.53 ± 0.42 nm are synthesized via in situ pyrolysis of organics confined in the smallest-pore zeolite SAPO-20 with a micropore aperture of 0.28 nm. The ultrasmall fluorescent CQDs show a bright green fluorescence with a quantum yield (QY) of 16%, higher than that of most of the bare CQDs without any functionalization and maximum emission at 523 nm under the irradiation of xenon-light at an excitation wavelength of 470 nm. X-ray photoelectron spectroscopy (XPS) characterization confirms the presence of rich carboxyl and hydroxyl groups on the CQD surface containing N- and O-based functional groups. The synthesized CQDs with high QY and low cytotoxicity have been successfully used for cellular imaging with excellent biocompatibility.
Collapse
Affiliation(s)
- Lei Dong
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Nano-Micro Materials Research, School of Chemical Biology & Biotechnology, Peking University Shenzhen Graduate School Shenzhen 518055 China
| | - Dehong Hu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Key Laboratory of Ultrasound Imaging and Therapy, CAS Key Laboratory of Health Informatics, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences Shenzhen 518055 P. R. China
| | - Yanding Wang
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Nano-Micro Materials Research, School of Chemical Biology & Biotechnology, Peking University Shenzhen Graduate School Shenzhen 518055 China
| | - Zonghai Sheng
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Key Laboratory of Ultrasound Imaging and Therapy, CAS Key Laboratory of Health Informatics, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences Shenzhen 518055 P. R. China
| | - Mei Hong
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Nano-Micro Materials Research, School of Chemical Biology & Biotechnology, Peking University Shenzhen Graduate School Shenzhen 518055 China
| | - Shihe Yang
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Nano-Micro Materials Research, School of Chemical Biology & Biotechnology, Peking University Shenzhen Graduate School Shenzhen 518055 China
| |
Collapse
|
10
|
Zhang H, Wang B, Yu X, Li J, Shang J, Yu J. Carbon Dots in Porous Materials: Host-Guest Synergy for Enhanced Performance. Angew Chem Int Ed Engl 2020; 59:19390-19402. [PMID: 32452131 DOI: 10.1002/anie.202006545] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Indexed: 11/06/2022]
Abstract
Carbon dots (CDs) are emerging as a new class of carbon nanomaterials, which have inspired growing interest for their widespread applications in anti-counterfeiting, sensing, bioimaging, optoelectronic and energy-related fields. In terms of the concept of host-guest assembly, immobilizing CDs into porous materials (PMs) has proven to be an effective strategy to avoid the aggregation of bare CDs in solid state, in particular, the host-guest synergy with both merits of CDs and PMs affords composites promising properties in afterglow and tunable emissions, as well as optimizes their performance in optics, catalysis, and energy storage. This Minireview summarizes the recent progress in the research of CDs@PMs, and highlights synthetic strategies of constructing composites and roles of porous matrices in boosting the applications of CDs in diverse areas. The prospect of future exploration and challenges are proposed for designing advanced CDs-based functional nanocomposite materials.
Collapse
Affiliation(s)
- Hongyue Zhang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China.,International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Bolun Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Xiaowei Yu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Jiyang Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Jin Shang
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, P. R. China
| | - Jihong Yu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China.,International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| |
Collapse
|
11
|
Miao J, Lang Z, Xue T, Li Y, Li Y, Cheng J, Zhang H, Tang Z. Revival of Zeolite-Templated Nanocarbon Materials: Recent Advances in Energy Storage and Conversion. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2001335. [PMID: 33101857 PMCID: PMC7578874 DOI: 10.1002/advs.202001335] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 04/27/2020] [Indexed: 05/05/2023]
Abstract
Nanocarbon materials represent one of the hottest topics in physics, chemistry, and materials science. Preparation of nanocarbon materials by zeolite templates has been developing for more than 20 years. In recent years, novel structures and properties of zeolite-templated nanocarbons have been evolving and new applications are emerging in the realm of energy storage and conversion. Here, recent progress of zeolite-templated nanocarbons in advanced synthetic techniques, emerging properties, and novel applications is summarized: i) thanks to the diversity of zeolites, the structures of the corresponding nanocarbons are multitudinous; ii) by various synthetic techniques, novel properties of zeolite-templated nanocarbons can be achieved, such as hierarchical porosity, heteroatom doping, and nanoparticle loading capacity; iii) the applications of zeolite-templated nanocarbons are also evolving from traditional gas/vapor adsorption to advanced energy storage techniques including Li-ion batteries, Li-S batteries, fuel cells, metal-O2 batteries, etc. Finally, a perspective is provided to forecast the future development of zeolite-templated nanocarbon materials.
Collapse
Affiliation(s)
- Jun Miao
- Key Laboratory of Bioinorganic and Synthetic Chemistry (MOE)Institute of Applied Physics and Material EngineeringUniversity of MacauTaipaMacau SARP. R. China
- Instituto de Ciencia de Materiales MadridCSICMadrid28049Spain
| | - Zhongling Lang
- Polyoxometalate Science of Ministry of EducationNortheast Normal UniversityChangchunJilin130024P. R. China
| | - Tianyu Xue
- Institute of Microscale OptoelectronicsKey Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong ProvinceCollege of Physics and Optoelectronic EngineeringShenzhen Key Laboratory of Micro‐Nano Photonic Information TechnologyGuangdong Laboratory of Artificial Intelligence and Digital Economy (SZ)Shenzhen UniversityShenzhen518060P. R. China
- Biodesign Center for Biosensors and BioelectronicsBiodesign InstituteArizona State UniversityTempeAZ85281USA
- Center for High Pressure ScienceState Key Laboratory of Metastable Materials Science and TechnologyYanshan UniversityQinhuangdao066004P. R. China
| | - Yan Li
- Institute of Microscale OptoelectronicsKey Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong ProvinceCollege of Physics and Optoelectronic EngineeringShenzhen Key Laboratory of Micro‐Nano Photonic Information TechnologyGuangdong Laboratory of Artificial Intelligence and Digital Economy (SZ)Shenzhen UniversityShenzhen518060P. R. China
| | - Yiwen Li
- School of Material Science and EngineeringHubei UniversityWuhan430062P. R. China
- Department of ChemistryPurdue UniversityWest LafayetteIN47907USA
| | - Jiaji Cheng
- School of Material Science and EngineeringHubei UniversityWuhan430062P. R. China
| | - Han Zhang
- Institute of Microscale OptoelectronicsKey Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong ProvinceCollege of Physics and Optoelectronic EngineeringShenzhen Key Laboratory of Micro‐Nano Photonic Information TechnologyGuangdong Laboratory of Artificial Intelligence and Digital Economy (SZ)Shenzhen UniversityShenzhen518060P. R. China
| | - Zikang Tang
- Key Laboratory of Bioinorganic and Synthetic Chemistry (MOE)Institute of Applied Physics and Material EngineeringUniversity of MacauTaipaMacau SARP. R. China
| |
Collapse
|
12
|
Zhang H, Wang B, Yu X, Li J, Shang J, Yu J. Carbon Dots in Porous Materials: Host–Guest Synergy for Enhanced Performance. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006545] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Hongyue Zhang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry College of Chemistry Jilin University Changchun 130012 P. R. China
- International Center of Future Science Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| | - Bolun Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry College of Chemistry Jilin University Changchun 130012 P. R. China
| | - Xiaowei Yu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry College of Chemistry Jilin University Changchun 130012 P. R. China
| | - Jiyang Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry College of Chemistry Jilin University Changchun 130012 P. R. China
| | - Jin Shang
- School of Energy and Environment City University of Hong Kong Tat Chee Avenue, Kowloon Hong Kong SAR P. R. China
| | - Jihong Yu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry College of Chemistry Jilin University Changchun 130012 P. R. China
- International Center of Future Science Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| |
Collapse
|
13
|
Liu Y, Zhou K, Chen HL, Gong YN, Pan CY. A Way for Derived Carbon Materials by Thermal Etching Hybrid Borate for Electrochemical CO 2 Reduction. Inorg Chem 2020; 59:10785-10793. [PMID: 32668899 DOI: 10.1021/acs.inorgchem.0c01243] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Two hybridized skeleton borates [Zn(en)2]·[B7O12(OH)] (1; en = ethylenediamine) and [Cd(1,3-dap)2]·[B5O8(OH)]·H2O (2; 1,3-dap = 1,3-diaminopropane) were solvothermally synthesized. The boron oxide clusters formed 2D planes, and these planes formed a 3D structure through co-oxygen links of metal complexes. Herein, a novel strategy has been developed, i.e., the derived guest carbon materials from semi-decomposed borate are incorporated into the void of host borate crystals in situ during the thermal etching process. Moreover, the effect of temperature on fluorescence of derived carbon materials was studied. By controlling the calcining temperature, carbon dots with obvious free radicals can be found via ESR technique. Carbon dots in the ethanol phase exhibited variable photoluminescence. Furthermore, it derived semi-decomposition carbon materials via thermal etching based on compounds 1 and 2. In an hydrogen cell reactor, carbon material Zn-based catalyst 1-200 catalyzes CO2 reduction to CO with a selectivity that reaches 50.8% at -1.4 V vs RHE.
Collapse
Affiliation(s)
- Ying Liu
- School of Light Industry and Chemical Engineering, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
| | - Kang Zhou
- School of Light Industry and Chemical Engineering, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
| | - Hong-Li Chen
- School of Light Industry and Chemical Engineering, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
| | - Yun-Nan Gong
- School of Light Industry and Chemical Engineering, Guangdong University of Technology, Guangzhou, Guangdong 510006, China.,Key Laboratory of Jiangxi University for Functional Material Chemistry, College of Chemistry & Chemical Engineering, Gannan Normal University, Ganzhou, Jiangxi 341000, China
| | - Chun-Yang Pan
- School of Light Industry and Chemical Engineering, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
| |
Collapse
|
14
|
Mikhraliieva A, Zaitsev V, Aucélio RQ, da Motta HB, Nazarkovsky M. Benefit of porous silica nanoreactor in preparation of fluorescence carbon dots from citric acid. NANO EXPRESS 2020. [DOI: 10.1088/2632-959x/ab7e0d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Abstract
A facile and robust synthesis of carbon dots (CDs) emitting blue-light in water without activation and stabilization has been developed by pyrolysis of citric acid (CA) adsorbed in silica gel (SiO2) pores. Effect of the host pore size on luminescent properties of SiO2@CDs nanocomposite as well as water suspension of CDs has been studied. The synthesis conditions such as concentration of the precursor, duration of synthesis also have been investigated. It has been demonstrated that upon the thermal treatment of silica gels saturated with CA (60% of maximum loading) at 170 °C for 5–600 min, luminescent CDs are shaped inside the nanoreactor pores. These SiO2@CDs emit photoluminescence centered at 450 nm. Silica-immobilized CDs can be separated from the source molecules and side-products by centrifugation, which allows avoiding the dialysis of the resulted mixture and so improve the scaling of the synthesis. The CDs can be easily released from SiO2@CDs by washing it with water. Water-eluted CDs demonstrate photoluminescence at 447 nm. The smaller pore size of the host and longer time of thermal treatment promote the formation of the CDs with better photoluminescent peak symmetry and higher quantum yield up to 10.1%.
Collapse
|
15
|
Xia C, Zhu S, Feng T, Yang M, Yang B. Evolution and Synthesis of Carbon Dots: From Carbon Dots to Carbonized Polymer Dots. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1901316. [PMID: 31832313 PMCID: PMC6891914 DOI: 10.1002/advs.201901316] [Citation(s) in RCA: 464] [Impact Index Per Article: 92.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/01/2019] [Indexed: 05/02/2023]
Abstract
Despite the various synthesis methods to obtain carbon dots (CDs), the bottom-up methods are still the most widely administrated route to afford large-scale and low-cost synthesis. However, as CDs are developed with increasing reports involved in producing many CDs, the structure and property features have changed enormously compared with the first generation of CDs, raising classification concerns. To this end, a new classification of CDs, named carbonized polymer dots (CPDs), is summarized according to the analysis of structure and property features. Here, CPDs are revealed as an emerging class of CDs with distinctive polymer/carbon hybrid structures and properties. Furthermore, deep insights into the effects of synthesis on the structure/property features of CDs are provided. Herein, the synthesis methods of CDs are also summarized in detail, and the effects of synthesis conditions of the bottom-up methods in terms of the structures and properties of CPDs are discussed and analyzed comprehensively. Insights into formation process and nucleation mechanism of CPDs are also offered. Finally, a perspective of the future development of CDs is proposed with critical insights into facilitating their potential in various application fields.
Collapse
Affiliation(s)
- Chunlei Xia
- State Key Laboratory of Supramolecular Structure and MaterialsCollege of ChemistryJilin UniversityChangchun130012P. R. China
| | - Shoujun Zhu
- Laboratory of Molecular Imaging and NanomedicineNational Institute of Biomedical Imaging and BioengineeringNational Institutes of Health35 Convent DrBethesda20892MDUSA
| | - Tanglue Feng
- State Key Laboratory of Supramolecular Structure and MaterialsCollege of ChemistryJilin UniversityChangchun130012P. R. China
| | - Mingxi Yang
- State Key Laboratory of Supramolecular Structure and MaterialsCollege of ChemistryJilin UniversityChangchun130012P. R. China
| | - Bai Yang
- State Key Laboratory of Supramolecular Structure and MaterialsCollege of ChemistryJilin UniversityChangchun130012P. R. China
- State Key Laboratory of Applied OpticsChangchun Institute of OpticsFine Mechanics and PhysicsChinese Academy of SciencesChangchun130033P. R. China
| |
Collapse
|
16
|
Stetsenko M, Pullano SA, Margitych T, Maksimenko L, Hassan A, Kryvyi S, Hu R, Huang C, Ziniuk R, Golovynskyi S, Babichuk I, Li Β, Qu J, Fiorillo AS. Antireflection Enhancement by Composite Nanoporous Zeolite 3A-Carbon Thin Film. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E1641. [PMID: 31752315 PMCID: PMC6915533 DOI: 10.3390/nano9111641] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/13/2019] [Accepted: 11/15/2019] [Indexed: 12/05/2022]
Abstract
A straightforward and effective spin-coating technique at 120 °C was investigated for the deposition of a thin nanoporous layer with antireflection properties onto glass and indium tin oxide (ITO) coated glass. A mixture of zeolite 3A powder and high iodine value vegetable oil was deposited, creating a carbonic paste with embedded nanoporous grains. Experimental results evidenced excellent broadband antireflection over the visible-near-infrared wavelength range (450-850 nm), with a diffuse reflectance value of 1.67% and 1.79%. Structural and optical characteristics stabilized over time. The results are promising for the accessible and cost-effective fabrication of an antireflective surface for optoelectronic devices.
Collapse
Affiliation(s)
- Maksym Stetsenko
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China; (M.S.); (A.H.)
- V. Lashkaryov Institute of Semiconductor Physics, National Academy of Sciences of Ukraine, 03680 Kyiv, Ukraine; (L.M.); (S.K.); (I.B.)
| | - Salvatore A. Pullano
- Department of Health Sciences, Magna Græcia University of Catanzaro, 88100 Catanzaro, Italy; (S.A.P.); (A.S.F.)
| | - Tetiana Margitych
- Kiev Institute for Nuclear Research, National Academy of Sciences of Ukraine, 03680 Kyiv, Ukraine;
| | - Lidia Maksimenko
- V. Lashkaryov Institute of Semiconductor Physics, National Academy of Sciences of Ukraine, 03680 Kyiv, Ukraine; (L.M.); (S.K.); (I.B.)
| | - Ali Hassan
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China; (M.S.); (A.H.)
| | - Serhii Kryvyi
- V. Lashkaryov Institute of Semiconductor Physics, National Academy of Sciences of Ukraine, 03680 Kyiv, Ukraine; (L.M.); (S.K.); (I.B.)
- Institute of Physics, Polish Academy of Sciences, 02-668 Warsaw, Poland
| | - Rui Hu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China; (M.S.); (A.H.)
| | - Chun Huang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China; (M.S.); (A.H.)
| | - Roman Ziniuk
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China; (M.S.); (A.H.)
| | - Sergii Golovynskyi
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China; (M.S.); (A.H.)
- V. Lashkaryov Institute of Semiconductor Physics, National Academy of Sciences of Ukraine, 03680 Kyiv, Ukraine; (L.M.); (S.K.); (I.B.)
| | - Ivan Babichuk
- V. Lashkaryov Institute of Semiconductor Physics, National Academy of Sciences of Ukraine, 03680 Kyiv, Ukraine; (L.M.); (S.K.); (I.B.)
- Intelligent Manufacturing Division, Wuyi University, Jiangmen 529020, China
| | - Βaikui Li
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China; (M.S.); (A.H.)
| | - Junle Qu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China; (M.S.); (A.H.)
| | - Antonino S. Fiorillo
- Department of Health Sciences, Magna Græcia University of Catanzaro, 88100 Catanzaro, Italy; (S.A.P.); (A.S.F.)
| |
Collapse
|
17
|
Li J, Wang B, Zhang H, Yu J. Carbon Dots-in-Matrix Boosting Intriguing Luminescence Properties and Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1805504. [PMID: 30761756 DOI: 10.1002/smll.201805504] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 01/14/2019] [Indexed: 06/09/2023]
Abstract
As a new class of luminescent nanomaterials, carbon dots (CDs) have aroused significant interest because of their fascinating photoluminescence properties and potential applications in biological, optoelectronic, and energy-related fields. Strikingly, embedding CDs in host matrices endow them with intriguing luminescent properties, in particular, room temperature phosphorescence and thermally activated delayed fluorescence, due to the confinement effect of the host matrix and the H-bonding interactions between CDs and the matrix. Here, the state-of-the-art strategies for introducing CDs in various host matrices are summarized, such as nanoporous materials, polyvinyl alcohol, polyurethane, potash alum, layered double hydroxides, amorphous silica, etc. The resultant luminescent properties of the composites and their emission mechanisms are discussed. Their applications in bioimaging, drug delivery/release, sensing, and anticounterfeiting are also presented. Finally, current problems and challenges of CDs-based composites are noted for future development of such luminescent materials.
Collapse
Affiliation(s)
- Jiyang Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Bolun Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Hongyue Zhang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Jihong Yu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
- International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| |
Collapse
|
18
|
Xiao L, Sun H. Novel properties and applications of carbon nanodots. NANOSCALE HORIZONS 2018; 3:565-597. [PMID: 32254112 DOI: 10.1039/c8nh00106e] [Citation(s) in RCA: 138] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
In the most recent decade, carbon dots have drawn intensive attention and triggered substantial investigation. Carbon dots manifest superior merits, including excellent biocompatibility both in vitro and in vivo, resistance to photobleaching, easy surface functionalization and bio-conjugation, outstanding colloidal stability, eco-friendly synthesis, and low cost. All of these endow them with the great potential to replace conventional unsatisfactory fluorescent heavy metal-containing semiconductor quantum dots or organic dyes. Even though the understanding of their photoluminescence mechanism is still controversial, carbon dots have already exhibited many versatile applications. In this article, we summarize and review the recent progress achieved in the field of carbon dots, and provide a comprehensive summary and discussion on their synthesis methods and emission mechanisms. We also present the applications of carbon dots in bioimaging, drug delivery, microfluidics, light emitting diode (LED), sensing, logic gates, and chiral photonics, etc. Some unaddressed issues, challenges, and future prospects of carbon dots are also discussed. We envision that carbon dots will eventually have great commercial utilization and will become a strong competitor to some currently used fluorescent materials. It is our hope that this review will provide insights into both the fundamental research and practical applications of carbon dots.
Collapse
Affiliation(s)
- Lian Xiao
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore.
| | | |
Collapse
|
19
|
One-step synthesis of fluorescent carbon dots for sensitive and selective detection of hyperin. Talanta 2018; 186:315-321. [DOI: 10.1016/j.talanta.2018.04.065] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 04/17/2018] [Accepted: 04/20/2018] [Indexed: 12/25/2022]
|
20
|
Wang B, Mu Y, Yin H, Yang Z, Shi Y, Li J. Formation and origin of multicenter photoluminescence in zeolite-based carbogenic nanodots. NANOSCALE 2018; 10:10650-10656. [PMID: 29845155 DOI: 10.1039/c8nr02043d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Carbogenic nanodots (CNDs) are inspiring intensive research efforts owing to their excellent optical properties; however, their chemical structures and photoluminescent origins are still under study. Herein, CNDs with interesting multicenter photoluminescence (PL) have been successfully prepared by pyrolysis of organo-templated zeolites. The simultaneously observed excitation-dependent blue and excitation-independent green PL emissions as well as an uncommon ultraviolet-excited cyan emission are quite different from those of the known multicenter emissive CNDs. To get a thorough understanding of the formation of these CNDs and their PL origins, structural characterizations coupled with femtosecond transient absorption and fluorescence lifetime spectra analyses have been employed to study such PL behavior. The results show that the as-prepared CNDs consist of three main batches with different polarities, and they are composed of a combination of six small fluorophores with diverse ratios. The multicenter PL is obtained due to competition between the conjugated domain fluorophores and the surface-occupied functional group fluorophores. This study provides a comprehensive insight into the origin of multicenter photoluminescence in zeolite-based CNDs.
Collapse
Affiliation(s)
- Bolun Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China.
| | - Ying Mu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China. and College of Chemistry and Chemical Engineering, Qingdao University, Shandong, 266071, P. R. China
| | - Hang Yin
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, P. R. China
| | - Ziqi Yang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China.
| | - Ying Shi
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, P. R. China
| | - Jiyang Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China.
| |
Collapse
|
21
|
Nishihara H, Kyotani T. Zeolite-templated carbons - three-dimensional microporous graphene frameworks. Chem Commun (Camb) 2018; 54:5648-5673. [PMID: 29691533 DOI: 10.1039/c8cc01932k] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Zeolite-templated carbons (ZTCs) are ordered microporous carbons synthesized by using zeolite as a sacrificial template. Unlike well-known ordered mesoporous carbons obtained by using mesoporous silica templates, ZTCs consist of curved and single-layer graphene frameworks, thereby affording uniform micropore size (ca. 1.2 nm), developed microporosity (∼1.7 cm3 g-1), very high surface area (∼4000 m2 g-1), good compatibility with chemical modification, and remarkable softness/elasticity. Thus, ZTCs have been used in many applications such as hydrogen storage, methane storage, CO2 capture, liquid-phase adsorption, catalysts, electrochemical capacitors, batteries, and fuel cells. Herein, the relevant research studies are summarized, and the properties as well as the performances of ZTCs are compared with those of other materials including metal-organic frameworks, to elucidate the intrinsic advantages of ZTCs and their future development.
Collapse
Affiliation(s)
- H Nishihara
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1, Katahira, Aoba-ku, Sendai, 980-8577, Japan.
| | | |
Collapse
|
22
|
Wang Y, Wang B, Shi H, Zhang C, Tao C, Li J. Carbon nanodots in ZIF-8: synthesis, tunable luminescence and temperature sensing. Inorg Chem Front 2018. [DOI: 10.1039/c8qi00637g] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
A new hybrid material CNDs@ZIF-8 with tunable luminescence and temperature-responsive photoluminescence has been synthesized by a low temperature-calcination method. An approximate white light has been achieved by combining the blue emission of ZIF-8 framework and the high yellow emission of CNDs.
Collapse
Affiliation(s)
- Yufei Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry
- College of Chemistry
- Jilin University
- Changchun 130012
- P. R. China
| | - Bolun Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry
- College of Chemistry
- Jilin University
- Changchun 130012
- P. R. China
| | - Huaizhong Shi
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry
- College of Chemistry
- Jilin University
- Changchun 130012
- P. R. China
| | - Chenghui Zhang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry
- College of Chemistry
- Jilin University
- Changchun 130012
- P. R. China
| | - Chunyao Tao
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry
- College of Chemistry
- Jilin University
- Changchun 130012
- P. R. China
| | - Jiyang Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry
- College of Chemistry
- Jilin University
- Changchun 130012
- P. R. China
| |
Collapse
|
23
|
Liu J, Ren X, Yan Y, Wang N, Wang S, Zhang H, Li J, Yu J. A new two-dimensional layered germanate with in situ embedded carbon dots for optical temperature sensing. Inorg Chem Front 2018. [DOI: 10.1039/c7qi00602k] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A carbon dots@germanate composite has been synthesized by embedding carbon dots into a double-layered germanate in situ, which exhibits excitation-dependent and temperature-responsive photoluminescence.
Collapse
Affiliation(s)
- Jiancong Liu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry
- Jilin University
- Changchun 130012
- China
| | - Xiaoyan Ren
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- China
| | - Yan Yan
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry
- Jilin University
- Changchun 130012
- China
| | - Ning Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry
- Jilin University
- Changchun 130012
- China
| | - Shuang Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry
- Jilin University
- Changchun 130012
- China
| | - Hongyue Zhang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry
- Jilin University
- Changchun 130012
- China
| | - Jiyang Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry
- Jilin University
- Changchun 130012
- China
| | - Jihong Yu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry
- Jilin University
- Changchun 130012
- China
- International Center of Future Science
| |
Collapse
|
24
|
Zhou K, Zhang WJ, Luo YZ, Pan CY. Photoluminescent carbon dots based on a rare 3D inorganic–organic hybrid cadmium borate crystal. Dalton Trans 2018; 47:7407-7411. [DOI: 10.1039/c8dt01077c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A 3D inorganic–organic hybridized skeleton cadmium borate [Cden][B5O8(OH)] (1) (en = ethylenediamine) has been solvothermally synthesized. By calcining it, specific shape carbon dots (C-dots) with abundant free radicals were observed. In addition, C-dots in the ethanol phase exhibited variable photoluminescence and showed a special effect to Cr3+/Cs+ ions and CdSe/ZnS, CsPbBr3 quantum dots.
Collapse
Affiliation(s)
- Kang Zhou
- School of Chemical Engineering and Light Industry
- Guangdong University of Technology
- Guangzhou
- China
| | - Wen-Jin Zhang
- School of Chemical Engineering and Light Industry
- Guangdong University of Technology
- Guangzhou
- China
| | - Yuan-Zhang Luo
- School of Chemical Engineering and Light Industry
- Guangdong University of Technology
- Guangzhou
- China
| | - Chun-Yang Pan
- School of Chemical Engineering and Light Industry
- Guangdong University of Technology
- Guangzhou
- China
| |
Collapse
|
25
|
Zheng M, Li Y, Liu S, Wang W, Xie Z, Jing X. One-Pot To Synthesize Multifunctional Carbon Dots for Near Infrared Fluorescence Imaging and Photothermal Cancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2016; 8:23533-41. [PMID: 27558196 DOI: 10.1021/acsami.6b07453] [Citation(s) in RCA: 165] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
It is an emerging focus to develop a simple and straightforward strategy to synthesize multifunctional nanomedicines for cancer imaging and treatment. In this work, a new carbon dot (named CyCD) with intrinsic theranostic properties was prepared from a hydrophobic cyanine dye [2-((E)-2-((E)-2-chloro-3-((E)-2-(1-(2-hydroxyethyl)-3,3-dimethylindolin-2-ylidene) ethylidene)cyclohex-1-en-1-yl)vinyl)-1-(2-hydroxyethyl)-3,3-dimethyl-3H-indol-1-ium iodide, CyOH] and poly(ethylene glycol) (PEG800) via a simple solvothermal process. The as-prepared CyCD is well dispersed in water media with an average diameter of 2.9 ± 0.5 nm; it possesses favorable hydrophilicity and excellent photostability. More importantly, the strong absorption and near-IR (NIR) emission within the range from 600 to 900 nm, along with preferential uptake at tumors and high photothermal conversion efficiency (η = 38.7%), facilitate CyCD to act as an ideal theranostic agent for NIR fluorescent imaging and photothermal therapy in vitro and in vivo. This work highlights theranostic CDs as an excellent candidate for efficient cancer imaging and therapy.
Collapse
Affiliation(s)
- Min Zheng
- Chemistry and Life Science School, Advanced Institute of Materials Science, Changchun University of Technology , 2055 Yanan Street, Changchun, Jilin 130012, P. R. China
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , 5625 Renmin Street, Changchun, Jilin 130022, P. R. China
| | - Yang Li
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , 5625 Renmin Street, Changchun, Jilin 130022, P. R. China
| | - Shi Liu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , 5625 Renmin Street, Changchun, Jilin 130022, P. R. China
| | - Weiqi Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , 5625 Renmin Street, Changchun, Jilin 130022, P. R. China
- University of Chinese Academy of Sciences , Beijing 100049, P. R. China
| | - Zhigang Xie
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , 5625 Renmin Street, Changchun, Jilin 130022, P. R. China
| | - Xiabin Jing
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , 5625 Renmin Street, Changchun, Jilin 130022, P. R. China
| |
Collapse
|
26
|
Mu Y, Wang N, Sun Z, Wang J, Li J, Yu J. Carbogenic nanodots derived from organo-templated zeolites with modulated full-color luminescence. Chem Sci 2016; 7:3564-3568. [PMID: 29997848 PMCID: PMC6007353 DOI: 10.1039/c6sc00085a] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 02/12/2016] [Indexed: 12/19/2022] Open
Abstract
Dual modulated luminescence of carbogenic nanodots derived from zeolites has been acquired by controlling the concentration and pH value of CND aqueous dispersions.
Hydrophilic N-doped carbogenic nanodots (denoted as CNDs) have been prepared from a N-methylpiperazine-templated zeolite precursor by calcination and NaOH treatment. The isolated CNDs exhibit tunable photoluminescence according to the concentration and pH value of aqueous dispersions of the CNDs. Fine-tuning of the fluorescence emission wavelength across the entire visible spectrum can be easily achieved by varying the concentration of the CND dispersions. Meanwhile, both the emission wavelength and intensity of the photoluminescence can be tuned by controlling the pH value of the CND dispersion. The pyrolysis of organic templates confined in nanoporous zeolites represents a new approach to controlling the optical properties of CNDs, which may open more opportunities in applications such as multimodal sensing and full-color displays.
Collapse
Affiliation(s)
- Ying Mu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry , College of Chemistry , Jilin University , Changchun 130012 , P. R. China . ; ; ; Tel: +86-431-8516-8608
| | - Ning Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry , College of Chemistry , Jilin University , Changchun 130012 , P. R. China . ; ; ; Tel: +86-431-8516-8608
| | - Zaicheng Sun
- Beijing Key Laboratory for Green Catalysis and Separation , Department of Chemistry and Chemical Engineering , Beijing University of Technology , Beijing , 100124 , P. R. China
| | - Jing Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry , College of Chemistry , Jilin University , Changchun 130012 , P. R. China . ; ; ; Tel: +86-431-8516-8608
| | - Jiyang Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry , College of Chemistry , Jilin University , Changchun 130012 , P. R. China . ; ; ; Tel: +86-431-8516-8608
| | - Jihong Yu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry , College of Chemistry , Jilin University , Changchun 130012 , P. R. China . ; ; ; Tel: +86-431-8516-8608
| |
Collapse
|
27
|
Sarkar S, Das K, Ghosh M, Das PK. Amino acid functionalized blue and phosphorous-doped green fluorescent carbon dots as bioimaging probe. RSC Adv 2015. [DOI: 10.1039/c5ra09905f] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Thermal coupling between citric acid and Na-salt of glycine, l-valine and l-isolucine produced blue emitting carbon dots (CDs) and in presence of NaH2PO4, produced green emitting phosphorous doped CDs (PCDs), which were utilized for cell imaging.
Collapse
Affiliation(s)
- Saheli Sarkar
- Department of Biological Chemistry
- Indian Association for the Cultivation of Science
- Kolkata – 700 032
- India
| | - Krishnendu Das
- Department of Biological Chemistry
- Indian Association for the Cultivation of Science
- Kolkata – 700 032
- India
| | - Moumita Ghosh
- Department of Biological Chemistry
- Indian Association for the Cultivation of Science
- Kolkata – 700 032
- India
| | - Prasanta Kumar Das
- Department of Biological Chemistry
- Indian Association for the Cultivation of Science
- Kolkata – 700 032
- India
| |
Collapse
|